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Abstract 

              Software testing is a critical phase in the 

software development life cycle, as it validates the 

software against its requirements. Auto generation of 

test cases for software testing from natural language 

requirements pose a formidable challenge as 

requirements often do not follow a defined structure. 

In this paper, we propose Req2Test pipeline to auto 

generate test cases from a set of requirement 

statements. Our process includes domain specific 

knowledge graphs for extracting information, domain 

ontologies for identifying hierarchy of domain 

components and action sequences for actions to be 

performed in achieving a task. Knowledge graphs,  

domain ontology and action sequences contributes in 

addressing complete test coverage for requirement 

statements. The test cases are generated against 

industrial requirement statements on Automatic Wiper 

Control System in Automotive Domain and achieved 

promising results. We provide experimental results on 

industrial requirement and discuss the advantages and 

shortcomings of our approach. 

 

Keywords - Named Entity Recognition, Domain 

Knowledge, Domain Ontology, Test Case Generation 

I. INTRODUCTION 

Software Testing is evaluation of the 

software against requirements gathered from users and 

system specifications. It is a salient step of software 

development, which is crucial to ensuring the 

programmed unit works under normal circumstances 

and to weed out faults prior to deployment. It is the 

cornerstone of verifying and validating that the 

expectations and requirements of the users and 

stakeholders have been met in the system under 

development [2]. Every newly developed product of 

any kind has to be tested to ensure that it correctly 

performs the functions for which it was designed [1]. 

It has been estimated that software testing uses up to 

50% of the overall development cost [6] and the 

testing activities consume approximately 40% of the 

overall development time and effort [7]. 

The software requirement specification is the 

best source for understanding stakeholders 

expectations and generating the test cases 

corresponding to the same [2]. Software Requirement 

Specification (SRS) document contains detailed 

system-level description of the requirements and use-

cases. The information contained in SRS is used to 

create detailed Test Cases [3]. The requirements-based 

testing process addresses two major issues: first, 

validating that the requirements are correct, complete, 

unambiguous, and logically consistent; and second, 

designing a necessary and sufficient set of test cases 

from those requirements [9]. Majority of the 

requirements specification documents have 

requirements written in Natural Language. According 

to some of surveys, 79% [4] of all requirements are 

documented in natural language and 7% [5] in formal 

specifications. Therefore, there is a need to transform 

these requirements written in natural language into 

computer-readable format in order to automate the 

process of generating test cases. Natural Language 

Processing (NLP) techniques enable us to morph 

sentences expressed in natural language into 

statements that can be understood syntactically and 

semantically and process accordingly by a machine 

[2] to generate test cases from requirements. 

II. MOTIVATION AND BACK GROUND 

Test cases can be developed in one of three 

major ways. They can be developed algorithmically, 

they can be taken from data from an existing 

application that is being replaced or upgraded, or they 

can be developed from requirements [1]. From given 

requirements, test cases can be developed by manually 

or by automation. Manual development of test cases 

have some serious concerns [1][2]. To improve the 

effectiveness and efficiency of testing, testers need to 

create high-quality test cases. Writing test cases, 

however, is a tedious task and prone to human errors. 

Thus, it is crucial that we can find a way of 

automatically generating high-quality test cases which 

can be used in making testing activities more effective 

and efficient to assure software quality [1]. 

This paper describes the auto generation of 

test cases form SRS statements. The proposed 

approach consumes SRS statement as input and 

creates test cases as output. The paper is structured as 

follows. In section III, we discuss the review of 

related work. Section IV includes a sample 

requirement statement processed through out the 

paper. We describe Req2Test pipeline in detail in 



International Journal of Computer Trends and Technology (IJCTT) – Volume 60 Issue 2 - June 2018 

 

ISSN: 2231-2803                           http://www.ijcttjournal.org                                    Page 124 
  

section V. In section VI, we present Validation and 

Discussion and Conclusion in section VII. 

