Analysis of the HalfTone Visual Cryptography and proposing a model for illustrating the related schemes

International Journal of Computer Trends and Technology (IJCTT)          
© 2015 by IJCTT Journal
Volume-30 Number-1
Year of Publication : 2015
Authors : Dr. Amit Chaturvedi, Imtiyaz Rehman
DOI :  10.14445/22312803/IJCTT-V30P104


Dr. Amit Chaturvedi, Imtiyaz Rehman "Analysis of the HalfTone Visual Cryptography and proposing a model for illustrating the related schemes". International Journal of Computer Trends and Technology (IJCTT) V30(1):20-25, December 2015. ISSN:2231-2803. Published by Seventh Sense Research Group.

Abstract -
Halftone visual cryptography (HVC) enlarges the area of Visual cryptography (VC) by using halftoning techniques. Halftoning technique is a reprographic technique. The main applications of visual cryptography which includes Moire patterns, Watermarking and many others implies more research work to be done on various schemes regarding visual cryptography especially halftone VC which works in a different and better manner than others. In HVC scheme, a secret image is embedded into halftone shares with meaningful information of the cover images. Meaningful shares are required so as to increase the efficiency of shares management and decrease the suspicion of secret image encryption, thus providing a good image quality as the error diffusion is known to have low complexity. In this paper, we presents an analysis of various construction methods using error diffusion and is guaranteed by the properties of visual cryptography.

