International Journal of Computer
Trends and Technology

Research Article | Open Access | Download PDF

Volume 4 | Issue 5 | Year 2013 | Article Id. IJCTT-V4I5P99 | DOI : https://doi.org/10.14445/22312803/IJCTT-V4I5P99

General Framework for Biomedical Knowledge With Data Mining Techniques


B.Madasamy, Dr.J.Jebamalar Tamilselvi

Citation :

B.Madasamy, Dr.J.Jebamalar Tamilselvi, "General Framework for Biomedical Knowledge With Data Mining Techniques," International Journal of Computer Trends and Technology (IJCTT), vol. 4, no. 5, pp. 1485-1491, 2013. Crossref, https://doi.org/10.14445/22312803/IJCTT-V4I5P99

Abstract

Data mining is the process which automates the extraction of predictive information discovers the interesting knowledge from large amounts of data stored in information repositories. Biomedical informatics (BMI) is the science underlying acquisition, maintenance, retrieval, collecting, manipulating, and analysing the biomedical knowledge and information to improve medical data analysis, problem solving, and decision making, inspired by efforts toward progress in medical domain. In this research work a comprehensive framework will be generated which comprises of various data mining techniques and evaluate meaningful information from biomedical data. Data mining field will be applied to biomedical data to analyze the characteristics, identify patterns of interest, for diagnosing and predicting patients` health. These proposed biomedical data mining framework useful to the scholars who are interested in the related researches of data mining and medical domain.

Keywords

Data mining, Biomedical, Framework, Knowledge Discovery.

References

[1] James Gardner, Li Xing “An integrated framework for de-identifying  unstructured medical data” Data & Knowledge  Engineering  www.elsevier.com/locate/datak
[2]  Wan-Shiou Yang, San-Yih HwangW.-S. Yang, S.-Y. Hwang “A  process-mining  framework for the detection of healthcare  fraud and abuse” Expert Systems with  Applications 31  (2006) 56–68
[3]   Latha .K1 Kalimuthu.S2 Dr.Rajaram.R3   “Information Extraction   from Biomedical  Literature using Text Mining Framework”   International Journal of Imaging Science and  Engineering (IJISE)
[4] Ramkishore Bhattacharyya “Cohesion: A concept and framework for  confident  association discovery with potential application in  microarray mining” Applied Soft  Computing 11 (2011) 592–604  journal homepage: www.elsevier.com/locate/asoc
[5]  Riyaz Sikora, Selwyn Piramuthu “Computing, Artificial Intelligence  and  Information  Management Framework for  efficient feature selection in genetic algorithm  based data  mining”  European Journal of Operational Research 180 (2007) 723– 737
[6]  George Hripcsak, Suzanne Bakken, Peter D. Stetson, and mla L. Patel,  “Mining  complex clinical data for patient safety research: a  framework for event  discovery”  Journal of Biomedical  Informatics 36 (2003) 120–13 
[7]  Pearson WR (2000) “Flexible sequence similarity searching with the  FASTA3 program  package” Methods Mol. Biol. 132:185–219 
[8]  The Genome International Sequencing Consortium (2001) Initial  sequencing and analysis  of the human genome. Nature 409:860–921 
[9]  Ramos-Pollan, R., et al., “Exploiting eInfrastructures for medical  image storage and  analysis: A Grid application for  mammography CAD,” in The Seventh IASTED  International  Conference on Biomedical Engineering. Austria: Innsbruck, 2010.
[10]  Drakos, J., et al., “A perspective for biomedical data integration:  Design of databases for  flow cytometry” BMC Bioinform. 9:99,  2008. 
[11]  Karasavvas, K.A., Baldock, R., Burger, A. (2004) “Bioinformatics  integration and agent  technology”. Journal of Biomedical  Informatics 37:205±219. 
[12]  Saltz, J. et al. caGrid: “Design and implementation of the core  architecture of the  cancer biomedical informatics grid”.  Bioinformatics   
[13]  Brown D. “Introduction to Data Mining for Medical Informatics.  Clinics in Laboratory Medicine”, Volume 28, Issue 1, March 2008,  Pages 1-7, Clinical Data Mining and  Warehousing
[14]  Cios, J.K (2001) “Medical Data Mining and Knowledge Discovery”  NY: Physica- Verlag Heidelberg.
[15]  Harrison J.H. “Introduction to the Mining of Clinical Data. Clinics in  Laboratory  Medicine” Volume 28, Issue 1, March 2008, Pages 1-7,  Clinical Data Mining and  Warehousing