
International Journal of Computer Trends and Technology (IJCTT) – Volume 61 Number 1 - July 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 21

Improving Performance of Map Reduce using

DLAJS Algorithm

Balaji Siva Jyothi#1, Dr. P. Radhika Raju#2, Dr.A.Ananda Rao#3
1M.Tech Scholar, 2Ad-hoc Assistant Professor, 3Professor Department of CSE, JNTUACEA, Ananthapuramu,

A.P, India

Abstract
 Cloud Computing provides different services

to the users with regard to processing data. The main

concepts in cloud computing are big data and big

data analysis. Hadoop framework is used to process

big data in parallel processing mode. Job scheduling

and optimized resource allocation can help improve

performance of Hadoop. In the existing system

Hadoop architecture has been enhanced in order to

reduce computational complexity while processing

big data. It also takes care of efficient resource

allocation and processing textual data such as DNA

sequence. Their architecture was named as

H2Hadoop that improves the ability of NameNode to

assign jobs to the TaskTrackers (DataNodes) in a

given cluster. By adding control features to

NameNode, their architecture can intelligently assign

tasks to the DataNodes where required data is

present thus reducing resource utilization pertaining

to CPU time, number of read operations etc.

However, the existing system can be improved to have

more focused approach by considering data locality

awareness to the job scheduling process. In the

proposed system, an algorithm is proposed to have

data locality aware job scheduling. This algorithm is

named as Data Locality Aware Job Scheduling

(DLAJS) algorithm. The algorithm explores the data

locality aware to know how far efficient job

scheduling. Thus, consuming less cloud resources

such as CPU, memory and execution time.

Keywords — Cloud computing, Big data, Hadoop,

MapReduce framework,Data-locality,Job scheduling

I. INTRODUCTION

 The exponential growth of data led to big data of

late which in turn demanded the distributed

programming frameworks like Hadoop to process

voluminous data in short span of time. Data intensive

applications can be run in distributed, scalable and

parallel-processing environment. Hadoop is the

framework that supports MapReduce programming

paradigm. Big data needs Hadoop and MapReduce

environment and the problem with Hadoop is that it

has provision for assigning mappers based on the data

availability and data locality. When data locality is

known, the Hadoop framework assigns mappers

accordingly so as to ensure faster processing of data

thus reducing network overhead.

The problem identified with MapReduce

framework is that Hadoop does not consider data

locality in the case of assigning reducers to worker

nodes in Hadoop clusters. This will result in delay in

processing, increased latency and decreased

throughput. To overcome this problem, data locality

aware approach in assigning mappers is explored in

this paper. The existing approaches can be improved

further with practical implementation. In this paper is

detailed the issue in Section 4 and proposed an

algorithm to solve it. The contributions in this paper

are as follows.

The proposed algorithm named Data

Locality Aware Job Scheduling (DLAJS) for

assigning reducers to worker nodes based on the data

locality. This will reduce computational complexity

besides reducing network overhead. It reduces latency

and increases throughput. The prototype application

is built to demonstrate proof of the concept.

Experiments are made with CloudEra test bed that

supports Hadoop and MapReduce frameworks.

Experimental results revealed the significance of

data-locality aware approach in MapReduce

framework.

The remainder of the paper is structured as

follows. Section 2 reviews related literature. Section 3

provides the need for big data and the MapReduce

programming framework associated with Hadoop.

Section 4 formulates the problem addressed in this

paper. Section 5 provides the proposed solution to the

problem with an underlying algorithm. Section 6

provides experimental results while section 7

concludes the paper and gives directions for future

work.

II. RELATED WORKS

This section provides review of literature on

MapReduce programming paradigm and the

improvements that can be made. The problem of big

data and how the problem is solved with the

introduction of distributed programming frameworks

is explored in [1]. Exploiting Meta data of related

jobs and improving performance of MapReduce

framework is the focus in [2]. There are many

performance models related to Hadoop as studied in

[3]. Optimization of Hadoop with possible data

import is examined in [4], [5]. Locality aware

resource allocation so as to optimize resource usage is

the main research carried out in [6], [7]. The concept

International Journal of Computer Trends and Technology (IJCTT) – Volume 61 Number 1 - July 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 22

of mobile networks and the utility of them in the

context of distributed programming are explored in

[8]. Storage of data, analysis of data and other issues

related to data in the context of high performance

computing are analyzed in [9], [10]. Hadoop kind of

distributed programming frameworks need the cloud

eco system to function well [11].

