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Abstract 

             Deep learning has recently achieved very 

promising results in a wide range of areas such as 

computer vision, speech recognition and natural 

language processing. It aims to learn hierarchical 

representations of data by using deep architecture 

models. 

Face recognition (FR) systems for video 

surveillance (VS) applications attempt to accurately 

detect the presence of target individuals over a 

distributed network of cameras. Specifically, in still-to-

video FR application, a single high-quality reference 

still image captured with still camera under controlled 

conditions is employed to generate a facial model to be 

matched later against lower-quality faces captured with 

video cameras under uncontrolled conditions. Current 

video-based FR systems can perform well on controlled 

scenarios, while their performance is not satisfactory in 

uncontrolled scenarios mainly because of the differences 

between the source (enrollment) and the target 

(operational) domains. Most of the efforts in this area 

have been toward the design of robust video-based FR 

systems in unconstrained surveillance environments. 

deep learning architectures proposed in the literature 

based on triplet-loss function (e.g., cross-correlation 

matching CNN, trunk-branch ensemble CNN and 

HaarNet) and supervised autoencoders (e.g., canonical 

face representation CNN) are studied. 
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I.   INTRODUCTION 

Face recognition (FR) systems in video 

surveillance (VS) has received a significant attention 

during the past few years. Due to the fact that the 

number of surveillance cameras installed in public 

places is increasing, it is important to build robust video-

based FR systems [1]. In VS, capture conditions 

typically range from semi-controlled with one person in 

the scene (e.g. passport inspection lanes and portals at  

airports), to uncontrolled free-flow in cluttered scenes 

(e.g. airport baggage claim areas, and subway stations).  

 

Two common types of applications in VS 

are:(1) Still-to-Video FR (e.g., watch-list screening), and 

(2) Video-to-Video FR (e.g., face re-identification or 

search and retrieval) [2,3,4]. In the former application, 

reference face images or stills of target individuals of 

interest are used to design facial models, while in the 

latter, facial models are designed using faces captured in 

reference videos.  

         The number of target references is one or very 

few in still-to-video FR applications, and the 

characteristics of the still camera(s) used for design 

significantly differ from the video cameras used during 

operations [5]. Thus, there are significant differences 

between the appearances of still ROI(s) and ROIs 

captured with surveillance cameras, according to various 

changes in ambient lighting, pose, blur, and occlusion 

[6,7]. During enrollment of target individuals, facial 

regions of interests (ROIs) isolated in reference still 

images are used to design facial models,while during 

operations, the ROIs of faces captured in videos are 

matched against these facial models. In VS, a person in 

a scene may be tracked along several frames, and 

matching scores may be accumulated over a facial 

trajectory (a group of ROIs that correspond to the same 

high-quality track of an individual) for robust 

spatiotemporal FR [8]. 

In generally, the methods proposed for still-to-

video FR can be broadly categorized into two main 

streams: (1) conventional, and (2) deep learning 

methods. The conventional methods rely on hand-

crafted feature extraction techniques and a pre-trained 

classifier along with fusion, while deep learning 

methods automatically learn features and classifiers 

conjointly using massive amounts of data. In spite of 

improvements achieved using the conventional methods, 

yet they are less robust to real-world still-to-video FR 

scenario. On the other hand, there exists no feature 

extraction technique that can overcome all the 

challenges encountered in VS individually[2, 9,10]. 

Conventional methods proposed for still-to-

video FR are typically modeled as individual-specific 

face detectors using one- or 2-class classifiers in order to 

enable the system to add or remove other individuals 

and easily adapt over time [11,4]. Modular systems 

designed using individual-specific ensembles have been 

successfully applied in VS [3,4]. Thus, ensemble-based 
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methods have been shown as a reliable solution to deal 

with imbalanced data, where multiple face 

representations can be encoded into ensembles of 

classifiers to improve the robustness of still-to video FR 

[2]. Although it is challenging to design robust facial 

models using a single training sample, several 

approaches have addressed this problem, such as 

multiple face representations, synthetic generation of 

virtual faces, and using auxiliary data from other people 

to enlarge the training set [11, 12, 13,14]. These 

techniques seek to enhance the robustness of face 

models to intra-class variations. In multiple 

representations, different patches and face descriptors 

are employed [11,2], while 2D morphing or 3D 

reconstructions are used to synthesize artificial face 

images [12,15]. 

