Detection of Calcification Using Filter in Mammograms – A Survey

  IJCTT-book-cover
 
International Journal of Computer Trends and Technology (IJCTT)          
 
© 2014 by IJCTT Journal
Volume-11 Number-1
Year of Publication : 2014
Authors : C.Kaviya Prabha , S.Usha
DOI :  10.14445/22312803/IJCTT-V11P109

MLA

C.Kaviya Prabha , S.Usha."Detection of Calcification Using Filter in Mammograms – A Survey". International Journal of Computer Trends and Technology (IJCTT) V11(1):38-42, May 2014. ISSN:2231-2803. www.ijcttjournal.org. Published by Seventh Sense Research Group.

Abstract -
Microcalcification is one of the key symptoms facilitating early detection of breast cancer. In this paper image are acquisition from the mini mias database and perform various steps they are image enhancement, feature extraction and classification .In image enhancement the images are enhanced using filters and the features are extracted from the enhanced image using Gabor filter, and classify the micro calcification using support vector machine to classify the masses into benign, malignant, normal.

References
1. Llad X, Oliver A, Freixenet J, Mart R, Mart J, ”A textural approach for mass false positive reduction in mammography”,Computerized Medical Imaging and Graphics, Vol. 33, Issue. 6, pp. 415-422, 2009.
2. Esteve J, Kricker A, Ferlay J, Parkin D. ”Facts and figures of cancer in the European Community”, In: Tech. rep., International Agency for Research on Cancer, 1993.
3. Z. Yufeng, ”Breast Cancer Detection with Gabor Featuresfrom Digital Mammograms”, Algorithms, Vol. 3, No. 1, pp.44-62, 2010.
4. Wei, C. H., Li, Y., & Li, C. T. (2007, July). Effective extraction of Gabor features for adaptive mammogram retrieval. In Multimedia and Expo, 2007 IEEE International Conference on (pp. 1503-1506). IEEE.
5. T.Balakumaran ,Dr.ILA.Vennila,C.Gowri Shankar,” Detection of Microcalcification in Mammograms Using Wavelet Transform and Fuzzy Shell Clustering”,(IJCSIS) Vol. 7, No. 1, 2010.
6.S.Deepa ,Dr.V.SubbiahBharathi,” Wavelet Based Textural Feature Extraction and Classification of Mammogram Images”,IEEE Transactions on Medical Imaging, 1996.
7. Samuel Oporto-Diaz,Ralando Hernandez-cisneros & Hugo Terashima-Marin,”Detection of MicroCalcification Cluster a Difference of Optimized Gaussian filters”.ICIAR 2005.LNCS 3656,PP.998-1005,2005.
8. Muhammad Hussain ,Salabat Khan,Ghulam Muhammad ,Iftikhar Ahmad ,George Bebis,”Effective Extraction of Gabor Features for False PositiveReduction and Mass Classification in Mammography”, Appl. Math. Inf. Sci. 6, No. 1, 29-33 (2012).
9.V. Alarcon-Aquino, O. Starostenko, J. M. Ramirez-Cortes, R. Rosas-Romero,J. Rodriguez-Asomoza, O. J. Paz-Lunaand K. Vazquez-Muñoz,” Detection of microcalcifications in digital mammograms using the dual-tree complex wavelet transform”, vol 17 no 1 March 2009 49.
10.Muhammad Hussain,Salabat Khan,Ghulam Muhammad,Mohamed Berbar and George Bebis,“Mass detection in digital mammograms using Gabor filter Bank”Proc.IET Image Processing,July 2-3,2012,London,UK
11. Tang, J., Rangayyan, R. M., Xu, J., El Naqa, I., & Yang, Y. (2009). Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. Information Technology in Biomedicine, IEEE Transactions on, 13(2), 236-251.
12. J.G. Daugman, “Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and Compression,” IEEE Transactions on Acoustics, Speech, Signal Processing, vol. 36, no. 7, pp. 1169-1179, 1988.
13. Oliver A, Freixenet J, Mart J, et al, ”A review of automatic mass detection and segmentation in mammographic.
14. Defeng Wang, Lin Shi, Pheng A. Heng, ”Automatic detection of breast cancers in mammograms using structured support vector machines”, Neurocomputing, Vol. 72, pp. 3296- 3302, 2009. images”, Med. Image Anal, Vol. 14, No. 2, pp. 87-110, 2010.
15. Lopez-Aligue, FJ, Poveda-Pierola, A., Acevedo-Sotoca, I.,Garcia-Urra, F (2007). Detection of Microcalcifications in Digital Mammograms. In Proceedings of the IEEE 29th Annual International Conference on Engineering in Medicine and Biology Society, EMBS 2007. 3906–3909.
16. Selesnick, IW., Baraniuk, RG, and Kingsbury, NG (2005). The Dual-Tree ComplexWavelet Transform. IEEE Signal Processing Magazine, 123–151.
17. Dennis Dunn,and William E. Higgins, Optimal Gabor Filters for Texture Segmentation, IEEE transactions on image processing, vol 4, no 7, july 1995 : pp. 947-964.
18.K.Thangavel, M.Karnan,”Computer Aided Diagnosis in Digital Mammograms: Detection of Microcalcifications by Meta Heuristic Algorithms”
19. H. D. Cheng, X. Cai, X. W. Chen, L. Hu, and X. Lou, “Computer-Aided Detection and Classification of Microcalcifications in Mammograms: A Survey”, Pattern Recognition, pp: 2967–2991, v.36, 2003.
20. The Mini-MIAS Database of mammograms available at:peipa,essex.ac.uk.

Keywords
mammograms,imageenhancement, feature extraction, classification.