Pervasive computing environments need big

data processing [12]. Mining big data associated with

mobile phones can be done with a probabilistic

approach [13]. Technical issues and challenges

associated with big data are explored in [14], [15].

Large scale data management and analysis of data

with distributed computational solutions is found in

[16]. Parallel process of algorithms with Hadoop

platform is the main focus in [17]. In the presence of

big data processing and MapReduce programming

paradigm, query optimization and parallel processing

of massive amounts of data is studied in [18]. In this

paper the proposed algorithm to solve the problem of

data-locality aware assignment of reducers to worker

nodes to improve Hadoop performance.

III. PRELIMINARIES

This section provides important information that

leads to understanding the proposed work in this

paper. It includes big data and Hadoop MapReduce.

A. Big Data and Need for It

Big data, as the name implies, is voluminous

data (V). There are other Vs associated with it. They

include variety, value and velocity. Volume indicates

that the data is very huge and cannot be

accommodated in local machines generally. It is

measured in peta bytes. Velocity is another attribute

that informs that the big data keeps growing

continuously (streaming data). Variety attribute on

the other hand informs us that bit data is in many

forms. They are known as structured format,

unstructured format and semi-structured format.

When sources of input are from different places or

branches of a company, the data needs to be

processed as a whole.

Figure 1: Shows the importance of considering big data for

gaining unbiased conclusions

As shown in Figure 1, it is evident that big

data has to be considered for gaining complete

business intelligence. Processing some part of data

provides biased conclusions. Unbiased conclusions

can be obtained by considering big data. The rationale

behind this is that the big data contains complete data

that can provide comprehensive intelligence when

mined. So as to process such gigantic measure of

information and even to store it, distributed

computing foundation alongside disseminated

programming structures like Hadoop are required.

B. Hadoop’s MapReduce Framework

Hadoop is one of the distributed

programming frameworks that support big data

storage and processing. With its associated Hadoop

Distributed File System (HDFS), it can store and

handle big data. Hadoop supports MapReduce

programming approach that is new. It can take

voluminous data as input and split it in the form of

subsets of data containing key/value pairs. Keys are

uniquely identified while the values may have

duplicates.

Figure 2: MapReduce framework of Hadoop

International Journal of Computer Trends and Technology (IJCTT) – Volume 61 Number 1 - July 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 23

As presented in Figure 2, it is evident that

the Map phase and Reduce phase are part of the

framework as the name implies. Map phase performs

actually intended job. It does processing before that

it takes data from the HDFS in the form of chunks of

data. In other words input data from HDFS is taken

by the framework and it is split into number of parts

and given to many commodity computers where

map task runs. Map task takes care of processing

given data and the intermediate results are given to

Reduce phase in the form of key/value pairs. The

Reduce phase takes care of producing final output.

In this context the problem definition is provided in

the section 4.

IV. PROBLEM FORMULATION

 Hadoop supports MapReduce programming

paradigm. According to this jobs are assigned by

Job Tracker to Task Tracker. In the process, the

whole input data is split into number of chunks.

Then each chunk of data is given to a mapper

(worker node in the Hadoop cluster). Mapping takes

care of intended functionality. However, one mapper

cannot produce the whole output. The intermediate

results of all mappers are to be properly clubbed and

output needs to be produced.

Figure 3: Illustrates workflow of MapReduce with

WordCount benchmark

As presented in Figure 3, it is evident that

the map phase is able to count the occurrence of

words in the given chunk of data. The result of

mapping is given for shuffling.

shuffling phase sorts data in ascending

order. Then the reduce phase is making the summary

of count of words. Afterwards, the final result is

produced. In this context, the problem is that

Hadoop assigns map tasks to nearly worker nodes

based on data locality. However, Hadoop framework

does not consider data locality while assigning

reduce tasks to worker nodes. This can lead to issues

related to performance. Therefore data locality-

aware scheduling of jobs to Reduce worker nodes

provides significant performance benefits. The

proposed system to achieve is explored in section 5.

V. PROPOSED SYSTEM

In the proposed system, a new algorithm is

proposed to have data locality aware job scheduling.

This algorithm is named as Data Locality Aware Job

Scheduling (DLAJS) algorithm. The calculation

abuses the information territory mindful skill for

effective employment planning in this way

devouring less cloud assets, for example, CPU,

memory and execution time. A model application is

worked to show verification of the idea. The

proposed solution for enhancing execution of

MapReduce is given in Figure 4.