Recently, several deep learning based solutions 

have been proposed to learn effective face 

representations directly from training data through 

convolutional neural networks (CNNs) and nonlinear 

feature mappings [17, 18,19,20,21]. In such methods, 

different loss functions can be considered in the training 

process to enhance the inter-personal variations, and 

simultaneously reduce the intra-personal variations. 

They can learn non-linear and discriminative feature 

representations to cover the existing gaps compared to 

the human visual system [10], while they are 

computationally costly and typically require a large 

number of labeled data to train. To address the SSPP 

problem in FR, a triplet-based loss function have been 

introduced in [22, 23, 24, 25, 19] to discriminate 

between a pair of matching ROIs and a pair of non-

matching ROIs. Ensemble of CNNs, such as trunk-

branch ensemble CNN (TBE-CNN) [22] and HaarNet 

[24] have been shown to extracts features from the 

global appearance of faces (holistic representation), as 

well as, to embed asymmetrical features (local facial 

feature-based representations) to handle partial 

occlusion. Moreover, supervised autoencoders have 

been proposed to enforce faces with variations to be 

mapped to the canonical face (a well-illuminated frontal 

face with neutral expression) of the person in the SSPP 

scenario to generate robust feature representations 

[26,27]. 

II.   FACE RECOGNITION 

 Face recognition consists of two main tasks: 

A. Face Detection: where the input image is searched 

to find any face, then image processing cleans up the 

facial image for easier recognition. 

B. Face Recognition : where the detected and 

processed face is compared to the database of known 

faces to decide who that person is. 

The difference between face detection and 

recognition is that in detection we just need to determine 

if there is some face in the image, but in recognition we 

want to determine whose face it is. Features extracted 

from a face are processed and compared with similarly 

processed faces present in the database.  

In general, face recognition techniques can be divided 

into two groups: 

A. Face representation techniques : these 

techniques use holistic texture features and are applied 

to either whole-face or specific regions in a face image. 

B. Feature-based techniques : these techniques 

use geometric facial features (mouth, eyes, brows, 

etc.), and geometric relationships between them. 

Recently, many deep learning based algorithms have 

achieved very promising results in these two face 

recognition tasks. 

 

III. VIDEO-BASED FR THROUGH DEEP 

LEARNING 

In video-based FR systems, facial models of 

target individuals are designed a priori during 

enrollment using a limited number of reference still 

images or video data. These facial models are not 

typically representative of faces being observed during 

operations due to large variations in illumination, pose, 

scale, occlusion, blur, and to camera inter-operability. 

In contrast with shallow learning algorithms 

,deep learning aims to extract hierarchical  

representations from large-scale data (e.g. images and 

videos) by using deep architecture models with multiple 

layers of non-linear transformations. With such learned 

feature representations, it becomes easier to achieve 

better performance than using raw pixel values or hand-

crafted features. 

Deep CNNs have recently demonstrated a great 

achievement in many computer vision tasks, such as 

object detection, object recognition, etc. Such deep CNN 

models have shown to appropriately characterize 

different variations within a large amount of data and to 

learn a discriminative non-linear feature representation. 

Furthermore, they can be easily generalized to other 

vision tasks by adopting and fine-tuning pretrained 

models through transfer learning [17, 19]. Thus, They 

provide a successful tool for different applications of FR 

by learning effective feature representations directly 

from the face images [17,18,19]. For example, DeepID, 

DeepID2, and DeepID2+ have been proposed in [28,21], 

respectively, to learn a set of discriminative high-level 

feature representations. 

