
International Journal of Computer Trends and Technology (IJCTT) – Volume 60 Issue 2 - June 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 123

Req2Test - Graph Driven Test Case

Generation for Domain Specific Requirement

Veera Prathap Reddy M#*1, Prasad P.V.R.D#2, Manjunath Chikkamath*3, Karthikeyan Ponnalagu*4,

Sarathchandra Mandadi*5, and Praveen C.V.R*6
*Robert Bosch Engineering and Business Solutions Pvt. Ltd, Bangalore, India

Department of Computer Science and Engineering, K.L Education Foundation, Vaddeswaram, Andhra

Pradesh, India

Abstract

 Software testing is a critical phase in the

software development life cycle, as it validates the

software against its requirements. Auto generation of

test cases for software testing from natural language

requirements pose a formidable challenge as

requirements often do not follow a defined structure.

In this paper, we propose Req2Test pipeline to auto

generate test cases from a set of requirement

statements. Our process includes domain specific

knowledge graphs for extracting information, domain

ontologies for identifying hierarchy of domain

components and action sequences for actions to be

performed in achieving a task. Knowledge graphs,

domain ontology and action sequences contributes in

addressing complete test coverage for requirement

statements. The test cases are generated against

industrial requirement statements on Automatic Wiper

Control System in Automotive Domain and achieved

promising results. We provide experimental results on

industrial requirement and discuss the advantages and

shortcomings of our approach.

Keywords - Named Entity Recognition, Domain

Knowledge, Domain Ontology, Test Case Generation

I. INTRODUCTION

Software Testing is evaluation of the

software against requirements gathered from users and

system specifications. It is a salient step of software

development, which is crucial to ensuring the

programmed unit works under normal circumstances

and to weed out faults prior to deployment. It is the

cornerstone of verifying and validating that the

expectations and requirements of the users and

stakeholders have been met in the system under

development [2]. Every newly developed product of

any kind has to be tested to ensure that it correctly

performs the functions for which it was designed [1].

It has been estimated that software testing uses up to

50% of the overall development cost [6] and the

testing activities consume approximately 40% of the

overall development time and effort [7].

The software requirement specification is the

best source for understanding stakeholders

expectations and generating the test cases

corresponding to the same [2]. Software Requirement

Specification (SRS) document contains detailed

system-level description of the requirements and use-

cases. The information contained in SRS is used to

create detailed Test Cases [3]. The requirements-based

testing process addresses two major issues: first,

validating that the requirements are correct, complete,

unambiguous, and logically consistent; and second,

designing a necessary and sufficient set of test cases

from those requirements [9]. Majority of the

requirements specification documents have

requirements written in Natural Language. According

to some of surveys, 79% [4] of all requirements are

documented in natural language and 7% [5] in formal

specifications. Therefore, there is a need to transform

these requirements written in natural language into

computer-readable format in order to automate the

process of generating test cases. Natural Language

Processing (NLP) techniques enable us to morph

sentences expressed in natural language into

statements that can be understood syntactically and

semantically and process accordingly by a machine

[2] to generate test cases from requirements.

II. MOTIVATION AND BACK GROUND

Test cases can be developed in one of three

major ways. They can be developed algorithmically,

they can be taken from data from an existing

application that is being replaced or upgraded, or they

can be developed from requirements [1]. From given

requirements, test cases can be developed by manually

or by automation. Manual development of test cases

have some serious concerns [1][2]. To improve the

effectiveness and efficiency of testing, testers need to

create high-quality test cases. Writing test cases,

however, is a tedious task and prone to human errors.

Thus, it is crucial that we can find a way of

automatically generating high-quality test cases which

can be used in making testing activities more effective

and efficient to assure software quality [1].

This paper describes the auto generation of

test cases form SRS statements. The proposed

approach consumes SRS statement as input and

creates test cases as output. The paper is structured as

follows. In section III, we discuss the review of

related work. Section IV includes a sample

requirement statement processed through out the

paper. We describe Req2Test pipeline in detail in

International Journal of Computer Trends and Technology (IJCTT) – Volume 60 Issue 2 - June 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 124

section V. In section VI, we present Validation and

Discussion and Conclusion in section VII.

III. RELATED WORK

Automation of test cases is not a new idea,

Weyuker et al. [8] introduced the approach of

Automation of test cases for testing. In their paper,

they discussed different strategies for automatically

generating test cases. They developed algorithms to

automatically generate test sets that would be

substantially smaller than exhaustive test sets, but

would nonetheless be highly effective at detecting

faults. According to James Martin [10], the root

causes of 56% of all defects identified in software

projects are introduced in the requirements phase

about 50% of requirement defects are result of poorly

written, unclear, ambiguous, and incorrect

requirements. The other 50% of requirement defects

are due to incompleteness of specifications (i.e.

omitted requirements). Therefore, in requirement

based testing need for automation of test cases is even

more serious. Multiple manual process are involved in

requirement based testing, where software testers have

to define test completion criterion, design test cases

from requirements, build test cases, execute the test

cases and verify whether requirements of the software

are met or not. If the requirement based testing

processes do not run correctly or consistently, the size

of the test cases may be too enormous to complete

testing in reasonable time or the test cases cannot

provide the expected results [9]. Automation has

proven to be an effective way to reduce cost and

shorten the product release time, and will be a major

factor for the success of software testing [11]. To

minimize the effort and cost on testing, many

companies have started investing in the automation of

testing processes.

