Implementation of Python Packages For Image Recognition

International Journal of Computer Trends and Technology (IJCTT)          
© 2021 by IJCTT Journal
Volume-69 Issue-11
Year of Publication : 2021
Authors : Snehal Shah, Kishan PS, Jitendra Jaiswal


MLA Style: Snehal Shah, Kishan PS, Jitendra Jaiswal"Implementation of Python Packages For Image Recognition" International Journal of Computer Trends and Technology 69.11 (2021):6-10.

APA Style Snehal Shah, Kishan PS, Jitendra Jaiswal. Implementation of Python Packages For Image Recognition  International Journal of Computer Trends and Technology, 69(11), 6-10.

In today’s society, data plays a significant role from time to time. Here we have taken the real-time image as well as the video for recognition of objects. Using CNN (convolutional neural network) to recognize images, machine learning and deep learning play a crucial role in object recognition. We have used YOLO for object detection, where the images and framework are divided into grids. The OpenCV package allows real-time recognition of images and videos. NumPy package is used for calculation purposes and to check the confidence level and even FPS of the image or video


[1] Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence. 35(8) (2013)1798–1828.
[2] Schmidhuber, J., Deep Learning in Neural Networks: An Overview, Neural Networks. 61 (2015) 85–117.
[3] Bengio, Yoshua; LeCun, Yann; Hinton, Geoffrey.,Deep Learning, Nature. 521 (7553) (2015) 436–444.
[4] Ciresan, D.; Meier, U.; Schmidhuber, J., Multi-column deep neural networks for image classification, 2012 IEEE Conference on Computer Vision and Pattern Recognition., (2012) 3642–3649.
[5] Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffry., ImageNet Classification with Deep Convolutional Neural Networks(PDF), NIPS ,Neural Information Processing Systems, Lake Tahoe, Nevada, (2012).
[6] Google's AlphaGo AI wins three-match series against the world's best Go player, TechCrunch, (2017).
[7] Bengio, Yoshua., Learning Deep Architectures for AI(PDF), Foundations and Trends in Machine Learning, 2 (1) (2009) 1–127. CiteSeerX doi:10.1561/2200000006. Archived from the original(PDF) on 2016-03-04. Retrieved 2015-09-03.
[8] Cireşan, Dan; Meier, Ueli; Masci, Jonathan; Schmidhuber, Jürgen (August 2012).,Multi-column deep neural network for traffic sign classification, Neural Networks. Selected Papers from IJCNN, 32 (2011) 333–338
[9] Nvidia Demos a Car Computer Trained with Deep Learning (2015-01-06), David Talbot, MIT Technology Review, (2015).
[10] Zhang, Wei., Shift-invariant pattern recognition neural network and its optical architecture, Proceedings of Annual Conference of the Japan Society of Applied Physics,(1988).
[11] Zhang, Wei., Parallel distributed processing model with local space-invariant interconnections and its optical architecture, Applied Optics, 29(32) (1990) 4790–7. Bibcode:1990ApOpt..29.4790Z. doi:10.1364/AO.29.004790. PMID 20577468.
[12] van den Oord, Aaron; Dieleman, Sander; Schrauwen, Benjamin (2013-01-01). Burges, C. J. C.; Bottou, L.; Welling, M.; Ghahramani, Z.; Weinberger, K. Q. (eds.). Deep content-based music recommendation(PDF). Curran Associates, Inc., 2643–2651.
[13] Collobert, Ronan; Weston, Jason (2008-01-01). A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning. Proceedings of the 25th International Conference on Machine Learning. ICML '08. New York, NY, USA: ACM, (2008) 160–167. doi:10.1145/1390156.1390177. ISBN 978-1-60558-205-4.
[14] Denker, J S, Gardner, W R., Graf, H. P, Henderson, D, Howard, R E, Hubbard, W, Jackel, L D, BaIrd, H S, and Guyon ,Neural network recognizer for hand-written zip code digits, AT&T Bell Laboratories, (1989).
[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, Backpropagation Applied to Handwritten Zip Code Recognition; AT&T Bell Laboratories.
[16] Oh, KS; Jung, K., GPU implementation of neural networks, Pattern Recognition, 37(6) (2004) 1311–1314. doi:10.1016/j.patcog.2004.01.013.
[17] Schmidhuber, Jürgen., Deep Learning, Scholarpedia. 10(11) (2015) 1527–54. CiteSeerX doi:10.1162/neco.2006.18.7.1527. PMID 16764513.
[18] Dave Steinkraus; Patrice Simard; Ian Buck., Using GPUs for Machine Learning Algorithms, 12th International Conference on Document Analysis and Recognition (ICDAR 2005) (2005) 1115–1119.
[19] Kumar Chellapilla; Sid Puri; Patrice Simard., High-Performance Convolutional Neural Networks for Document Processing , In Lorette, Guy (ed.). Tenth International Workshop on Frontiers in Handwriting Recognition, Suvisoft, (2006).
[20] Hinton, GE; Osindero, S; Teh, YW., A fast learning algorithm for deep belief nets, Neural Computation. 18 (7): 1527–54. CiteSeerX doi:10.1162/neco.2006.18.7.1527. PMID 16764513, (2006).
[21] Bengio, Yoshua; Lamblin, Pascal; Popovici, Dan; Larochelle, Hugo., Greedy Layer-Wise Training of Deep Networks(PDF). Advances in Neural Information Processing Systems, (2007)153–160.
[22] Ranzato, MarcAurelio; Poultney, Christopher; Chopra, Sumit; LeCun, Yann (PDF). Advances in Neural Information Processing Systems, (2007).
[23] Raina, R; Madhavan, A; Ng, Andrew Large-scale deep unsupervised learning using graphics processors., (PDF). ICML, (2009) 873–880.
[24] Lawrence, Steve; C. Lee Giles; Ah Chung Tsoi; Andrew D. Back., Face Recognition: A Convolutional Neural Network Approach., IEEE Transactions on Neural Networks. 8(1) (1997) 98–113. CiteSeerX doi:10.1109/72.554195.
[25] Matusugu, Masakazu; Katsuhiko Mori; Yusuke Mitari; Yuji Kaneda., Subject independent facial expression recognition with robust face detection using a convolutional neural network.,(PDF). Neural, (2003).