For instance, an ensemble of CNN models was 

trained in [21] using the holistic face image along with 

several overlapping/non-overlapping face patches to 

handle the pose and partial occlusion variations. Fusion 

of these models is typically carried out by feature 
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concatenation to construct over-complete and compact 

representations. Followed by [21], feature dimension of 

the last hidden layer was increased in [28], as well as, 

exploiting supervision to the convolutional layers in 

order to learn hierarchical and non-linear feature 

representations. These representations aim to enhance 

the inter-personal variations due to extraction of features 

from different identities separately, and simultaneously 

reduce the intra-personal variations. In contrast to 

DeepID series, an accurate face alignment was 

incorporated in Microsoft DeepFace [10] to derive a 

robust face representation through a nine-layer deep 

CNN. In [20], the high-level face similarity features 

were extracted jointly from a pair of faces instead of a 

single face through multiple deep CNNs for face 

verification applications. Since these approaches are not 

considered variations like blurriness and scale changes 

(distance of the person from surveillance cameras), they 

are not fully adapted for video-based FR applications. 

           Similarly, for the SSPP problems, a triplet-

based loss function has been lately exploited in [22, 23, 

24, 25, 19] to learn robust face embeddings, where this 

type of loss seeks to discriminate between the positive 

pair of matching facial ROIs from the negative non-

matching facial ROI. A robust facial representation 

learned through triplet-loss optimization has been 

proposed in [23] using a compact and fast cross-

correlation matching CNN (CCM-CNN). However, 

CNN models like the trunk-branch ensemble CNN 

(TBE-CNN) [22] and HaarNet [24] can further improve 

robustness to variations in facial appearance by the cost 

of increasing computational complexity. In such models, 

the trunk network extracts features from the global 

appearance of faces (holistic representation), while the 

branch networks embed asymmetrical and complex 

facial traits. For instance, HaarNet employs three branch 

networks based on Haar-like features, while facial 

landmarks are considered in TBECNN. However, these 

specialized CNNs represent complex solutions that are 

not perfectly suitable for real-time FR applications [29]. 

Moreover, autoencoder neural networks can be typically 

employed to extract deterministic non-linear feature 

mappings robust to face images contaminated by 

different noises, such as illumination, expression and 

poses [26,27]. An autoencoder network contains encoder 

and decoder modules, where the former module embed 

the input data to the hidden nodes, while the latter 

returns the hidden nodes to the original input data space 

with minimizing the reconstruction error(s) [26].  

    A generic auxiliary dataset containing faces of 

other persons can be exploited to perform domain 

adaptation [16], and sparse representation classification 

through dictionary learning [14]. However, techniques 

based on synthetic face generation and auxiliary data are 

more complex and computationally costly for real-time 

applications, because of the prior knowledge required to 

locate the facial components reliably, and the large 

differences between the quality of still and video ROIs, 

respectively.  
 

IV.  DEEP LEARNING MODELS 

A. Convolutional Neural Network 

    The Convolutional Neural Networks (CNN) are 

very similar to ordinary Neural Networks. They are 

made up of neurons that have learnable weights and 

biases. Each neuron receives some inputs, performs a 

dot product and optionally follows it with a non-

linearity. The whole network still expresses a single 

differentiable score function: from the raw image pixels 

on one end to class scores at the other. They still have a 

loss function (e.g. SVM/ Softmax) on the last (fully-

connected) layer [30]. 

 

 
Fig 1: Convolutional Neural Network (CNN) 

 

The CNN consists of multiple layers (see Fig. 

1). Each layer takes a multi-dimensional array of 

numbers as input and produces another 

multidimensional array of numbers as output (which 

then becomes the input of the next layer). When 

classifying images, the input to the first layer is the input 

image (32×32), while the output of the final layer is a set 

of likelihoods of the different categories (i.e., 1 × 1× 10 

numbers if there are 10 categories). A simple CNN is a 

sequence of layers, and every layer of a CNN transforms 

one volume of activations to another through a 

differentiable function. three main types of layers are 

used to build CNN architectures: Convolution (CONV) 

Layer, Pooling Layer, and Fully-Connected Layer and 

stacked these layers to form a full CNN architecture: 

 INPUT [32×32] holds the raw pixel values of the 

image, in this case an image of width 32, height 32. 