Anurag and Shubhashis [3] developed a

Litmus tool to generate test cases from functional

requirement document. The tool works on each

requirement sentence and generates one or more test

cases through a five-step process. Charles et al. [1]

developed an Automated test case Generator (ATCG)

that takes requirements statements as inputs and

creates test cases as output.

However in all these approaches there is no

completeness in test coverage generated by

requirement statements. These approaches couldn‘t

able to identify domain hierarchy of components and

sequence of execution steps for test coverage to be

accomplished.

In this Paper, we present Requirement to test

case Generation (Req2Test). We have constructed a

domain model by processing the domain specific

corpus for building knowledge base specific to

domain. We then process every requirement statement

and validate the requirement against domain

knowledge base and domain ontology to validate the

requirement and extract domain hierarchy of entities

participating in the requirement statement. We then

construct a test template from the knowledge extracted

and generate test cases from the template by using

Natural Language Generation or Rule Based

approaches.

IV. DATASET

Req2Test can be applied to any type of

domain specific or domain agnostic data. In this

paper, to explain the Req2Test pipeline we selected

Automatic Wiper Control System from Automotive

domain. The related corpus for analysis is collected

from web source [12]. Please refer the appendix for

the corpus.

Every step in the Architecture is explained with the

following sample requirement statement: ―when the

humidity senor is switched to ON and drive voltage is

in the specified range the wiper should set to start‖

V. REQ2TEST

Req2Test identifies a requirement as a

sentence and validate the requirement whether it is

valid requirement or not with respect to domain we

are interested in. Req2Test also identifies the testable

intent in the requirement statement for appropriate

actions/action sequences to be performed in

generating test cases from the given requirement

statement. A Test case includes the ‗test condition‘,

the ‗test sequence‘ and the ‗expected result‘. Test

condition includes pre-conditions and post-conditions

for a test case to get executed and verified

respectively. A pre-condition is defined as the entry

criterion for the test case being tested. A post-

condition is defined as the state changes to be verified

after the test case is executed. Test sequence is the

ordered sequence of steps a tester would have to

execute to perform the test. The corresponding output

from a correctly implemented system is denoted as the

expected result. The test cases are generated using

pipeline depicted in figure 1.

Every component in the pipeline is explained

in the coming sections with the help of above

mentioned sample requirement statement. The

requirement sentence is tagged with named entities

using Bi-LSTM-CRF model and parsed using

Dependency parser developed by Spacy [13]. Spacy

Dependency Parser provides information on the

syntax of a grammatically correct English sentence by

connecting pairs of words through dependency

tokens. Information is extracted from the statement as

Triplets (Subject-PredicateObject) for validating the

requirement statement against domain ontology

constructed. Once testable intent is identified from the

requirement statement, required information

(attributes, pre-conditions, post-conditions, action

sequences) about entitiesparticipating in the test are

extracted from Knowledge Graph(KG) to construct a

International Journal of Computer Trends and Technology (IJCTT) – Volume 60 Issue 2 - June 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 125

template. Template constructed will be used as input

to generate Test cases.

Fig. 1. Req2Test Architecture

A. Domain Based Knowledge Graph Generation

From the perspective of creating knowledge

graphs (KG) based on ontology, there are two main

approaches, one is top-down, and the other is bottom-

up [20]. Top-down approachmeans that ontology and

schema should be defined,and then knowledge

instances are added into knowledge base. This

approach emphasizes the well-defined domain

ontologies to represent the actual instances of

knowledge graphs. The bottom-up approach extracts

knowledge instances from the Linked Open Data

(LOD) or other knowledge resources. After

knowledge fusing the populated instances, the top-

level ontologism are built by means of knowledge

instances to create the whole KG‘s. We followed

bottom-up approach for construction of knowledge

base. For construction of Knowledge Graph,

knowledge is extracted from domain corpus available

and is represented in machine readable format RDF

(Resource Description Framework)1.

The types of knowledge extraction are

roughly divided into three types: entity extraction,

relation extraction and attribute extraction [20]. In

fact, the attribute extraction can be thought as a kind

of special relation extraction. Entity extraction,

including Named-Entity Recognition (NER), is to

discover entities from a wide variety of knowledge

resource and try to classify them into pre-defined

categories. The quality of entity extraction usually

greatly influences the efficiency and quality of

subsequent knowledge acquisition, so it is one of the

most fundamental and important part of knowledge

extraction. After entity extraction, the relationships

among the entities are analyzed to extract the

conceptual relations. Relation extraction is to find the

relations between entities and obtain semantic

information in order to construct knowledge graphs.

