International Journal of Computer
Trends and Technology

Research Article | Open Access | Download PDF

Volume 4 | Issue 4 | Year 2013 | Article Id. IJCTT-V4I4P149 | DOI : https://doi.org/10.14445/22312803/IJCTT-V4I4P149

An Automatic Detection and Assessment of Diabetic Macular Edema Along With Fovea Detection from Color Retinal Images


S.Fowjiya, Dr.M.karnan , Mr.R.Sivakumar

Citation :

S.Fowjiya, Dr.M.karnan , Mr.R.Sivakumar, "An Automatic Detection and Assessment of Diabetic Macular Edema Along With Fovea Detection from Color Retinal Images," International Journal of Computer Trends and Technology (IJCTT), vol. 4, no. 4, pp. 688-692, 2013. Crossref, https://doi.org/10.14445/22312803/IJCTT-V4I4P149

Abstract

Diabetic macular edema (DME) is an advanced symptom of diabetic retinopathy which lead to vision loss. Here a methodology comprises of two stages is proposed. First stage is detecting of DME and the next stage is assessing the severity of DME.DME detection is carried out via a supervised learning approach A technique called feature extraction is introduced here to capture the global characteristics of fundus images.It will discriminate the normal images from DME images. A rotational asymmetry metric is used to assess disease severity by examining macular region symmetry.Along with this fovea detection is also performed to make detecting process further easier.

Keywords

Diabetic macular edema, hard exudates, rotational symmetry.diabetic retinopathy.

References

[1] LGiancardo, F. Meriaudeau, T. Karnowski, K. Tobin, E. Grisan, P. Favaro, A. Ruggeri, and E. Chaum, “Textureless macula swelling detection with multiple retinal fundus images,” IEEE Trans. Biomed. Eng., vol. 58, no. 3, pp. 795–799, Mar. 2011.
[2] A. Rocha, T. Carvalho, S. Goldenstein, and J. Wainer, Points of interest    and  visual  dictionary for  retina  pathology detection  Inst. Comput., Univ. Campinas, Tech. Rep. IC-11-07, Mar. 2011.
[3] C. Agurto, V. Murray, E. Barriga, S. Murillo, M. Pattichis, H. Davis,S. Russell, M. Abramoff, and P. Soliz, “Multiscale am-fm methods for diabetic retinopathy lesion detection,” IEEE Trans. Med. Imag., vol   29, no. 2, pp. 502–512, Feb. 2010 [4] Automatic Assessment of Macular EdemaFrom Color Retinal ImagesK. Sai Deepak* and Jayanthi Sivaswamy
[5] C. P. Wilkinson, F. L. Ferris, R. E. Klein, P. P. Lee, C. D. Agardh, M.Davis, D. Dills, A. Kampik, R. Pararajasegaram, and J. T. Verdaguer, “Proposed international clinical diabetic retinopathy and diabetic mac- ular edema disease severity scales,” Am. Acad. Ophthalmol., vol. 110, no. 9, pp. 1677–1682, Sep. 2003.
[6] R. F. N. Silberman, K. Ahlrich, and L. Subramanian, “Case for auto- mated detection of diabetic retinopathy,” Proc. AAAI Artif. Intell. De- velopment (AI-D’10), pp. 85–90, Mar. 2010.
[7] M. Verma, R. Raman, and R. E. Mohan, “Application of tele ophthal- mology in remote diagnosis and management of adnexal and orbital diseases,” Indian J. Ophthalmol., vol. 57, no. 5, pp. 381–384, Jul. 2009.
[8] M.  D.  Abramoff,  M.  Niemeijer,  M.  S.  Suttorp-Schulten,  M.  A.Viergever, S. R. Russell, and B. van Ginneken, “Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes,” J. Diabetes Care, vol. 31, no. 2, pp. 193–198, Nov. 2007.
[9] S. Philip, A. Fleming, K. Goatman, S. Fonseca, P. McNamee, G. Scot- land, G. Prescott, P. F. Sharp, and J. Olson, “The efficacy of auto- mated disease/no disease grading for diabetic retinopathy in a system- atic screening programme,” Br. J. Ophthalmol., vol. 91, no. 11, pp.1512–7, Nov. 2007.
[10] H. Jaafar, A. Nandi, and W. Al-Nuaimy, “Detection of exudates in retinal images using a pure splitting technique,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2010, pp. 6745–6748.
[11] P. C. Siddalingaswamy and K. G. Prabhu, “Automatic grading of diabetic maculopathy severity levels,” in Int. Conf. Syst. Med. Biol. (ICSMB), Dec. 2010, pp. 331–334.
[12] C. I. Sanchez, M. Garca, A. Mayo, M. I. Lopez, and R. Hornero, “Retinal image analysis based on mixture models to detect hard exudates,” Med. Image Anal., vol. 13, no. 4, pp. 650–658, Aug. 2009.