III. RELATED WORK 

Automation of test cases is not a new idea, 

Weyuker et al. [8] introduced the approach of 

Automation of test cases for testing. In their paper, 

they discussed different strategies for automatically 

generating test cases. They developed algorithms to 

automatically generate test sets that would be 

substantially smaller than exhaustive test sets, but 

would nonetheless be highly effective at detecting 

faults. According to James Martin [10], the root 

causes of 56% of all defects identified in software 

projects are introduced in the requirements phase 

about 50% of requirement defects are result of poorly 

written, unclear, ambiguous, and incorrect 

requirements. The other 50% of requirement defects 

are due to incompleteness of specifications (i.e. 

omitted requirements). Therefore, in requirement 

based testing need for automation of test cases is even 

more serious. Multiple manual process are involved in 

requirement based testing, where software testers have 

to define test completion criterion, design test cases 

from requirements, build test cases, execute the test 

cases and verify whether requirements of the software 

are met or not. If the requirement based testing 

processes do not run correctly or consistently, the size 

of the test cases may be too enormous to complete 

testing in reasonable time or the test cases cannot 

provide the expected results [9]. Automation has 

proven to be an effective way to reduce cost and 

shorten the product release time, and will be a major 

factor for the success of software testing [11]. To 

minimize the effort and cost on testing, many 

companies have started investing in the automation of 

testing processes. 

Anurag and Shubhashis [3] developed a 

Litmus tool to generate test cases from functional 

requirement document. The tool works on each 

requirement sentence and generates one or more test 

cases through a five-step process. Charles et al. [1] 

developed an Automated test case Generator (ATCG) 

that takes requirements statements as inputs and 

creates test cases as output. 

However in all these approaches there is no 

completeness in test coverage generated by 

requirement statements. These approaches couldn‘t 

able to identify domain hierarchy of components and 

sequence of execution steps for test coverage to be 

accomplished. 

In this Paper, we present Requirement to test 

case Generation (Req2Test). We have constructed a 

domain model by processing the domain specific 

corpus for building knowledge base specific to 

domain. We then process every requirement statement 

and validate the requirement against domain 

knowledge base and domain ontology to validate the 

requirement and extract domain hierarchy of entities 

participating in the requirement statement. We then 

construct a test template from the knowledge extracted 

and generate test cases from the template by using 

Natural Language Generation or Rule Based 

approaches. 

IV. DATASET 

Req2Test can be applied to any type of 

domain specific or domain agnostic data. In this 

paper, to explain the Req2Test pipeline we selected 

Automatic Wiper Control System from Automotive 

domain. The related corpus for analysis is collected 

from web source [12]. Please refer the appendix for 

the corpus. 

Every step in the Architecture is explained with the 

following sample requirement statement: ―when the 

humidity senor is switched to ON and drive voltage is 

in the specified range the wiper should set to start‖ 

 

V. REQ2TEST 

Req2Test identifies a requirement as a 

sentence and validate the requirement whether it is 

valid requirement or not with respect to domain we 

are interested in. Req2Test also identifies the testable 

intent in the requirement statement for appropriate 

actions/action sequences to be performed in 

generating test cases from the given requirement 

statement. A Test case includes the ‗test condition‘, 

the ‗test sequence‘ and the ‗expected result‘. Test 

condition includes pre-conditions and post-conditions 

for a test case to get executed and verified 

respectively. A pre-condition is defined as the entry 

criterion for the test case being tested. A post-

condition is defined as the state changes to be verified 

after the test case is executed. Test sequence is the 

ordered sequence of steps a tester would have to 

execute to perform the test. The corresponding output 

from a correctly implemented system is denoted as the 

expected result. The test cases are generated using 

pipeline depicted in figure 1. 

Every component in the pipeline is explained 

in the coming sections with the help of above 

mentioned sample requirement statement. The 

requirement sentence is tagged with named entities 

using Bi-LSTM-CRF model and parsed using 

Dependency parser developed by Spacy [13]. Spacy 

Dependency Parser provides information on the 

syntax of a grammatically correct English sentence by 

connecting pairs of words through dependency 

tokens. Information is extracted from the statement as 

Triplets (Subject-PredicateObject) for validating the 

requirement statement against domain ontology 

constructed. Once testable intent is identified from the 

requirement statement, required information 

(attributes, pre-conditions, post-conditions, action 

sequences) about entitiesparticipating in the test are 

extracted from Knowledge Graph(KG) to construct a 
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template. Template constructed will be used as input 

to generate Test cases. 