The attribute extraction is to define the intentional

semantics of the entities while the relation

extraction is to specify the denotational semantics of

the entities. The attribute extraction is important to

define the concept of an entity more clearly.

B. Processing Requirement Statement

The objective of processing requirement

statement is to extract relationships between entities

and to confirm action to be performed based on the

requirement specification. The input is requirement

statement where test cases need to be generated. The

requirement statement is analyzed using standard NLP

techniques and entities, verb relations, actions are

recognized and extracted by the custom built

algorithm. An overview of triplet extraction for a

single functional requirement statement is shown in

Figure 2.

Fig. 2.Information Extraction Process

Every requirement statement is parsed with

Spacy dependency parser. For information extraction,

NER identifies relevant entities and parser identifies

International Journal of Computer Trends and Technology (IJCTT) – Volume 60 Issue 2 - June 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 126

POS tagging and dependency tokens for each word in

the sentence.

Finally, the system outputs the relations by

resolving the co-references into a list of binary

relations in the form of Entity — Verb relationship —

Entity.

1) Entity Recognition:The aim of the Named

Entity Recognition(NER) and extraction is to identify

all entities from the requirement sentence.

Requirement sentence is passed through BI-LSTM-

CRF network model to identify the named entities in

the statement. It uses generic stochastic Gradient

Descent (SGD) forward and backward training

procedure. While training the model, in every epoch,

the training data is divided in to multiple batches and

one batch at a time is processed. Every batch contains

a list of sentences which is determined by the

parameter of batch size. For every batch, we first run

bi-directional LSTM-CRF model forward pass which

includes the forward pass for both forward state and

backward state of LSTM. As a result, we get the the

output score for all tags at all positions. We

then run CRF layer forward and backward pass to

compute gradients for network output and state

transition edges. After that, we can back propagate the

errors from the output to the input, which includes the

backward pass for both forward and backward states

of LSTM. Finally we update the network parameters

which include the state transition matrix [A]i,j∀i,j and

the original bidirectional LSTM parameters Θ. The

BI-LSTM-CRF architecture for the given requirement

statement is shown in figure 3.

2) Information Extraction: The main objective

of the information extraction is to extract relationships

between entities from requirement sentences having

complex structures. In order to extract single or

multiple relations between entities a verb centric

algorithm was built which can extract relations

between complex compound sentences. The input to

the algorithm is requirement statement which will

extract single/multiple relations between entities as

triplets in the form of (Subject-Verb-Object). The

system process each sentence to find co-references

and resolve them using Neural-Co-ref [16] if present.

For the selected requirement statement the algorithm

extracted the following triplets.

Extracted triplets for sample requirement statement:

(Humidity Sensor, is, on),

(drive voltage, is in, specified range),

(wiper, should set, to start)

3) Extraction of Domain Ontology: An

ontology represents the fundamental knowledge

pertinent to the application domain, namely the

concepts constituting the domain and the relationships

between them. Survey by Mich et al. [4] shows,

majority of the requirements documents are written in

natural language. As a consequence, most requirement

documents are imprecise, incomplete, and become

apparent when we compare the project-specific model

with a generic model of the application domain [21].

We need to transform natural language representation

of requirement information into a form that facilitates

comparison with a domain model.

Naturally, we also need a domain model

against which to compare and this presupposes a

means to construct such models.

An ontology is generated from a generic

domain description and a project specific model is

generated from requirement documents. For ontology

generation, natural language processing techniques

(Pos tagging, NER, IE) are used to aid the

construction. We compare both the models to validate.

When inconsistencies are found, we generate feedback

for the analyst. The generated feedback was validated

on a case study and has proven useful to improve both

requirement documents and models.

First, we extract domain-specific abstractions

and relationships between them from a document or

documents that are representative of the application

domain. Based on the lexical form of the extracted

concepts, built in custom classifier classifies them and

provides a taxonomy. Finally, we look for non-

taxonomic relationships between the concepts.

The domain abstraction for components involved in

the requirement statement is shown in figure 4.

4) Domain Knowledge Graph Vs Domain

Ontology: Knowledge Base (KB) is fact-oriented and

an ontology is much more schema-oriented. In

Knowledge Graph, you have certainly a schema (like

the one described by DBPedia, Freebase, Yago, etc.)

and a set of facts,―New Delhi isA City‖, ―New Delhi

hasInhabitants 2M‖, ‖New Delhi isCapitalOf India‖,

etc. So, you can (easily) answer to questions like

‖What is the capital of India?‖, ‖How many

inhabitants does New Delhi have?‖ or you can

provide a short description of New Delhi (or any

given entity in general).

Domain ontology explain main concepts of a

domain, how are these concepts related and which

attributes do they have. Here the focus is on the

description, with the highest possible expressiveness

(disjointness, values restrictions, cardinality

restrictions) and the useful annotations (synonyms,

definition of terms, examples, comments on design

choices, etc.), of the entities for a given domain. Data

(or facts) are not the main concern when designing a

domain ontology.