 CONV layer computes the output of neurons that are 

connected to local regions in the input, each computing 

a dot product between their weights and a small region 

they are connected to in the input volume. This may 
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result in volume such as [32× 32 × 12] if we decided to 

use 12 filters. 

 RELU layer applies an element wise activation 

function, such as the max(0; x) thresholding at zero. 

This leaves the size of the volume unchanged ([32× 32 × 

12]). 

 POOL layer performs a down-sampling operation 

along the spatial dimensions (width, height), resulting in 

volume such as [16 × 16 ×12]. 

 FC (Fully-Connected) layer computes the class scores, 

resulting in volume of size [1  ×1× 10], where each of 

the 10 numbers corresponds to a class score. As with 

ordinary Neural Networks and as the name implies, each 

neuron in this layer is connected to all the neurons in the 

previous volume. 

Pooling layer (see Fig. 2) down samples the 

volume spatially, independently in each depth slice of 

the input volume. In this example, the input volume of 

size [224× 224 ×64] is pooled with filter size 2, stride 2 

into output volume of size [112× 112 × 64] . Notice that 

the volume depth is preserved. The most common down 

sampling operation is max, giving rise to max pooling 

(see Fig. 2 down). That is, each max is taken over 4 

numbers (little 2 × 2 square) [31]. 

 

Fig 2: Max pooling operation on feature map (2×2 

window) 

The parameters in the CONV/FC layers have 

been trained with gradient descent so that the class 

scores that the CNN computes are consistent with the 

labels in the training set for each image [12]. 

 

Fig 3: Layers in Convolutional Neural Network (CNN) 

 

A CNN architecture is in the simplest case a 

list of Layers that transform the image volume into an 

output volume (e.g. holding the class scores) [32]: 

 There are a few distinct types of Layers (e.g. 

CONV/FC/RELU/POOL are by far the most popular). 

 Each Layer accepts an input 3D volume and 

transforms it to an output 3D volume through a 

differentiable function. 

 Each Layer may (CONV/FC) or may not have 

(RELU/POOL) parameters. 

 Each Layer may (CONV/FC/POOL) or may 

not have (RELU) additional hyper parameters. 

In Fig. 3 we see representation of layers and filters in 

network for detecting face. First layer can detect basic 

edges. Second layer detects features from previous 

layers, thus it is able to detect more complex shapes like 

eye, nose or mouth. The third and last layer can detect 

whole faces. 

B. Convolutional Restricted Boltzmann 

Machine: 

Huang et al. [33] propose to learn hierarchical 

features for face verification by using convolutional 

deep belief networks. The main contributions of this 

work are as follows:  

i) a local convolutional restricted Boltzmann machine 

is developed to adapt to the global structure in an object 

class (e.g. face); 

ii) deep learning is applied to local binary pattern 

representation [34] rather than raw pixel values to 
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capture more complex characteristics of hand-crafted 

features; 

iii) learning the network architecture parameters is 

evaluated to be necessary for enhancing the multi-layer 

networks.  

The convolutional restricted Boltzmann 

machine used in the proposed method is illustrated in 

Figure 4. It is reported that using the learned 

representations can achieve comparable performance 

with state of- the-art methods using hand-crafted 

features.  

 

Fig 4: Illustration of the convolutional restricted 

Boltzmann machine used in Huang et al.[33]. 

 

C. 3D Face model 

Taigman et al. [35] propose a 3D face model 

based face alignment algorithm and a face 

representation learned from a nine-layer deep neural 

network. 