 

Fig. 1. Req2Test Architecture 

 

A. Domain Based Knowledge Graph Generation 

From the perspective of creating knowledge 

graphs (KG) based on ontology, there are two main 

approaches, one is top-down, and the other is bottom-

up [20]. Top-down approachmeans that ontology and 

schema should be defined,and then knowledge 

instances are added into knowledge base. This 

approach emphasizes the well-defined domain 

ontologies to represent the actual instances of 

knowledge graphs. The bottom-up approach extracts 

knowledge instances from the Linked Open Data 

(LOD) or other knowledge resources. After 

knowledge fusing the populated instances, the top-

level ontologism are built by means of knowledge 

instances to create the whole KG‘s. We followed 

bottom-up approach for construction of knowledge 

base. For construction of Knowledge Graph, 

knowledge is extracted from domain corpus available 

and is represented in machine readable format RDF 

(Resource Description Framework)1. 

The types of knowledge extraction are 

roughly divided into three types: entity extraction, 

relation extraction and attribute extraction [20]. In 

fact, the attribute extraction can be thought as a kind 

of special relation extraction. Entity extraction, 

including Named-Entity Recognition (NER), is to 

discover entities from a wide variety of knowledge 

resource and try to classify them into pre-defined 

categories. The quality of entity extraction usually 

greatly influences the efficiency and quality of 

subsequent knowledge acquisition, so it is one of the 

most fundamental and important part of knowledge 

extraction. After entity extraction, the relationships 

among the entities are analyzed to extract the 

conceptual relations. Relation extraction is to find the 

relations between entities and obtain semantic 

information in order to construct knowledge graphs. 

The attribute extraction is to define the intentional  

 

semantics of the entities while the relation 

extraction is to specify the denotational semantics of 

the entities. The attribute extraction is important to 

define the concept of an entity more clearly. 

B. Processing Requirement Statement 

The objective of processing requirement 

statement is to extract relationships between entities 

and to confirm action to be performed based on the 

requirement specification. The input is requirement 

statement where test cases need to be generated. The 

requirement statement is analyzed using standard NLP 

techniques and entities, verb relations, actions are 

recognized and extracted by the custom built 

algorithm. An overview of triplet extraction for a 

single functional requirement statement is shown in 

Figure 2. 

 
Fig. 2.Information Extraction Process 

Every requirement statement is parsed with 

Spacy dependency parser. For information extraction, 

NER identifies relevant entities and parser identifies 
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POS tagging and dependency tokens for each word in 

the sentence. 

Finally, the system outputs the relations by 

resolving the co-references into a list of binary 

relations in the form of Entity — Verb relationship — 

Entity. 

1) Entity Recognition:The aim of the Named 

Entity Recognition(NER) and extraction is to identify 

all entities from the requirement sentence. 

Requirement sentence is passed through BI-LSTM-

CRF network model to identify the named entities in 

the statement. It uses generic stochastic Gradient 

Descent (SGD) forward and backward training 

procedure. While training the model, in every epoch, 

the training data is divided in to multiple batches and 

one batch at a time is processed. Every batch contains 

a list of sentences which is determined by the 

parameter of batch size. For every batch, we first run 

bi-directional LSTM-CRF model forward pass which 

includes the forward pass for both forward state and 

backward state of LSTM. As a result, we get the the 

output score  for all tags at all positions. We 

then run CRF layer forward and backward pass to 

compute gradients for network output and state 

transition edges. After that, we can back propagate the 

errors from the output to the input, which includes the 

backward pass for both forward and backward states 

of LSTM. Finally we update the network parameters 

which include the state transition matrix [A]i,j∀i,j and 

the original bidirectional LSTM parameters Θ. The 

BI-LSTM-CRF architecture for the given requirement 

statement is shown in figure 3. 

