A Novel Color Chaos-based Image Encryption Algorithm using Half-Pixel-Level Cross Swapping Permutation Strategy

**MLA Style:** Ruisong Ye, Li Liu, "A Novel Color Chaos-based Image Encryption Algorithm using Half-Pixel-Level Cross Swapping Permutation Strategy" International Journal of Computer Trends and Technology 67.3 (2019): 53-64.

**APA Style:**Ruisong Ye, Li Liu, (2019). A Novel Color Chaos-based Image Encryption Algorithm using Half-Pixel-Level Cross Swapping Permutation Strategy. International Journal of Computer Trends and Technology, 67(3), 53-64.

**Abstract**

A novel color chaos-based image encryption scheme with permutation-diffusion mechanism is proposed. The permutation operation adopts half-pixel-level interchange permutation strategy between different R, G, B color channels to replace the traditional confusion operations. The pixel swapping between the higher 4-bit plane and the lower 4-bit plane of the R, G, B channels not only improves the conventional permutation efficiency within the entire plain-image, but also changes all the pixel values of R, G, B components. To enhance the security, multimodal skew map is applied to yield pseudo-random gray value sequence in the diffusion operations. Simulations have been carried out and the results confirm the superior security of the proposed image encryption scheme.

**Reference**

[1] S. Li, G. Chen, X. Zheng, Chaos-based image encryption for digital and videos, in: B. Furht, D. Kirovski(Eds), Multimedia Security Handbook. CRC Press, Florida, the United States of America, 2005, pp. 133-167(Chapter4).

[2] Y. Wang, K. W. Wong, X. F. Liao, T. Xiang, G. R. Chen, A chaos-based image encryption algorithm with variable control parameters, Chaos Solitons Fractals, 41:4(2009), 1773-1783.

[3] J. Fridrich, Symmetric ciphers based on two-dimensional chaotic maps, International Journal of Bifurcation and Chaos, 8:6(1998), 1259-1284.

[4] W. Zhang, Kwok-wo. Wong, H. Yu, Z. Zhu, An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion, Commun. Nonlinear Sci. Numer. Simul., 18:8(2013), 2066-2080.

[5] G. Chen, Y. Mao, Charles K. Chui, A symmetric image encryption scheme based on 3D chaotic cat maps, Chaos, Solitons and Fractals, 21:3(2004), 749-761.

[6] Y. Q. Zhang, X. Y. Wang, A new image encryption algorithm based on non-adjacent coupled map lattices , Applied Soft Computing, 26(2015), 10-20.

[7] R. Ye, M. Ge, P. Huang, H. Li, A Novel Self-adaptive Color Image Encryption Scheme, International Journal of Computer Trends and Technology, 40:1(2016), 39-44.

[8] C. Q. Li, S. J. Li, G. R. Chen, G. Chen, L. Hu, Cryptanalysis of a new signal security system for multimedia data transmission. EURASIP J. Appl. Signal Process., 8(2005), 1277-1288.

[9] S. J. Li, C. Q. Li, G. R. Chen, N. G. Bourbakis, K. T. Lo, A general quantitative cryptanalysis of permutation-only multimedia ciphers against plain-image attacks. Signal Process. Image Commun., 23(2009), 212-223.

[10] D. Xiao, X. Liao, P. Wei, Analysis and improvement of a chaos-based image encryption algorithm, Chaos, Solitons and Fractals, 40(2009), 2191–2199.

[11] E. Solak, C. Cokal, O. T. Yildiz, and T. Biyikoglu, Cryptanalysis of fridrich’s chaotic image encryption, International Journal of Bifurcation and Chaos, 20:5(2010), 1405-1413.

[12] E. Solak, R. Rhouma, and S. Belghith, Cryptanalysis of a multi-chaotic systems based image cryptosystem, Optics Communications, 283:2(2010), 232-236.

[13] J. M. Liu, Q. Qu, Cryptanalysis of a substitution-diffusion based on cipher using chaotic standard and logistic map, in: Third International Symposium on Information Processing, 2010, pp. 67-69.

[14] R. Rhouma and S. Belghith, Cryptanalysis of a new image encryption algorithm based on hyper-chaos, Physics Letters A, 372:38(2008),5973-5978.

