Image Ciphering Based Onchaotic ANN and Fibonacci Transform Improved by using the Wavelet Transform

  IJCTT-book-cover
 
International Journal of Computer Trends and Technology (IJCTT)          
 
© 2018 by IJCTT Journal
Volume-61 Number-3
Year of Publication : 2018
Authors : Mamy Alain Rakotomalala, Roméo T. Rajaonarison, Falimanana Randimbindrainibe, Sitraka R. Rakotondramanana
DOI :  10.14445/22312803/IJCTT-V61P123

MLA

MLA Style: Mamy Alain Rakotomalala, Roméo T. Rajaonarison, Falimanana Randimbindrainibe, Sitraka R. Rakotondramanana "Image Ciphering Based Onchaotic ANN and Fibonacci Transform Improved by using the Wavelet Transform" International Journal of Computer Trends and Technology 61.3 (2018):137-144.

APA Style:Mamy Alain Rakotomalala, Roméo T. Rajaonarison, Falimanana Randimbindrainibe, Sitraka R. Rakotondramanana (2018). Image Ciphering Based Onchaotic ANN and Fibonacci Transform Improved by using the Wavelet Transform International Journal of Computer Trends and Technology, 61(3),137-144

Abstract
The ciphering based on ANN or Artificial Neuronal Network has the advantage of being more powerful to resist noise and compression but it has a slowerexecution time and presents some similarities between the original image and the ciphered image. Our article consists in adding a wavelet transform with the ciphering based on ANN to reduce the high execution time and adding a Fibonacci transform to get the ciphered image totally scrambled. The criteriaused to comparethe deciphered image with the original image, the ciphered image with the original image and the.studyof the attacks against noise and compression are: correlations, PSNR, UACI, NPCR and execution time. Indeed our work concerns a program on Matlab for ciphering and deciphering the image and know about the algorithm performances by using DWT or Discrete Wavelet Transform to improve the ciphering based on RNA combined with the Fibonacci Transform.

Reference
[1] Ameur S., Adane A.H, et Lahdir M., « Compression d’images Météosat en sous bandes par transformation discrète en cosinus et quantification vectorielle ». Télédétection, vol. 2, no. 4, p. 255-266, 2002.
[2] Cohen A., «Ondelettes et traitement numérique du signal», Edition Masson, Paris 1992.
[3] Mallat S., « Une exploration des signaux en ondelettes », Editions de l’Ecole Polytechnique, France, 2000.
[4] AreedAbdallah, MokhatarBeram and Ahmed Salah Al-DeenAbdallah, “Hybrid Image Encryption based on Genetic algorithm and Neural Network”, International Journal of Engineer Research and Technology (IJERT), Vol.6; Issue.6; University of Sudan (7) (2017).
[5] Qurban Ali Memon, “Neural network based double encryption for JPEG2000 image”, Journal of ICT, Vol.16, No. 1, United Arab Emirate s University, Arab (6) (2017) 137-155
[6] S.Nythia, S. Priyaa, R. Priyanka and S. Saranya, “Face image recognition and scrambling for privacy using neural networks”, International Journal of Scientific & Engineering Research (IJE) , India (2017)
[7] AshawakMahmood and Alabaichi, “Color image encryption using 3d chaotic map with aes key depend S-Box”, International Journal of Computer Science and Network security (IJCSNS), vol.16, No.10, Iraq (10) (2016).
[8] Vinita SHadangi, Shiddharth Kumar Choudhary, K. Abhymanyu Kumar Patro and BidhudendraAcharya, “Novel Arnold Scrambling Based CBC-AES Image Encryption”, International Journal Of Theory an Applications (IJCTA), Vol.10, 15 (11) (2017).
[9] Minati Mishra, Priyadarsini Mishra, M.C. Adhikary and Sunit Kumar, “Image Encryption using Fibonacci-Lucas Transformation”, International Journal Of Cryptography and Information Security (IJCIS), Vol.2, No.3, Kolhan University, (8) (2012).
[10] Yicong Zhou, SosAgaian, Valencia M. Joyner and Karen Panetta, “Two Fibonacci P-code Based Image Scrambling Algorithms”, http://proceedings.spiedigitallibrary.org/, 1 (20) (2017)
[11] Junquin Zhao, WeichungGuo, Ruisong Ye, “A Chaos-based Image Encryption Scheme Using Permutation-Substitution Architecture”, International Journal of Computer Trends and Technology (IJCTT), Vol.15, No.4, Shantou University, China (9) (2014)
[12] R.Rakotomalala, “Analyse de corrélation, Étude des dépendances - Variables quantitatives Version 1.1”, Support Université Lumière Lyon 2, 27 (12) (2017)

Keywords
ANN, chaotic, Fibonacci transform, wavelet transform, Image ciphering