2) Information Extraction: The main objective 

of the information extraction is to extract relationships 

between entities from requirement sentences having 

complex structures. In order to extract single or 

multiple relations between entities a verb centric 

algorithm was built which can extract relations 

between complex compound sentences. The input to 

the algorithm is requirement statement which will 

extract single/multiple relations between entities as 

triplets in the form of (Subject-Verb-Object). The 

system process each sentence to find co-references 

and resolve them using Neural-Co-ref [16] if present. 

For the selected requirement statement the algorithm 

extracted the following triplets. 

Extracted triplets for sample requirement statement: 

(Humidity Sensor, is, on), 

(drive voltage, is in, specified range), 

(wiper, should set, to start) 

3) Extraction of Domain Ontology: An 

ontology represents the fundamental knowledge 

pertinent to the application domain, namely the 

concepts constituting the domain and the relationships 

between them. Survey by Mich et al. [4] shows, 

majority of the requirements documents are written in 

natural language. As a consequence, most requirement 

documents are imprecise, incomplete, and become 

apparent when we compare the project-specific model 

with a generic model of the application domain [21]. 

We need to transform natural language representation 

of requirement information into a form that facilitates 

comparison with a domain model. 

Naturally, we also need a domain model 

against which to compare and this presupposes a 

means to construct such models. 

An ontology is generated from a generic 

domain description and a project specific model is 

generated from requirement documents. For ontology 

generation, natural language processing techniques 

(Pos tagging, NER, IE) are used to aid the 

construction. We compare both the models to validate. 

When inconsistencies are found, we generate feedback 

for the analyst. The generated feedback was validated 

on a case study and has proven useful to improve both 

requirement documents and models. 

First, we extract domain-specific abstractions 

and relationships between them from a document or 

documents that are representative of the application 

domain. Based on the lexical form of the extracted 

concepts, built in custom classifier classifies them and 

provides a taxonomy. Finally, we look for non-

taxonomic relationships between the concepts. 

The domain abstraction for components involved in 

the requirement statement is shown in figure 4. 

4) Domain Knowledge Graph Vs Domain 

Ontology: Knowledge Base (KB) is fact-oriented and 

an ontology is much more schema-oriented. In 

Knowledge Graph, you have certainly a schema (like 

the one described by DBPedia, Freebase, Yago, etc.) 

and a set of facts,―New Delhi isA City‖, ―New Delhi 

hasInhabitants 2M‖, ‖New Delhi isCapitalOf India‖, 

etc. So, you can (easily) answer to questions like 

‖What is the capital of India?‖, ‖How many 

inhabitants does New Delhi have?‖ or you can 

provide a short description of New Delhi (or any 

given entity in general). 

Domain ontology explain main concepts of a 

domain, how are these concepts related and which 

attributes do they have. Here the focus is on the 

description, with the highest possible expressiveness 

(disjointness, values restrictions, cardinality 

restrictions) and the useful annotations (synonyms, 

definition of terms, examples, comments on design 

choices, etc.), of the entities for a given domain. Data 

(or facts) are not the main concern when designing a 

domain ontology. 

5) Validating Requirement 

Statement:Requirement statement is fed into the 

model for entity extraction. After identifying entities 

every sentence in the requirement is parsed for 

incorporating the information about entities. A 

successfully linked sentence is tagged as either 

testable or non-testable. We define a testable sentence 

as one which adheres to the definition of a 
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requirement [15]. A requirement is a contract that 

specifies what a user/agent does to a system (impetus) 

and how the system should respond. We, thus define a 

testable sentence as one which has a subject, an action 

and optionally an object. The action should contain a 

modal Verb (like should, would, etc.). Information 

about domain entities and actions an user performs 

were validated against the domain ontology. For any 

inconsistency in the requirement statement is checked 

with analyst. 

An example of a non-testable sentence is 

‖The DHT11 is a basic, ultra low-cost digital 

temperature and humiditysensor‖. Notice such 

sentences are assumptions or definitions and by 

themselves are not testable. Quick identification of 

non-testable requirements helps a business analyst to 

review and modify the requirements if needed. The 

aspect of testability is also critical in identifying parts 

of a sentence that should be tested.. For requirement 

sentence humidity senor is switched to ON and drive 

voltage is in the specified range then wiper should set 

to start, the underlined fragment should be 

inconsequential to a tester as it talks about the 

underlying logic.The test case should be based on the 

action of the system which is “to set the wiper ON”. 