Figure 4: Architectural overview of the proposed

system

Data locality is measured by the total

amount of data stored locally on the physical

machine for each virtual machine.When data is local,

it can be accessed faster. Data locality aware

scheduling is therefore a reflection of performance

of MapReduce programming paradigm.

A. Data Locality Aware Job Scheduling Algorithm

This algorithm takes care of data locality

while assigning reduce tasks in Hadoop distributed

framework. Thus it can bring about performance by

reducing network overhead.

Algorithm: Data Locality Aware Job Scheduling

Input: Set of physical machines PM, set of virtual

machines VM, reducer index i, partition index j

Output: Data locality aware mapping of reducers

1. R=getAllReducers()

2. For each pm on PM

3. For each mapper on pm

4. For i=1 to NoOfReducers

5. For j=1 to NoOfPartitions

6. Compute reducer i’s partition size

7. End For

8. End For

9. End For

10. End For

11. //Assign reducers to physical machine based on

data locality

12. For each pm from PM

13. VM = virtual machines of pm

14. R = reducers of pm

15. Sort VM based on speed

16. //best fit reducer assignment

17. For i=1 to number of reducers in PM

18. VM[i]=reducers[i]

19. End For

20. End For

International Journal of Computer Trends and Technology (IJCTT) – Volume 61 Number 1 - July 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 24

When the algorithm is applied to the case

shown in Figure 1, it does like this. Each physical

machine has 3 virtual machines. Each VM has a

mapper associated. Each mapper has 3 data

partitions. Based on the data locality and the speed

of VM, the reducers are assigned to physical

machines appropriately.

VI. EXPERIMENTAL RESULTS

Experiments are made with CloudEra

which is one of the test beds for making experiments

with Hadoop framework. It runs in virtual

environment using Oracle VM Virtual Box or

VMware. Observations are made in terms of number

of read operations with given benchmark application.

Figure 5: Shows the initiation of jobs with MapReduce

framework

As shown in Figure 5, it is evident that the

MapReduce framework with CloudEra environment

is loaded and it performs its intended operations. It

shows the MapReduce programming paradigm and

its dynamics and statistics in the console.

Figure 6: Shows the initiation of jobs with MapReduce

framework along with I/O and shuffle errors

As shown in Figure 6, it is clear that the

MapReduce structure with CloudEra condition is

stacked and it plays out its planned tasks. It shows

the MapReduce programming paradigm and its

dynamics and statistics in the console with details

like shuffle phase parameters and file input and

output details besides shuffle errors if any.

Figure 7: Showing results of patient referral dynamics with

healthcare benchmark

As presented in Figure 7, it is evident that

the MapReduce programming produced percentage

of patient referral on different healthcare units as

part of healthcare benchmark application that is run

with Hadoop. In this process, there are other

observations that are related to data locality-aware

job scheduling. The results are as follows.

Table 1: Number of read operations to show performance

difference

Common

Feature

HDFS: Number of Read

Operations

Native

Hadoop

H2Hadoop Proposed

Sq1 100 100 80

Sq2 100 15 10

Sq3 100 68 50

Sq4 100 41 30

Sq5 100 16 10

As presented in Table 1, it is evident that

the proposed system and existing systems are

presented in terms of number of read operations

against five common features.

Figure 7: Performance comparison in terms of number of

read operations

International Journal of Computer Trends and Technology (IJCTT) – Volume 61 Number 1 - July 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 25

As shown in Figure 7, , it is clear that the

basic highlights are exhibited in flat pivot while the

vertical hub demonstrates the quantity of read tasks.

The proposed framework beat the current

frameworks. Both H2Hadoop and the proposed

algorithm demonstrated preferred execution over

local Hadoop because of the thought of information

territory mindful occupation planning.

Table II: CPU time in seconds to show performance

difference

Common

Feature

CPU Time in Seconds

Native

Hadoop

H2Hadoop Proposed

Sq1 370 385 360

Sq2 397 50 40

Sq3 390 270 250

Sq4 392 149 130

Sq5 410 61 50

As presented in Table 2, it is evident that

the proposed system and existing systems are

presented in terms of CPU time in seconds against

five common features.