5) Validating Requirement

Statement:Requirement statement is fed into the

model for entity extraction. After identifying entities

every sentence in the requirement is parsed for

incorporating the information about entities. A

successfully linked sentence is tagged as either

testable or non-testable. We define a testable sentence

as one which adheres to the definition of a

International Journal of Computer Trends and Technology (IJCTT) – Volume 60 Issue 2 - June 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 127

requirement [15]. A requirement is a contract that

specifies what a user/agent does to a system (impetus)

and how the system should respond. We, thus define a

testable sentence as one which has a subject, an action

and optionally an object. The action should contain a

modal Verb (like should, would, etc.). Information

about domain entities and actions an user performs

were validated against the domain ontology. For any

inconsistency in the requirement statement is checked

with analyst.

An example of a non-testable sentence is

‖The DHT11 is a basic, ultra low-cost digital

temperature and humiditysensor‖. Notice such

sentences are assumptions or definitions and by

themselves are not testable. Quick identification of

non-testable requirements helps a business analyst to

review and modify the requirements if needed. The

aspect of testability is also critical in identifying parts

of a sentence that should be tested.. For requirement

sentence humidity senor is switched to ON and drive

voltage is in the specified range then wiper should set

to start, the underlined fragment should be

inconsequential to a tester as it talks about the

underlying logic.The test case should be based on the

action of the system which is “to set the wiper ON”.

This aspect is automatically caught by the testability

module and the Test cases generated are around the

action and pre-conditions related to the entity as

specified in the requirement.

Fig. 4.Ontology extracted for Requirement Statement

6) Identifying Testable Intent: We define a test

intent as the smallest segment of a requirement

sentence that conveys enough information about the

purpose of the test [3]. A test intent has a subject, an

action and (optionally) an object. For requirement

statement processed we have three test intents which

were

(humidity sensor, is, ON),

(drive voltage, is in, specified range),

(wiper, should set, to start).

The first two intents talk about pre-

conditions or assumptions to be checked. The third

intent is a testable intent where test cases needs to be

generated.

C. Extracting Knowledge from Domain Knowledge

Base

After identifying the testable intent and

action to be performed on the entities, a procedure to

extract information regarding how such an action can

be performed on entities have to be extracted from the

knowledge base. The extracted information should set

the context on when and how such action can be

performed on the entities. When specifies the pre-

conditions to be met to perform the action. How

specifies the sequence of actions to be performed in

achieving this task. Sequence of actions include the

sequence of steps to be followed in achieving such

action.We accept that graph search is a NP-hard

(nondeterministic polynomial-time hardness) problem.

Therefore, we specify a computationally bounded

search architecture with some parameters, and

automatically optimize its performance based on the

needs of the application using training queries drawn

from a target distribution [22].

The architecture for extracting knowledge

from knowledge base for the given requirement

statement consists of two parts 1. Selection and 2.

Evaluation. The architecture for subgraph extraction

from the knowledge base is shown in figure 5.

1) Selection:Will generate a candidate subgraph

of size (parameter) to answer the input query with

entities and actions as input to query.

2) Evaluation: will find the best answer by

evaluating the input graph query on the generated

Fig. 3.BI-LSTM-CRF Named Entity Recognition Model

International Journal of Computer Trends and Technology (IJCTT) – Volume 60 Issue 2 - June 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 128

subgraph. The scoring function F(.) is used to score

the candidate answers. Given a graph query Q, data

graph G, and search bound τ, the selection component

generates a subgraph GQ,T ⊂G whose size is τ and the

evaluation component finds the best answer Â by

searching GQ,T.

Subgraph extracted will consist of

information for the entities with its attributes, pre-

conditions, post-conditions and attribute values range

for all the participating entities with the action to be

performed. The best answer Â isassigned a score

based on the no. of levels in the graph to be traversed

for

Fig. 5. Process of Knowledge Extraction from

Knowledge Base [22]

accurate information to be extracted. The

informationextracted from the knowledge graph is

identified by scoring function based on the depth. The

required information for requirement statement is

searched for entity classes Component and System is

shown in table I.

D. Pre-condition and Post-condition Identification

A Test case is characterized by a known

input and by an expected output. The known input

should test a pre-condition and the expected output

should test a post-condition that is caused by a

scenario using the pre-condition. A state can be a pre-

condition or a post-condition based on its relation to

the event. If the state is a result of the event then it is a

postcondition for this event, if the event needs the

system to be in this particular state to perform then it

is a pre-condition for this event. A State is the state

the system in before or after performing an action. An

event is the action to be performed.

Functional requirements are expressed as

Behavior Trees (BT) in terms of components realizing

states. Like graphical form that represents behavior of

individual or networks of entities which realize or

change states, make decisions, respond to cause

events, and interact by exchanging information or

passing [16]. The BT technique is based on the

assumptions that systems exhibit components that

have attributes and realize and change states, so they

make other components realize and change state as

well [17].

