Object Recognition using Deep Convolutional Neural Network
MLA Style: Ali Razaa, Qian Yurong "Object Recognition using Deep Convolutional Neural Network" International Journal of Computer Trends and Technology 67.3 (2019): 113-118.
APA Style:Ali Razaa, Qian Yurong (2019). Object Recognition using Deep Convolutional Neural Network. International Journal of Computer Trends and Technology, 67(3), 113-118.
Abstract
Recognizing an object in an image is one of the principle difficultiesof PC visionframeworks becauseofthe varieties that each item or the particularpicture, where the object is indicated, could have like the enlightenment or perspective. Deep Neural Networks (DNNs) have recently revealedexceptionalexecution on picture classification tasks [14]. In a recent paper, we go one step further and identifythe issue of object detection utilizing DNNs that isn’t only classifying but also precisely localizing objects of differentperiods. We present a simple and yet powerful formulation of object identification as a regression issue to object bounding box masks. We characterize a multi-scale deduction system which can create high-resolution object detections at a low cost by a few network applications. Best in class execution of the methodology is appeared on Pascal VOC.
Reference
[1] Li, P., Wang, Q., Zeng, H., et al.: ?Local log-Euclidean multivariate Gaussian descriptor and its application to image classification‘, IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39, (4), pp. 803–817.
[2] Park, D.-C.: ?Multiple feature-based classifier and its application to image classification‘. IEEE Int. Conf. Data Mining Workshops, 2010, pp. 65–71.
[3] Yu, K., Zhang, T.: ?Improved local coordinate coding using local tangents‘. Proc. 27th Int. Conf. Machine Learning (ICML), 2010, pp. 1215–1222.
[4] Zhang, J., Marszalek, M., Lazebink, S., et al.: ?Local features and kernels for classification of texture and object categories: a comprehensive study‘, Int. J. Comput. Vis., 2007, 73, (2), pp. 213–238.
[5] Gehler, P.-V., Nowozin, S.: ?On feature combination for multiclass objectclassification‘. Proc. IEEE 12th Int. Conf. Computer Vision (ICCV), 2009.
[6] Khan, F.-S., van de Weijer, J., Vanrell, M.: ?Modulating shape features by color attention for object recognition‘, Int. J. Comput. Vis., 2012, 98, pp. 49–64.
[7] Xiao, J., Hays, K., Ehinger, A., et al.: ?Sun database: large-scale scene recognition from abbey to zoo‘. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2010, pp. 3485–3492.
[8] Zeiler, M.D., Fergus, R.: ?Visualizing and understanding convolutional networks‘, 2014, pp. 818–833.
[9] Dixit, M., Chen, S., Gao, D., et al.: ?Scene classification with semantic Fisher vectors‘. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2015, pp. 2974–2983.
[10] Lin, G., Zhu, H., Kang, X., et al.: ?Feature structure fusion modelling for classification‘, IET Image Process., 2015, 9, (10), pp. 883–888.
[11] Zhu, Q.-H., Wang, Z.-Z., Mao, X.-J., et al.: ?Spatial locality-preserving feature coding for image classification‘, Appl. Intell., 2017, 47, (1), pp. 148–157.
[12] Sun, M., Han, T.-X., Liu, M.-C., et al.: ?Latent model ensemble with autolocalization‘. Proc. Int. Conf. Pattern Recognition (ICPR), 2016.
[13] Khan, S.H., Hayat, M., Bennamoun, M., et al.: ?A discriminative representation of convolutional features for indoor scene recognition‘, IEEE Trans. Image Process., 2016, 25, (7), pp. 3372–3383.
[14] Hayat, M., Khan, S.H., Bennamoun, M., et al.: ?A spatial layout and scale invariant feature representation for indoor scene classification‘, IEEE Trans. Image Process., 2016, 25, (10), pp. 4829–4841.
[15] He, K., Zhang, X., Ren, S., et al.: ?Deep residual learning for image recognition‘. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2016.
[16] Dai, J., Li, Y., He, K., et al.: ?R-FCN: object detection via region-based fully convolutional networks‘, Adv. Neural Inf. Process. Syst., 2016, pp. 379–387.
[17] Oquab, M., Bottou, L., Laptev, I., et al.: ?Learning and transferring mid-level image representations using convolutional neural networks‘. Proc. IEEE Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1717–1724.
[18] Zhang, Y., Shi, B.: ?Improving pooling method for regularization of convolutional networks based on the failure probability density‘, Opt. – Int. J. Light Electron Opt., 2017, 145, (Suppl. C), pp. 258–265.
[19] Snoek, J., Rippel, O., Swersky, K., et al.: ?Scalable Bayesian optimization using deep neural networks‘. Int. Conf. Machine Learning (ICML), 2015, pp. 2171–2180.
[20] Thangarajah, A., Wu, Q.J., Yimin, Y.: ?Fusion-based foreground enhancement for background subtraction using multivariate multi-model Gaussian distribution‘, Inf. Sci., 2018, 430, pp. 414–431.
[21] Y. Bassil "Phoenix-The Arabic Object Oriented Programming Language" International Journal of computer Trends and Technology 67.2 (2019): 7-11.
[22] Bahrampour, S., Nasrabadi, N.M., Ray, A., et al.: ?Multimodal task-driven dictionary learning for image classification‘, IEEE Trans. Image Process. 2016, 25, pp. 24–38.
[23] Chen, S., Yang, J., Luo, L., et al.: ?Low-rank latent pattern approximation with applications to robust image classification‘, IEEE Trans. Image Process., 2017, 26, (11), pp. 5519–5530.
[24] Gao, Z., Fatih, P., Hongdong, L.: ?Robust visual tracking with deep convolutional neural network based object proposals on pets‘. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2016, pp. 26–33.
[25] Wenling, S., Kihyuk, S., Diogo, A., et al.: ?The extraordinary link between deep neural networks and the nature of the universe‘, MIT Technol. Rev., 2016.
[26] Fei-Fei, L., Fergus, R., Perona, P.: ?Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories‘, Comput. Vis. Image Underst., 2007, 106, (1), pp. 59–70.
Keywords
Database, Benchmark, Object recognition, DNN.