This aspect is automatically caught by the testability 

module and the Test cases generated are around the 

action and pre-conditions related to the entity as 

specified in the requirement. 

  
Fig. 4.Ontology extracted for Requirement Statement 

6) Identifying Testable Intent: We define a test 

intent as the smallest segment of a requirement 

sentence that conveys enough information about the 

purpose of the test [3]. A test intent has a subject, an 

action and (optionally) an object. For requirement 

statement processed we have three test intents which 

were 

(humidity sensor, is, ON), 

(drive voltage, is in, specified range), 

(wiper, should set, to start). 

The first two intents talk about pre-

conditions or assumptions to be checked. The third 

intent is a testable intent where test cases needs to be 

generated. 

 

C. Extracting Knowledge from Domain Knowledge 

Base 

After identifying the testable intent and 

action to be performed on the entities, a procedure to 

extract information regarding how such an action can 

be performed on entities have to be extracted from the 

knowledge base. The extracted information should set 

the context on when and how such action can be 

performed on the entities. When specifies the pre-

conditions to be met to perform the action. How 

specifies the sequence of actions to be performed in 

achieving this task. Sequence of actions include the 

sequence of steps to be followed in achieving such 

action.We accept that graph search is a NP-hard 

(nondeterministic polynomial-time hardness) problem. 

Therefore, we specify a computationally bounded 

search architecture with some parameters, and 

automatically optimize its  performance based on the 

needs of the application using training queries drawn 

from a target distribution [22]. 

The architecture for extracting knowledge 

from knowledge base for the given requirement 

statement consists of two parts 1. Selection and 2. 

Evaluation. The architecture for subgraph extraction 

from the knowledge base is shown in figure 5. 

1) Selection:Will generate a candidate subgraph 

of size (parameter) to answer the input query with 

entities and actions as input to query. 

2) Evaluation: will find the best answer by 

evaluating the input graph query on the generated 

 
Fig. 3.BI-LSTM-CRF Named Entity Recognition Model 
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subgraph. The scoring function F(.) is used to score 

the candidate answers. Given a graph query Q, data 

graph G, and search bound τ, the selection component 

generates a subgraph GQ,T ⊂G whose size is τ and the 

evaluation component finds the best answer Â by 

searching GQ,T. 

Subgraph extracted will consist of 

information for the entities with its attributes, pre-

conditions, post-conditions and attribute values range 

for all the participating entities with the action to be 

performed. The best answer Â isassigned a score 

based on the no. of levels in the graph to be traversed 

for  

 

Fig. 5. Process of Knowledge Extraction from 

Knowledge Base [22] 

accurate information to be extracted. The 

informationextracted from the knowledge graph is 

identified by scoring function based on the depth. The 

required information for requirement statement is 

searched for entity classes Component and System is 

shown in table I. 

D. Pre-condition and Post-condition Identification 

A Test case is characterized by a known 

input and by an expected output. The known input 

should test a pre-condition and the expected output 

should test a post-condition that is caused by a 

scenario using the pre-condition. A state can be a pre-

condition or a post-condition based on its relation to 

the event. If the state is a result of the event then it is a 

postcondition for this event, if the event needs the 

system to be in this particular state to perform then it 

is a pre-condition for this event. A State is the state 

the system in before or after performing an action. An 

event is the action to be performed. 

Functional requirements are expressed as 

Behavior Trees (BT) in terms of components realizing 

states. Like graphical form that represents behavior of 

individual or networks of entities which realize or 

change states, make decisions, respond to cause 

events, and interact by exchanging information or 

passing [16]. The BT technique is based on the 

assumptions that systems exhibit components that 

have attributes and realize and change states, so they 

make other components realize and change state as 

well [17]. 

The representation of BT for the requirement 

statement is shown in State Transition Table or 

Behavior Trees in Figure 6. 