The representation of BT for the requirement

statement is shown in State Transition Table or

Behavior Trees in Figure 6.

In the represented Behavior Tree for Wiper,

Path ‖a‖ gives information on when Humidity Sensor

is On and Drive Voltage in Range then state of Wiper

is set to ON. In path ‖b‖ and path ‖c‖ the state of

Wiper didn‘t change when Humidity Sensor is Off

and so on.

Fig. 6. Transition states of components as Behavior

Trees

E. Action Sequence

According to Anderson [18], there are two

essential components of knowledge: declarative

knowledge and procedural knowledge. Declarative

knowledge collects useful knowledge/information. It

is the factual or conceptual knowledgethat a person

has. In designing a generic architecture to represent

procedural knowledge, the actions defined by domain

experts and the control of action flow are two

important tasks. Unlike declarative knowledge, the

meaning of procedural knowledge cannot be figured

out until the whole process is finished. Processes are

hardto describebut important in relation to problem

solving. Focusing on the process by which knowledge

is constructed is more important than focusing on

target knowledge. For our work Req2Test, we

followed an ontological representation scheme called

Process Map (PM) [19] to represent procedural

knowledge.

The main idea is to identify (1) the activity

structure from given behavioral models of

components; and (2) the connection relations of these

components.

International Journal of Computer Trends and Technology (IJCTT) – Volume 60 Issue 2 - June 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 129

Process Map:We call a series of processes that

indicate a fact as a Process Map (PM). A Process Map

is composed from a collection of processes that

accomplish a specific goal. Each process can be

regarded as a series of actions. Each action can be

further decomposed into a series of frames. This idea

is very similar to the decomposition of a large

program into components. A process can be

categorized into atomic and composite ones with

different parameters in PM. An atomic process means

a single process that has three properties: ID, process

name and type, and five attributes: precondition,

input, output, effect and action. A composite process

is one composed from atomic processes. The relations

of process, actions and frames is as shown in figure 7

The Process Map includes two parts: process and

action. The function of process is to control processes,

which includes junction control and direction control.

An action is defined as the interpreted behavior of a

component. An action engine is a mapping from

actions to components. We need domain expert to

analyze all required actions, and to identify exactly

which actions can help learning.

Action sequence to be executed is captured in

process maps if it already exists, else will be updated

if such a sequence exists. For the requirement

statement the action sequence is shown in Table II.

F. Structured data creation for requirement

In the process of generating test cases from

requirement statement, using Req2Test we have

identified the entities using named entity recognition

model. The sentence is then parsed to extract

information, which result in Triplets in the form of

(subject - predicate/action - object).

Fig. 7. Process Maps [19]

 These entities with their actions to be performed

were cross checked with domain ontology for

testability. Information regarding the entities that

needs to be extracted and how depth the graph to be

traversed to extract knowledge of entities along with

their attributes were identified. Pre-conditions to be

met and Post-conditions to satisfy when action

performed is extracted from Behavior Trees and

action sequence for performing tasks were extracted

from process maps.

Table I. Required Information Extraction For Requirement Statement

Entity1 Class Entity1 Relation Entity2 Class Entity2
Component Sensors like temperature are used to detect other environment conditions
Component Sensors like humidity are used to detect other environment conditions
Component Sensors like precipitation are used to detect other environment conditions
Component Sensors like humidity are used to switch on System Wiper
Component Sensors like temperature are used to switch on System Wiper
Component Sensors like precipitation are used to switch on System Wiper

System Wiper System Is Activated By Component Engine Control Unit (ECU)
system wiper system is activated in tandem with Component control unit

Component Drive motor depends on Component Pulse Width Modulator

(PWM)
Component Drive motor depends on the Pulse width modulator

(PWM) for
Component drive voltage

Component Drive motor depends on the Pulse width modulator

(PWM) for
Component control of speed

system Wiper switch attribute ON
system Wiper switch attribute OFF

Component Drive Motor Voltage is set between attribute 9v to 14v
Component Drive Motor Voltage checked during other Running condition

system Wipers is checked for OFF condition of Component driver motor
system Wipers is checked for ON condition of Component driver motor

Table II. Process Map For Requirement Statement

Component Pre-

Condition
Input Output Effect Action Sequence

Wiper Wiper is

OFF
Humidity sensor=ON and Drive Motor in 9v to

14v
Wiper=On Wiper=On Humidity

sensor=ON and

Drive Motor in 9v

to 14v

International Journal of Computer Trends and Technology (IJCTT) – Volume 60 Issue 2 - June 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 130

The representation of extracted information

regarding the tasks or actions to be performed is

stored in a structured representation in tabular format.

Information stored in tabular representation consists

of entity class, entity, relation class, relation, attribute,

pre-condition, post-condition and action sequence. All

these information is captured in three different tables.

