Implementation of Python Packages For Image Recognition

  IJCTT-book-cover
 
International Journal of Computer Trends and Technology (IJCTT)          
 
© 2021 by IJCTT Journal
Volume-69 Issue-11
Year of Publication : 2021
Authors : Snehal Shah, Kishan PS, Jitendra Jaiswal
  10.14445/22312803/IJCTT-V69I11P102

MLA

MLA Style: 
Snehal Shah., et al. "Implementation of Python Packages For Image Recognition." International Journal of Computer Trends and Technology,  vol. 69, no. 11, Nov. 2021, pp.6-10.   Crossref ,  https://doi.org/10.14445/22312803/IJCTT-V69I11P102

APA Style:  
Snehal Shah., Kishan PS., Jitendra Jaiswal
 
(2021). Implementation of Python Packages For Image Recognition. International Journal of Computer Trends and Technology, 69(11), 6-10.  https://doi.org/10.14445/22312803/IJCTT-V69I11P102

Abstract
     In today’s society, data plays a significant role from time to time. Here we have taken the real-time image as well as the video for recognition of objects. Using CNN (convolutional neural network) to recognize images, machine learning and deep learning play a crucial role in object recognition. We have used YOLO for object detection, where the images and framework are divided into grids. The OpenCV package allows realtime recognition of images and videos. NumPy package is used for calculation purposes and to check the confidence level and even FPS of the image or video

Keywords
YOLO, OpenCV, NumPy, CNN, DNN.

Reference

[1] Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence. 35(8) (2013)1798–1828.
[2] Schmidhuber, J., Deep Learning in Neural Networks: An Overview, Neural Networks. 61 (2015) 85–117.
[3] Bengio, Yoshua; LeCun, Yann; Hinton, Geoffrey.,Deep Learning, Nature. 521 (7553) (2015) 436–444.
[4] Ciresan, D.; Meier, U.; Schmidhuber, J., Multi-column deep neural networks for image classification, 2012 IEEE Conference on Computer Vision and Pattern Recognition., (2012) 3642–3649.
[5] Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffry., ImageNet Classification with Deep Convolutional Neural Networks(PDF), NIPS ,Neural Information Processing Systems, Lake Tahoe, Nevada, (2012).
[6] Google's AlphaGo AI wins three-match series against the world's best Go player, TechCrunch, (2017).
[7] Bengio, Yoshua., Learning Deep Architectures for AI(PDF), Foundations and Trends in Machine Learning, 2 (1) (2009) 1–127. CiteSeerX 10.1.1.701.9550. doi:10.1561/2200000006. Archived from the original(PDF) on 2016-03-04. Retrieved 2015-09-03.
[8] Cireşan, Dan; Meier, Ueli; Masci, Jonathan; Schmidhuber, Jürgen (August 2012).,Multi-column deep neural network for traffic sign classification, Neural Networks. Selected Papers from IJCNN, 32 (2011) 333–338.
[9] Nvidia Demos a Car Computer Trained with Deep Learning (201501-06), David Talbot, MIT Technology Review, (2015).
[10] Zhang, Wei., Shift-invariant pattern recognition neural network and its optical architecture, Proceedings of Annual Conference of the Japan Society of Applied Physics,(1988).
[11] Zhang, Wei., Parallel distributed processing model with local spaceinvariant interconnections and its optical architecture, Applied Optics, 29(32) (1990) 4790–7. Bibcode:1990ApOpt..29.4790Z. doi:10.1364/AO.29.004790. PMID 20577468.
[12] van den Oord, Aaron; Dieleman, Sander; Schrauwen, Benjamin (2013-01-01). Burges, C. J. C.; Bottou, L.; Welling, M.; Ghahramani, Z.; Weinberger, K. Q. (eds.). Deep content-based music recommendation(PDF). Curran Associates, Inc., 2643–2651.
[13] Collobert, Ronan; Weston, Jason (2008-01-01). A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning. Proceedings of the 25th International Conference on Machine Learning. ICML '08. New York, NY, USA: ACM, (2008) 160–167. doi:10.1145/1390156.1390177. ISBN 978-1-60558-205-4.
[14] Denker, J S, Gardner, W R., Graf, H. P, Henderson, D, Howard, R E, Hubbard, W, Jackel, L D, BaIrd, H S, and Guyon ,Neural network recognizer for hand-written zip code digits, AT&T Bell Laboratories, (1989).
[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, Backpropagation Applied to Handwritten Zip Code Recognition; AT&T Bell Laboratories.
[16] Oh, KS; Jung, K., GPU implementation of neural networks, Pattern Recognition, 37(6) (2004) 1311–1314. doi:10.1016/j.patcog.2004.01.013.
[17] Schmidhuber, Jürgen., Deep Learning, Scholarpedia. 10(11) (2015) 1527–54. CiteSeerX 10.1.1.76.1541. doi:10.1162/neco.2006.18.7.1527. PMID 16764513.
[18] Dave Steinkraus; Patrice Simard; Ian Buck., Using GPUs for Machine Learning Algorithms, 12th International Conference on Document Analysis and Recognition (ICDAR 2005) (2005) 1115– 1119.
[19] Kumar Chellapilla; Sid Puri; Patrice Simard., High-Performance Convolutional Neural Networks for Document Processing , In Lorette, Guy (ed.). Tenth International Workshop on Frontiers in Handwriting Recognition, Suvisoft, (2006).
[20] Hinton, GE; Osindero, S; Teh, YW., A fast learning algorithm for deep belief nets, Neural Computation. 18(7): 1527–54. CiteSeerX 10.1.1.76.1541.doi:10.1162/neco.2006.18.7.1527. PMID 16764513, (2006).
[21] Bengio, Yoshua; Lamblin, Pascal; Popovici, Dan; Larochelle, Hugo., Greedy Layer-Wise Training of Deep Networks(PDF). Advances in Neural Information Processing Systems, (2007)153–160.
[22] Ranzato, MarcAurelio; Poultney, Christopher; Chopra, Sumit; LeCun, Yann (PDF). Advances in Neural Information Processing Systems, (2007).
[23] Surendiran, R. and Alagarsamy, K., PCA based geometric modeling for automatic face detection. Int. J. Comput. Sci. Inform. Technol, 1(4) (2010) 221-225.
[24] Raina, R; Madhavan, A; Ng, Andrew Large-scale deep unsupervised learning using graphics processors., (PDF). ICML, (2009) 873–880.
[25] Lawrence, Steve; C. Lee Giles; Ah Chung Tsoi; Andrew D. Back., Face Recognition: A Convolutional Neural Network Approach., IEEE Transactions on Neural Networks. 8(1) (1997) 98–113. CiteSeerX 10.1.1.92.5813. doi:10.1109/72.554195.
[26] Matusugu, Masakazu; Katsuhiko Mori; Yusuke Mitari; Yuji Kaneda., Subject independent facial expression recognition with robust face detection using a convolutional neural network.,(PDF). Neural, (2003).