A Functional View of Big Data Ecosystem

© 2020 by IJCTT Journal
Volume-68 Issue-4
Year of Publication : 2020
Authors : Alrawda Abdullatif Abdulhaleem Hamid
DOI :  10.14445/22312803/IJCTT-V68I4P135

How to Cite?

Alrawda Abdullatif Abdulhaleem Hamid, "A Functional View of Big Data Ecosystem," International Journal of Computer Trends and Technology, vol. 68, no. 4, pp. 1-2, 2020. Crossref, https://doi.org/10.14445/22312803/IJCTT-V68I4P135

Big data analytics is a promising research area, considering its capacity to add value in decision making for both business and academia. Massive numbers of tools available in the landscape of big data analytics solutions are provided for processing data in its lifecycle; namely, ingesting, analytics, storage and visualization.Large number of such solutions and sometimes interference among functionality of constituent components are stones in the road of implementing such solutions. In response to these complexities, this work grouped similar processing components in modules and shows interdependencies among them to facilitate synthesising big data analytics systems from extant solutions.

Big data, ingestion, batch analytics, real-time analytics, interactive querying, visualization, noSQL database, distributed file system, in-memory, Apache Hadoop, HDFS, MapReduce.

[1] Mani M, Fei S. “Effective Big Data Visualization”. Proc. International Database Engineering & Applications Symposium’21, 2017, p. 298.
[2] Bikakis N. “Big Data Visualization Tools”. arXiv preprint arXiv:1801.08336. 2018 Jan 25.
[3] Petrovska J, Ajdari J. “Amazon’s Role in the Field of Cloud Relational And noSQL Databases: A Comparison Between Amazon Aurora and DynamoDB”. Proc. ISCBE’03, 2019, 13:214.
[4] Venkatraman S, Fahd K, Kaspi S, Venkatraman R. “SQL versus noSQL Movement with Big Data Analytics”. International Journal of Information Technology and Computer Science. Vol. 8(12), pp. 59-66, 2016.
[5] Moniruzzaman, A., Hossain, S., noSQL Database: “New Era of Databases for Big Data Analytics Classification, Characteristics and Comparison”, International Journal of Database Theory and Application, Vol. 6(4). 2013
[6] Venkatraman R, Venkatraman S. “Big Data Infrastructure, Data Visualisation and Challenges”. Proc. International Conference on Big Data and Internet of Things’03, 2019, p.13.
[7] Jagadish, V., Gehrke, J., Labrinidis, A.,Papakonstantinou, Y., Patel, J., Ramakrishnan, R., ,Shahabi, C., “Big Data and its Technical Challenges”, Communications of the ACM, Vol. 57(7), pp. 86-94, 2014.
[8] Bahga A, Madisetti V. “Big Data Science & Analytics: A Hands-on Approach”. VPT; 2016 Apr 15.
[9] Erraissi, A., Belangour, A., Tragha, A., “Meta-Modeling of Data Sources and Ingestion Big Data Layers”, Proc. International Conference of Smart Applications and Data Analysis for Smart Cities’02, 2018, paper 10.2139.
[10] Semlali BE, El Amrani C, Ortiz G. “SAT-ETL-Integrator: an Extract-Transform-Load Software for Satellite Big Data Ingestion”. Journal of Applied Remote Sensing, Vol. 14(1), Jan. 2020.
[11] Bahga, A., Madisetti, V.K., Madisetti, R.K. and Dugenske, A. “Software Defined Things in Manufacturing Networks”. Journal of Software Engineering and Applications, Vol. 9, pp. 425-438, 2016.
[12] Ta VD, Liu CM, Nkabinde GW. “Big Data Stream Computing In Healthcare Real-Time Analytics”. Proc. IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), 2016, p. 37.