For the requirement statement, the data

extracted from Knowledge base is shown in Table I

and data extracted from State Transition Tables or

Behavior Trees is shown in figure 6. Data extracted

from the action sequence is shown in Table

II.

By consolidating all the three tables, a

structured representation of data is created which is a

source for template creation.

G. Test Template creation

Test case template is used as an input for

auto generation of test cases using Natural Language

Generation/Rule based Algorithm. It acts as an

intermediary step between knowledge extracted for a

given requirement from knowledge base and actual

test cases user will look for testing.

The essence of creating a test template for auto

generation of test cases of given requirement

statement is to ensure the coverage of the test cases.

Task that needs to be performed as extracted and

validated against testable intent from domain ontology

is captured in the test template in structured

representation. Task that requires sequence of actions

to be performed in achieving a task is extracted from

the process map. For Req2Test, test template is

generated by custom built algorithm by aggregating

the necessary information from the files that were

populated with the necessary data extracted from the

knowledge base.

The template representation of test cases to be

generated is shown in figure 8.

Fig. 8.Test Template for Requirement Statement

H. Test Case Generation using Template

 A test case (denoted as TC) comprises of a Test

Condition (C), the Test Sequence (TS) and the

Expected Results (ER). The Test Condition defines

the logical condition for which the test is to be

performed. The Test Sequence is a set of execution

steps. The corresponding output from a correctly

implemented system is captured in the expected

results. The test condition, the test sequence and the

expected results are identified and extracted from

requirement sentence through the Req2Test pipeline.

Test template is sourced as input for generation of

Test cases. Template provides information about the

hierarchy of the entities participate in test case

generation and preconditions to be met for the

requirement, post-conditions to be validated. Template

also includes attribute range a variable can hold, also

the test sequence extracted from the process maps if

any test sequence exists for the combination of entity

and action participating in the test case generation.

An Algorithm is written with logical template rules

to identify different combinations possible to extract

test cases. Template generated will take care of

hierarchy of the entities present in the requirement

which will reduce the false positives in the generated

test cases. By prioritizing the sequence, redundancy in

the generated test cases will be eliminated. For any

false positives the accuracy of the information

extracted from the Knowledge base is cross verified

and will be corrected for any missing information.

A false positive is identified as test case which is

not part of test case to be verified and is identified by

algorithm. A false negative is test case which is not

generated by the algorithm but has to be verified.

Positive Test Cases: Positive test case verifies for

the action stated in the requirement sentence. Positive

test cases generated were shown in Table III.

Negative Test Cases: Negative test case will

identify all conditions where the affirmative action of

the system should not happen. Negative test cases

Generated were shown in Table IV.

For every test case, the expected output is cross

checked along with post-conditions with actual output

and actual post conditions of the application being

tested.

VI. VALIDATION AND DISCUSSION

Req2Test was run on the requirement

statements and the generated test cases were analyzed

manually for accuracy. The accuracy of parser is

measured by its ability to link grammatically correct

sentences and by the number of correct (and

intelligible) test cases as a percentage of the total

number of test cases generated and to the overall test

coverage.

The generated Test cases showed a

significant percent where the information extracted

from the Knowledge Graphs, Behavior Trees and

Process Maps regarding entities participating in the

testable intent is complete. The completeness in the

test cases is dependent on the Test Template.

Req2Test includes better test granularity

through Test Intents which helps to ensure all aspects

are tested and better covered through positive

conditions and negative conditions. Req2Test could

able to generate test cases that were missed by the

human analysts. Req2Test has applicability to

Business Analysts too, who can estimate the

complexity of projects through the number of Positive

and Negative test cases generated. The test coverage

included in the requirements selected is completed for

International Journal of Computer Trends and Technology (IJCTT) – Volume 60 Issue 2 - June 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 131

the requirement statements where parser could able to

identify the testable intent for single line requirement

statements. For multi line requirement statements the

test coverage is comparatively less than single line

requirement statement because of multiple entities to

be considered as a single state which Req2Test

couldn‘t achieve.

We validated Req2Test against different industrial

requirement statements on Automatic Wiper Control

module. Requirement statements were classified for

validation, as single line requirements having few

entities and relations making a test sequence to be

executed and multiple line requirements having

multiple entities and actions form a test sequence

within same domain. The accuracy for multi line

requirement statements is lower than that of single

line requirement statements. We found the accuracy of

such sentences is low because of test coverage should

include sequences and pre-conditions of multiple

entities as a single entity, which couldn‘t be retrieved

by Req2Test. Req2Test Validation results are shown

in figure 9.

Fig. 9. Experimental Results of Req2Test on Industrial

Requirement statements

VII. CONCLUSIONS

In this paper, we presented Req2Test

methodology and tool to generate functional test cases

from natural language

(English) functional requirement specification

document. Req2Test identifies the entities using

named entity recognition model. The sentence is then

parsed to extract information which result in triplets in

the form of subject - predicate/action - object. These

entities with their actions to be performed were cross

checked with domain ontology for testability.