Figure 8: Performance comparison in terms of CPU time

As shown in Figure 8, , it is clear that the

regular highlights are displayed in flat hub while the

vertical hub demonstrates the CPU time right away.

The proposed framework beat the current

frameworks. Both H2Hadoop and the proposed

algorithm demonstrated preferable execution over

local Hadoop because of the thought of information

territory mindful employment planning.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, the proposed algorithm

named Data Locality Aware Job Scheduling (DLAJS)

in order to solve the problem of assigning reducers

with data locality-aware job scheduling. The

problem with native Hadoop framework is that it

takes care of the data locality-aware approach in

assigning map tasks to worker nodes. However,

while assigning reducers, it does not consider data

locality aware approach. This has resulted in

reduction of throughout, increase in latency and

increase in overall network overhead. Hadoop

clusters contain thousands of commodity computers.

Appropriate allocation of the computing resources

can lead to performance gain. In this manner, it is

fundamental to enhance execution of Hadooop as it

will have huge impact on both service providers and

service consumers. The implemented proposed

algorithm using CloudEra test bed. The experimental

results revealed significance improvement in the

performance of Hadoop.

 In future the work intend to have an

architectural modeling framework to explore other

possibilities in optimizing Hadoop performance.

REFERENCES

[1] Patel, A.B., M. Birla, and U. Nair. Addressing big data

problem using Hadoop and Map Reduce. in Engineering

(NUiCONE), 2012 Nirma University International

Conference on. 2012.

[2] HamoudAlshammari, Jeongkyu Lee and Hassan Bajwa.

(2016). H2Hadoop: Improving Hadoop Performance using

the Metadata of Related Jobs. IEEE TRANSACTIONS ON

Cloud Computing, p1-11.

[3] Herodotou, H., Hadoop performance models. arXiv preprint

arXiv:1106.0940, 2011.

[4] Xu, W., W. Luo, and N. Woodward. Analysis and

optimization of data import with Hadoop. IEEE.

[5] P.Radhika Raju, Dr. A.Ananda Rao, Optimization of

program invariants, ACM SIGSOFT Software Engineering

Notess, Vol.39, Issue 1, January 2014.

[6] Palanisamy, B., et al. Purlieus: locality-aware resource

allocation for MapReduce in a cloud. in Proceedings of

2011 International Conference for High Performance

Computing, Networking, Storage and Analysis. ACM.

[7] Hammoud, M. and M.F. Sakr. Locality-Aware Reduce Task

Scheduling for MapReduce. in Cloud Computing

Technology and Science (CloudCom), 2011 IEEE Third

International Conference on. 2011.

[8] Chen, M., S. Mao, and Y. Liu, Big Data: A Survey. Mobile

Networks and Applications, 2014. 19(2): p. 171-209.

[9] Buck, J.B., et al. SciHadoop: Array-based query processing

in Hadoop. in High Performance Computing, Networking,

Storage and Analysis (SC), 2011 International Conference

for. 2011.

[10] Condie, T., et al.MapReduce Online.in NSDI.2010

[11] Schatz, M.C., B. Langmead, and S.L. Salzberg, Cloud

computing and the DNA data race. Nature biotechnology,

2010. 28(7): p. 691.

[12] Changqing, J., et al. Big Data Processing in Cloud

Computing Environments. in Pervasive Systems,

Algorithms and Networks (ISPAN), 2012 12th International

Symposium on. 2012.

[13] Farrahi, K. and D. Gatica-Perez, A probabilistic approach to

mining mobile phone data sequences. Personal Ubiquitous

Comput., 2014. 18(1): p. 223-238.

[14] Jagadish, H., et al., Big data and its technical challenges.

Communications of the ACM, 2014. 57(7): p. 86-94.

[15] Marx, V., Biology: The big challenges of big data. Nature,

2013. 498(7453): p. 255-260.

[16] Schadt, E.E., et al., Computational solutions to large-scale

data management and analysis. Nature Reviews Genetics,

2010. 11(9): p. 647-657.

[17] Ming, M., G. Jing, and C. Jun-jie. Blast-Parallel: The

parallelizing implementation of sequence alignment

algorithms based on Hadoop platform. in Biomedical

Engineering and Informatics (BMEI), 2013 6th International

Conference on. 2013.
[18] Wu, S., et al. Query optimization for massively parallel data

processing. in Proceedings of the 2nd ACM Symposium on

Cloud Computing. 2011. ACM.