[13] Lipic T, Skala K, Afgan E. “Deciphering Big Data Stacks: an Overview of Big Data Tools”. Proc. International Workshop on Big Data Analytics: Challenges, and Opportunities’14, 2014.
[14] Ta-Shma P, Akbar A, Gerson-Golan G, Hadash G, Carrez F, Moessner K. “An Ingestion And Analytics Architecture For Iot Applied To Smart City Use Cases”. IEEE Internet of Things Journal. Vol. 5(2), pp. 765-74, Jun. 2017.
[15] Hurwitz, J., Nugent, A., Halper, F., and Kaufman, M., “Big Data for Dummies”, John Wiley & Sons, Inc., New Jersey, USA, 2013.
[16] Stolpe M. “The Internet of Things: Opportunities and Challenges for Distributed Data Analysis”. ACM SIGKDD Explorations Newsletter. Vol. 18 (1), pp. 15-34, Aug. 2016.
[17] Merla P, Liang Y. “Data Analysis Using Hadoop MapReduce Environment”. Proc. IEEE International Conference on Big Data (Big Data), 2017, p. 4783.
[18] Cho W, Lim Y, Lee H, Varma MK, Lee M, Choi E. “Big Data Analysis with Interactive Visualization Using R Packages”. Proc. International Conference on Big Data Science and Computing, 2014, p. 1.
[19] Mazumder S, Dhar S. “Hadoop Ecosystem As Enterprise Big Data Platform: Perspectives And Practices”. International Journal of Information Technology and Management. Vol. 17(4), pp. 334-48, 2018.
[20] Ranjan R. “Streaming Big Data Processing In Datacenter Clouds”. IEEE Cloud Computing, Vol. 1(1), pp. 78-83, Jul. 2014.
[21] The Amazon AWS website. [Online]. Available: aws.amazon.com
[22] The IBM web site. [Online]. Available: https://www.ibm.com/cloud/blog/implementing-big-data-platform-cloud
[23] Gupta A, Tyagi S, Panwar N, Sachdeva S, Saxena U. “NoSQL Databases: Critical Analysis and Comparison”. Proc. International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), 2017, p. 293.
[24] Seeger M, “Ultra-Large-Sites S. Key-Value Stores: a Practical Overview”. Computer Science and Media, Stuttgart. 2009 Sep 21.
[25] Kaur K, Rani R. “Modeling and Querying Data in noSQL Databases”. Proc. IEEE International Conference on Big Data, 2013, p. 1.
[26] Phiri, H., Kunda, D., “A Comparative Study of noSQL and Relational Database”, Zambia Information Communication Technology (ICT) Journal, Vol. 1 (1), 2017.
[27] Bhuvan, N., Elayidom, M., “A Technical Insight on the New Generation Databases: noSQL”, International Journal of Computer Application, Volume 121(7), 2015.
[28] Zhang H, Chen G, Ooi BC, Tan KL, Zhang M. “In-memory Big Data Management and Processing: A Survey”. IEEE Transactions on Knowledge and Data Engineering. Vol. 27(7), pp. 1920-48, Apr. 2015.
[29] Angles R, Gutierrez C. “An Introduction to Graph Data Management”. Graph Data Management, pp. 1-32, 2018.
[30] Angles R. “The Property Graph Database Model”. Proc. AMW, 2018.
[31] The oracle-base website. [Online]. Available: https://oracle-base.com/articles/12c/in-memory-column-store-12cr1
[32] Agrawal R, Kadadi A, Dai X, Andres F. “Challenges and Opportunities with Big Data Visualization”. Proc. International Conference on Management of Computational and Collective Intelligence in Digital Ecosystems’07, 2015, p. 169.
[33] Caldarola EG, Rinaldi AM. “Big Data Visualization Tools: A Survey”. Proc. International Conference on Data Science, Technology and Applications’06, 2017, p. 296.
[34] Lu, J., “Data Analytics Research-Informed Teaching in a Digital Technologies Curriculum”, Informs Transactions on Education Vol. 20(2), pp. 57–72, 2020