 

Fig 5: Overview of nine layer deep neural network  used 

in  Taigman et al. [35] 

 

An overview of the architecture of the deep 

network is illustrated in Figure 5. The first three 

convolutional layers are used to extract low-level 

features (e.g. edges and textures). The next three layers 

are locally connected to learn a different set of filters for 

each location of a face image since different regions 

have different local statistics. The top two layers are 

fully connected to capture correlations between features 

captured in different parts of a face image. At last, the 

output of the last layer is fed to a K-way softmax which 

predicts class labels. The objective of training is to 

maximize the probability of correct class by minimizing 

the cross-entropy loss for each training sample. 

It is shown that using the learned representations can 

achieve the near-human performance on the Labeled 

Faces in the Wild benchmark (LFW). 

 

D. DeepID 

Sun et al. [36] propose to learn so-called Deep 

hidden IDentity features (DeepID) for face verification. 

In the feature extraction process. First, the local low 

level features of an input face patch are extracted and 

fed into a ConvNet [37]. Then, the feature dimension 

gradually decreases to 160 through several feed-forward 

layers, during which more global and high-level features 

are learned. Last, the identity class (among 10; 000 

classes) of the face patch is predicted directly by using 

the 160-dimensional DeepID. Rather than training a 

binary classifier for each face class, Sun et al. 

simultaneously classify all ConvNets regarding 10000 

face identities. 

 The advantages of this manipulation are as follows: 

i) effective features are extracted for face recognition by 

using the super learning capacity of neural networks; 

 ii) the hidden features among all identities are shared 

by adding a strong regularization to ConvNets. 

 It is reported that using the learned DeepID can 

achieve the near-human performance on the LFW 

dataset although only weakly aligned faces are used. 

 

E. Joint Feature Learning: 

Lu et al. [38] develop a joint feature learning 

approach to automatically learn hierarchical 

representation from raw pixels for face recognition. the 

basic idea of the proposed method is First, each face 

image is divided into several non-overlapping regions 

and feature weighting matrices are jointly learned. Then, 

the learned features in each region are pooled and 

represented as local histogram feature descriptors. 

Lastly, these local features are combined and 

concatenated into a longer feature vector for face 

representation. Moreover, the joint learning model is 

stacked into a deep architecture exploiting hierarchical 

information. 

 

V. DEEP LEARNING ARCHITECTURES  

Triplet-based loss optimization method allows 

to learn complex and non-linear facial representations 

that provide robustness across inter- and intra-class 

variations. CCM-CNN proposes a cost-effective solution 

that is specialized for still-to-video FR from a single 

reference still by simulating weighted CCM. TBE-CNN 
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and Haar-Net can extract robust representations of the 

holistic face image and facial components through an 

ensemble of CNNs containing one trunk and several 

branch networks. 

In addition, to compensate the limited robustness of 

facial model in the case of single reference still, they 

were fine-tuned using synthetically-generated faces 

from still ROIs of non-target individuals. In contrast, 

CFR-CNN employed a supervised autoencoder CNN to 

generate canonical face representations from low-quality 

video ROIs. It can therefore reconstruct frontal faces 

that correspond to capture conditions of reference still 

ROIs and generate discriminant face representations. 

 

VI.   CONCLUSION 

The most recently proposed deep learning 

architectures for robust face recognition in video 

surveillance are focused to overcome the existing 

challenges in real-world surveillance unconstrained 

environments, the single training reference sample and 

domain adaptation problems with computational 

complexity is as a key issue to provide an efficient 

solution for real-time video-based FR systems has been 

studied. 

As a result, the effectiveness of the proposed 

approaches of  Face recognition techniques has been 

widely used in security systems and human-machine 

interaction systems. It is still a challenge for computer to 

automatically identify or verify a person due to large 

variations, e.g. illumination, pose and expression. Deep 

learning can utilize big data for training deep 

architecture models so as to obtain more powerful 

features for representing faces. In future, face 

recognition systems in smart cities will largely rely on 

hierarchical features learned from deep models. 
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