Information regarding the entities that needs to be

extracted and how depth the graph to be traversed to

extract knowledge of entities along with their

attributes,pre-conditions and post-conditions were

identified. Procedural knowledge for performing tasks

were extracted from process maps. We have presented

the accuracy of the tool over industrial project

requirements. Req2Test has received positive

feedback in its practical review from test engineers

and business analysts. Our future research will be

focusing on improving the accuracy, deployment by

improving domain knowledge representation and

identifying and extracting pre and post conditions

when multiple domain components involve for test

case generation.

Table III. Req2test Positive Test Cases Generated For Requirement Sentence

No Test case Expected Result

1 Wiper.Humidity sensor = 0 AND wiper.Drive Motor = On AND Drive Motor.Voltage Range = 9v to 14v Wiper=On

2 Wiper.Humidity sensor = 0 AND wiper.Drive Motor = Off AND Drive Motor.Voltage Range = 9v to 14v Wiper=On

3 Wiper.Humidity sensor = 1 AND wiper.Drive Motor = On AND Drive Motor.Voltage Range = 9v to 14v Wiper=On

4 Wiper.Humidity sensor = 1 AND wiper.Drive Motor = Off AND Drive Motor.Voltage Range = 9v to 14v Wiper=On

Table IV. Req2test Negative Test Cases Generated For Requirement Sentence

N

o Test Case Expected Result

1

Wiper.Humidity sensor <> 0 AND wiper.Drive Motor = On AND Drive Motor.Voltage Range = 9v to

14v Wiper=Off

2

Wiper.Humidity sensor = 0 AND wiper.Drive Motor <> Off AND Drive Motor.Voltage Range = 9v to

14v Wiper=Off

3

Wiper.Humidity sensor = 0 AND wiper.Drive Motor = Off AND Drive Motor.Voltage Range <> 9v to

14v Wiper=Off

4

Wiper.Humidity sensor <> 1 AND wiper.Drive Motor = On AND Drive Motor.Voltage Range = 9v to

14v Wiper=Off

5

Wiper.Humidity sensor = 1 AND wiper.Drive Motor <> Off AND Drive Motor.Voltage Range = 9v to

14v Wiper=Off

6

Wiper.Humidity sensor = 1 AND wiper.Drive Motor = Off AND Drive Motor.Voltage Range <> 9v to

14v Wiper=Off

7

Wiper.Humidity sensor <> 1 AND wiper.Drive Motor <> On AND Drive Motor.Voltage Range = 9v to

14v Wiper=Off

8

Wiper.Humidity sensor = 1 AND wiper.Drive Motor <> Off AND Drive Motor.Voltage Range <> 9v to

14v Wiper=Off

9

Wiper.Humidity sensor <> 1 AND wiper.Drive Motor = Off AND Drive Motor.Voltage Range <> 9v to

14v Wiper=Off

International Journal of Computer Trends and Technology (IJCTT) – Volume 60 Issue 2 - June 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 132

VIII. APPENDIX

The following is the dataset processed to

construct knowledge graph, domain ontology for the

requirement statement processed in the paper.

‖Wiper control system play a key role in keeping

driver safe in times of precipitation. Wiper system has

seen a change in approach over a period of time from

traditional wiper system to automated sensor based

system. Sensors like Humidity, precipitation and

temperature are used to detect the environment

conditions and switch on the wiper automatically.

Wiper system is activated and controlled by Engine

control unit(ECU) in tandem with Body control unit

(BCU). Controller area network (CAN) is used as a

primary form of communication between ECU and

other components for automated wiper control like

sensors, micro controllers etc. The motor drive

primarily depends on the Pulse width modulator

(PWM) for the drive voltage and control of speed. The

wiper switch on and off is subjected to various

conditions like sensor condition of humidity,

visibility, range of temperatures and vehicle

conditions as given by the ECU through data CAN

protocol. Further to the automated switching of wipers

is checked for the ON and OFF condition of the driver

motor. The visibility of the vehicle driver is sensed

through the image sensor and the speed of the wiper

driver motor is varied by the PWM based on these

inputs. For every start condition the wiper driver

motor voltage range is checked, this is done to protect

from heat and stress conditions of the wiper driver

motor. The BCM module is coupled with the ECU so

that vehicle conditions and the wiper play conditions

are coupled. The ECU sends the signals through the

data CAN to the BCM module which in turn checks

the TRUE or FALSE condition of the all prevalent

condition like sensor inputs, drive voltage, motor

speed and status, required variation speed parameters

for the PWM etc. The micro controller works in slave

condition to the ECU and connected by CAN

protocol. for the automatic start of wiper, humidity

sensor condition is checked for 1 or 0, driver motor

condition if checked for ON or OFF, driver motor

voltage range is set between 9v to 14v. Driver motor

over-voltage condition is checked during the running

condition.‖

REFERENCES

[1] Charles P. Morgan, Mark l. Gillenson, Xihui Zhang, Son N.