[15] R. Rhouma, E. Solak, S. Belghith, Cryptanalysis of a new substitution-diffusion based image cipher, Commun. Nonlinear Sci. Numer. Simulat., 15(2010), 1887-1892.

[16] X. Wang, G. He, Cryptanalysis on a novel image encryption method based on total shuffling scheme, Optics Commun., 284 (2011), 5804-5807.

[17] R. Ye, A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism, Optics Communications, 284(2011), 5290-5298.

[18] Y. Zhou , L. Bao, C. L. Philip Chen, Image encryption using a new parametric switching chaotic system, Signal Processing, 93(2013), 3039-3052.

[19] Y. Zhou , L. Bao, C. L. Philip Chen, A new 1D chaotic system for image encryption, Signal Processing, 97(2014), 172-182.

[20] X. Wang, D. Luan, A novel image encryption algorithm using chaos and reversible cellular automata, Commun. Nonlinear Sci. Numer. Simulat., 18(2013), 3075-3085.

[21] Z.-L. Zhu, W. Zhang, K.-W. Wong, H. Yu, A chaos-based symmetric image encryption scheme using a bit-level permutation, Information Sciences, 181(2011), 1171-1186.

[22] L. Teng, X. Wang, A bit-level image encryption algorithm based on spatiotemporal chaotic system and self-adaptive, Optics Communications, 285(2012), 4048-4054.

[23] W. Zhang, K.-W. Wong, H. Yu, Z.-L. Zhu, An image encryption scheme using lightweight bit-level confusion and cascade cross circular diffusion. Optics Communications, 285 (2012), 2343- 2354.

[24] W. Zhang, K.-W. Wong, H. Yu, Z.-L. Zhu, A symmetric color image encryption algorithm using the intrinsic features of bit distributions. Commum. Nonliear Sci. Numer. Simulat., 18 (2013), 584-600.

[25] W. Zhang, H. Yu, Z. Zhu, Color image encryption based on paired interpermuting planes, Optics Communications, 338(2015), 199-208.

[26] X. Wang, H. Zhang, A color image encryption with heterogeneous bit-permutation and correlated chaos, Optics Communications, 342(2015), 51-60.

[27] X. Y. Wang, J. F. Zhao, H. J. Liu, A new image encryption algorithm based on chaos, Optics Communications, 285(2012), 562-566.

[28] M. Haeri, M. S. Tavazoei, Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms, Appl. Math. Comput., 187(2007), 1076-1085.

[29] M. Hasler and Y. L. Maistrenko, An introduction to the synchronization of chaotic systems: coupled skew tent map, IEEE Transactions on Circuits and Systems, 44(1997), 856-866.

[30] R. Ye, W. Guo, A Chaos-based Image Encryption Scheme Using Multimodal Skew Tent Maps, Journal of Emerging Trends in Computing and Information Sciences, 4:10(2013), 800-810.

[31] B. Schneier, Cryptography: Theory and Practice, CRC Press, Boca Raton, 1995.

[32] Y. Wang, K. W. Wong, X. F. Liao, G. R. Chen, A new chaos-based fast image encryption algorithm, Applied Soft Computing, 11(2011), 514-522.

[33] M. Wu, An improved discrete arnold transform and its application in image scrambling and encryption, Acta Phys. Sin., 63:9(2014), 090504.

[34] C. E. Shannon, Communication theory of secrecy systems, Bell Syst. Tech. J, 28(1949), 656-715.

[35] G. Alvarez, S. Li, Some basic cryptographic requirements for chaos-based cryptosystem, International Journal of Bifurcation and Chaos, 16(2006), 2129-2151.

[36] IEEE Computer Society, IEEE standard for binary floating-point arithmetic, ANSI/IEEE std. 1985:754-1985.

[37] J. Chen, Z. Zhu, C. Fu, H. Yu, L. Zhang, An efficient image encryption scheme using gray code based permutation approach, Optics and Lasers in Engineering, 67(2015), 191-204.

[38] K. Wong, B. Kwok, W. Law, A fast image encryption scheme based on chaotic standard map, Physics Letter A, 372:15(2008), 2645-2652.

[39] K. Wong, B. Kwok, C. Yuen, An efficient diffusion approach for chaos-based image encryption, Chaos, Solitons and Fractals, 41:5(2009), 2652-2663.

**Keywords **

Cross swapping permutation; Chaotic system; Generalized Cat map; Image encryption; Multimodal skew map.