Research Article | Open Access | Download PDF
Volume 3 | Issue 3 | Year 2012 | Article Id. IJCTT-V3I3P101 | DOI : https://doi.org/10.14445/22312803/IJCTT-V3I3P101
Self Organizing Map based Clustering Approach for Trajectory Data
Sanjiv Kumar Shukla, Sourabh Rungta, Lokesh Kumar Sharma
Citation :
Sanjiv Kumar Shukla, Sourabh Rungta, Lokesh Kumar Sharma, "Self Organizing Map based Clustering Approach for Trajectory Data," International Journal of Computer Trends and Technology (IJCTT), vol. 3, no. 3, pp. 311-316, 2012. Crossref, https://doi.org/10.14445/22312803/IJCTT-V3I3P101
Abstract
Clustering algorithm for the moving or trajectory data provides new and helpful information. It has wide application on various location aware services. In this study the Self Organizing Map is used to form the cluster on trajectory data. The self-organizing map (SOM) is an important tool in exploratory phase of data mining. It projects input space on prototypes of a low-dimensional regular grid that can be effectively utilized to visualize and explore properties of the data. When the number of SOM units is large, to facilitate quantitative analysis of the map and the data, similar units need to be grouped, i.e., clustered.
Keywords
Trajectory Data, Self-Organizing Map, Clustering.
References
[1] A. K. Jain, M. N. Murty, P. J .Flynn, “ Data Clustering: A Review.” ACM Computing Surveys, Vol. 31, No. 3, pp. 265-323, Sep. 1999.
[2] A. Akasapu et al. “Density Based k-Nearest Neighbors Clustering Algorithm for Trajectory Data”, Int. J. on Advanced Science and Technology, Vol. 31, June 2011, pp. 47-57, 2011.
[3] F. Giannotti and D. Pedreschi, “Mobility, Data Mining and Privacy: Geographic Knowledge Discovery”, Springer Verlag, 2008.
[4] F. Ginnotti, M. Nanni, D. Pedreschi and F. Pinelli, “Trajectory Pattern Mining”, In Proceedings of the 13th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 330 – 339, 2007.
[5] G. Andrienko, N. Andrienko, and S. Wrobel, “Visual Analytics Tools for Analysis of Movement Data”, ACM SIGKDD: 38-46, ISSN:1931- 0145, 2007.
[6] G. Massini, "Applications of Mathematics in Models, Artificial Neural Networks and Arts", Chapter 13, Springer, 2010.
[7] J. Gudmundsson, P. Laube and T. Wolle T. “Movement Patterns in Spatio-Temporal Data”, In: Shekhar, S. & Xiong, H. (eds.). Encyclopedia of GIS, Springer-Verlag, 2008.
[8] J. Lee, J. Han., and K. Whang ,“Trajectory clustering: a partition-andgroup framework”, In Proceedings ACM SIGMOD Int. Conf. on Management of Data: 593 – 604, 2007.
[9] J. Vesanto and E. Alhoniemi,"Clustering of the Self-Organizing Map",IEEE Tran. on Neural Networks, Vol. 11, No. 3, pp. 586-600, 2000
[10] M. H. Beale et al., “User Guide: MATLAB Neural Network Toolbox”, The Math Works, Inc., 2012.
[11] M. K. Markey et al., "Self-organizing map for cluster analysis of a breast cancer database", Artificial Intelligence in Medicine 27, pp. 113–127, 2003.
[12] S. Gaffney and P. Smyth, "Trajectory Clustering with Mixtures of Regression Models",KDD 99 San Diego CA USA, pp. 63-72
[13] S. N. Sivanandam et al., "Introduction to Neural Network using MATLAB 6.0", Tata McGraw-Hill Publishing Company 2006. [14] S. Spaccapietra, et al. "A conceptual view on trajectories", Data & Knowledge Engineering 65: 126-146, 2008..