Bui and Euntae ―TED‖ Lee, ―ATCG: An Automated Test

Case Generator‖,Journal of Information Technology

Management, vol. XXVII, no. 3, pp.112-120, 2016.

[2] Priyanka Kulkarni and Yashada Joglekar, ―Generating and

analyzing test cases from software requirements using NLP

and Hadoop‖, International Journal of Current Engineering

and Technology, vol. 4, no.6, pp.3934-3937, 2014.

[3] Anurag Dwarakanathand Shubhashis Sengupta, ―Litmus:

Generation of test cases from functional requirements in

natural language‖ in
Proceedings of NLDB'12 Proceedings of the 17th

international conference on Applications of Natural Language

Processing and Information Systems, pp.58-69, 2012.

[4] Mich Luisa, Franch Mariangela and Novi Inverardi Pierluigi,

―Market research for requirements analysis using linguistic

tools‖,Requirements Eng, pp.40-56, 2004.
[5] Colin JNeill and Phillip A Laplante, ―Requirements

engineering: the state of the practice‖,in IEEE Software, vol.

20, no. 6, pp. 40-45, 2003.
[6] Kirti Nagpal and Raman Chawla, ―Improvement of Software

Development Process: A new SDLC Model‖, International

Journal of Latest Research in Science and Technology, vol.1,

no.3, pp. 217-224,2012.
[7] N Vijay,―Little Joe Model of Software Testing‖, Software

Solutions Lab, Honeywell, Bangalore, India, pp.1-12, 2001.
[8] Elaine Weyuker, Tar& Goradia, and Ashutosh Singh,

―Automatically Generating Test Data from a Boolean

Specification‖, IEEE Transactions on Software Engineering,

vol 20, no. 5, pp. 353-363, 1994.
[9] ―Requirements Based Testing Process Overview‖, Bender

RBT Inc. Queensbury, New York, USA, pp. 1-18, 2009.
[10] James Martin, An information systems manifesto, Prentice

Hall, p.300, 1984.
[11] L. H. Tahat, B. Vaysburg, B. Korel and A. J. Bader,

"Requirement-based automated black-box test generation,"

in25th Annual International Computer Software and

Applications Conference. COMPSAC 2001, Chicago, IL, pp.

489-495, 2001.

[12] Prabakaran P.M. (2012) ―How automatic wiper control works

in

modernCar‖,[Online].Available:https://www.engineersgarage.

com/contribution/how-automatic-wiper-control-works-

modern-car

[13] Matthew Honnibal and Mark Johnson, ―An improved non-

monotonic transition system for dependency parsing‖, in

Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing,Lisbon, Portugal,pp. 1373–

1378, 2015.

[14] Google‘s new artificial intelligence can‘t understand these

sentences. Can you?. Washington Post. Retrieved 2016-12-18.
[15] IEEE Recommended Practice for Software Requirements

Specifications,IEEE Std. 830-1998, pp. 1-40, 1998.
[16] R. G Dromey, ―For Requirements to Design: Formalizing the

Key Steps‖, in Proceedings of First International Conference

onSoftware Engineering and Formal Methods, Brisbane,

Queensland, Australia, pp. 2-11, 2003.
[17] Cesar Gonzalez, Brian Hendreson-Sellers and Geoff Dromey,

―A Meta model for the Behavior Trees Modeling Technique‖,

in Proceedings of Third International Conference on

Information Technology and Applications (ICITA'05), vol.1,

pp. 35-39, 2005.
[18] John R. Anderson, Rules of the Mind,Psychology Press; 1st

ed. p. 336, 1993.

[19] Chun-Hung Lu, Shih-Hung Wu, LiongYu Tu and Wen-Lian

Hsu, "The design of an intelligent tutoring system based on

the ontology of procedural knowledge," in Proceedings of

IEEE International Conference on Advanced Learning

Technologies, pp. 525-529, 2004.
[20] Zhanfang Zhao, Sung-Kook Han and In-Mi So, ―Architecture

of Knowledge Graph Construction Techniques‖, International

Journal of Pure and Applied Mathematics, vol. 118, no. 19,

pp. 1869-1883, 2018.
[21] LeonidKof,Ricardo Gacitua, Mark Rouncefield and Peter

Sawyer, ―Ontology and model alignment as a means for

requirements validation‖, in Proceedings of IEEE Fourth

International Conference on Semantic Computing, Pittsburgh,

PA, USA,pp.46-51, 2010.
[22] F A Rezaur Rahman Chowdhury, Chao Ma, Md Rakibul

Islam, Mohammad Hossein Namaki, Mohammad Omar Faruk

and JanardhanRao Doppa, ―Select-and-Evaluate: A Learning

Framework for Large-
Scale Knowledge Graph Search‖, in Proceedings of the Ninth

Asian Conference on Machine Learning, vol. 77, pp. 129-144,

2017.