[1] M. Naor, A. Shamir, Visual cryptography, in: Proc. of Advances in Cryptology–EUROCRYPT’94, Workshop on the Theory and Application of Cryptographic Techniques, Perugia, Italy, 9–12 May, 1994, in: Lecture Notes in Comput. Sci., vol.950, Springer, Berlin, 1995, pp.1–12.
[2] Z. Wang, G.R. Arce, G. Di Crescenzo, Halftone visual cryptography via error dif-fusion, IEEE Trans. Inf. Forensics Secur. 4(3) (2009) 383–396.
[3] C. Blundo, A. De Bonis, A. De Santis, Improved schemes for visual cryptography, Des. Codes Cryptogr. 24(3) (2001) 255–278.
[4] G. Ateniese, C. Blundo, A. De Santis, D.R. Stinson, Visual cryptography for gen-eral access structures, Inf. Comput. 129(2) (1996) 86–106.
[5] F. Liu, C.K. Wu, X.J. Lin, Colour visual cryptography schemes, IET Inf. Secur. 2(4) (2008) 151–165.
[6] Y.-C. Hou, Visual cryptography for color images, Pattern Recognit. 36(7) (2003) 1619–1629.
[7] H. Luo, F. Yu, J.-S. Pan, Z.-M. Lu, Robust and progressive color image visual secret sharing cooperated with data hiding, in: Eighth International Confer-ence on Intelligent Systems Design and Applications, ISDA’08, vol.3, IEEE, 2008, pp.431–436.
[8] N. Krishna Prakash, S. Govindaraju, Visual secret sharing schemes for color images using halftoning, in: International Conference on Computational Intelli-gence and Multimedia Applications, vol.3, IEEE, 2007, pp.174–178.
[9] S.J. Shyu, S.-Y. Huang, Y.-K. Lee, R.-Z. Wang, K. Chen, Sharing multiple secrets in visual cryptography, Pattern Recognit. 40(12) (2007) 3633–3651.
[10] P.A. Eisen, D.R. Stinson, Threshold visual cryptography schemes with specified whiteness levels of reconstructed pixels, Des. Codes Cryptogr. 25(1) (2002) 15–61.
[11] F. Liu, C. Wu, X. Lin, Step construction of visual cryptography schemes, IEEE Trans. Inf. Forensics Secur. 5(1) (2010) 27–38.
[12] H. Kuwakado, H. Tanaka, Image size invariant visual cryptography, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 82(10) (1999) 2172–2177.
[13] C.-N. Yang, New visual secret sharing schemes using probabilistic method, Pat-tern Recognit. Lett. 25(4) (2004) 481–494.
[14] S. Cimato, R. De Prisco, A. De Santis, Probabilistic visual cryptography schemes, Comput. J. 49(1) (2006) 97–107.
[15] G. Ateniese, C. Blundo, A.D. Santis, D.R. Stinson, Extended capabilities for visual cryptography, Theor. Comput. Sci. 250(1) (2001) 143–161.
[16] M. Nakajima, Y. Yamaguchi, Extended visual cryptography for natural images, J. WSCG 10 (2002) 303– 310.
[17] D. Tsai, T. Chen, G. Horng, On generating meaningful shares in visual secret sharing scheme, J. Imaging Sci. 56(1) (2008) 49–55.
[18] D. Wang, F. Yi, X. Li, On general construction for extended visual cryptography schemes, Pattern Recognit. 42(11) (2009) 3071–3082.
[19] C.-N. Yang, Y.-Y. Yang, New extended visual cryptography schemes with clearer shadow images, Inf. Sci. 271 (2014) 246–263.
[20] F. Liu, C. Wu, Embedded extended visual cryptography schemes, IEEE Trans. Inf. Forensics Secur. 6(2) (2011) 307–322.
[21] Z. Zhou, G.R. Arce, G. Di Crescenzo, Halftone visual cryptography, IEEE Trans. Image Process. 15(8) (2006) 2441–2453.
[22] Emi Myodo, Shigeyuki Sakazawa, and Yasuhiro Takishima. Visual cryptography based on void-and-cluster halftoning technique. In ICIP, pages 97–100,2006.
[23] Emi Myodo, Koichi Takagi, Satoshi Miyaji, and Yasuhiro Takishima. Halftone visual cryptography embedding a natural grayscale image based on error diffusion technique. In ICME, pages 2114–2117, 2007.
[24] Zhongmin Wang and Gonzalo R. Arce. Halftone visual cryptography through error diffusion. In ICIP, pages 109– 112, 2006.
[25] Wen-Guey Tzeng and Chi-Ming Hu. A new approach for visual cryptography. Designs, Codes and Cryptography, 27(3):207–227, 2002.
[26] Thomas Hofmeister, Matthias Krause, and Hans-Ulrich Simon. Contrastoptimal k out of n secret sharing schemes in visual cryptography. Theoretical Computer Science, 240(2):471–485, 2000.
[27] D. L. Lau and G. R. Arce. Modern Digital Halftoning. Marcel Dekker, 2000.
[28] Mizuho Nakajima and Yasushi Yamaguchi. Extended visual cryptography for natural images. In WSCG, pages 303–310, 2002.
[29] Yuefeng Zhang. Space-filling curve ordered dither. Computers & Graphics, 22(4):559–563, 1998.
[30] Chang-Chou Lin and Wen-Hsiang Tsai. Visual cryptography for gray-level images by dithering techniques. Pattern Recognition Letters, 24(1-3):349–358, 2003.
[31] Rafael C. Gonzalez and Richard E.Woods. Digital Image Processing. AddisonWesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.
[32] C.N. Yang and C.S. Laih. Some new types of visual secret sharing schemes. volume III, pages 260–268, December 1999.
[33] Ching-Nung Yang and Tse-Shih Chen. New size-reduced visual secret sharing schemes with half reduction of shadow size. IEICE Transactions, 89-A(2):620–625, 2006.
[34] Daoshun Wang, Lei Zhang, Ning Ma, and Xiaobo Li. Two secret sharing schemes based on boolean operations. Pattern Recognition, 40(10):2776–2785, 2007.
[35] Chai W. Wu, Gerhard R. Thompson, and Mikel J. Stanich. Digital watermarking and steganography via overlays of halftone images. Volume 5561, pages 152-163. SPIE,2004
[36] Emi Myodo, Koichi Takagi, Satoshi Miyaji, and Yasuhiro Takishima. Halftone visual cryptography embedding a natural grayscale image based on error diusion technique. In ICME, pages 2114–2117, 2007.
[37] Y.J. Song and T.N. Tan. Comparison of four dierent digital watermarking techniques. In Signal Processing Proceedings, 2000. WCCC-ICSP 2000. 5th International Conference on, volume 2, pages 946–950 vol.2, 2000.
[38] Ching-Nung Yang, Chung-Chun Wang, and Tse-Shih Chen. Real perfect contrast visual secret sharing schemes with reversing. In Jianying Zhou, Moti Yung, and Feng Bao, editors, ACNS, volume 3989 of Lecture Notes in Computer Science, pages 433–447, 2006.

halftone, SIPs, ABPs, cryptography, security, HVCS, EVCS.