In the represented Behavior Tree for Wiper, 

Path ‖a‖ gives information on when Humidity Sensor 

is On and Drive Voltage in Range then state of Wiper 

is set to ON. In path ‖b‖ and path ‖c‖ the state of 

Wiper didn‘t change when Humidity Sensor is Off 

and so on. 

 

 

Fig. 6. Transition states of components as Behavior 

Trees 

 

E. Action Sequence 

According to Anderson [18], there are two 

essential components of knowledge: declarative 

knowledge and procedural knowledge. Declarative 

knowledge collects useful knowledge/information. It 

is the factual or conceptual knowledgethat a person 

has. In designing a generic architecture to represent 

procedural knowledge, the actions defined by domain 

experts and the control of action flow are two 

important tasks. Unlike declarative knowledge, the 

meaning of procedural knowledge cannot be figured 

out until the whole process is finished. Processes are 

hardto describebut important in relation to problem 

solving. Focusing on the process by which knowledge 

is constructed is more important than focusing on 

target knowledge. For our work Req2Test, we 

followed an ontological representation scheme called 

Process Map (PM) [19] to represent procedural 

knowledge. 

The main idea is to identify (1) the activity 

structure from given behavioral models of 

components; and (2) the connection relations of these 

components. 
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Process Map:We call a series of processes that 

indicate a fact as a Process Map (PM). A Process Map 

is composed from a collection of processes that 

accomplish a specific goal. Each process can be 

regarded as a series of actions. Each action can be 

further decomposed into a series of frames. This idea 

is very similar to the decomposition of a large 

program into components. A process can be 

categorized into atomic and composite ones with 

different parameters in PM. An atomic process means 

a single process that has three properties: ID, process 

name and type, and five attributes: precondition, 

input, output, effect and action. A composite process 

is one composed from atomic processes. The relations 

of process, actions and frames is as shown in figure 7 

The Process Map includes two parts: process and 

action. The function of process is to control processes, 

which includes junction control and direction control. 

An action is defined as the interpreted behavior of a 

component. An action engine is a mapping from 

actions to components. We need domain expert to 

analyze all required actions, and to identify exactly 

which actions can help learning. 

Action sequence to be executed is captured in 

process maps if it already exists, else will be updated 

if such a sequence exists. For the requirement 

statement the action sequence is shown in Table II. 

 

 

F. Structured data creation for requirement 

In the process of generating test cases from 

requirement statement, using Req2Test we have 

identified the entities using named entity recognition 

model. The sentence is then parsed to extract 

information, which result in Triplets in the form of 

(subject - predicate/action - object).  

 
Fig. 7. Process Maps [19] 

 

         These entities with their actions to be performed 

were cross checked with domain ontology for 

testability. Information regarding the entities that 

needs to be extracted and how depth the graph to be 

traversed to extract knowledge of entities along with 

their attributes were identified. Pre-conditions to be 

met and Post-conditions to satisfy when action 

performed is extracted from Behavior Trees and 

action sequence for performing tasks were extracted 

from process maps. 

Table I.  Required Information Extraction For Requirement Statement 

Entity1 Class Entity1 Relation Entity2 Class Entity2 
Component Sensors like temperature are used to detect other environment conditions 
Component Sensors like humidity are used to detect other environment conditions 
Component Sensors like precipitation are used to detect other environment conditions 
Component Sensors like humidity are used to switch on System Wiper 
Component Sensors like temperature are used to switch on System Wiper 
Component Sensors like precipitation are used to switch on System Wiper 

System Wiper System Is Activated By Component Engine Control Unit (ECU) 
system wiper system is activated in tandem with Component control unit 

Component Drive motor depends on Component Pulse Width Modulator 

(PWM) 
Component Drive motor depends on the Pulse width modulator 

(PWM) for 
Component drive voltage 

Component Drive motor depends on the Pulse width modulator 

(PWM) for 
Component control of speed 

system Wiper switch attribute ON 
system Wiper switch attribute OFF 

Component Drive Motor Voltage is set between attribute 9v to 14v 
Component Drive Motor Voltage checked during other Running condition 

system Wipers is checked for OFF condition of Component driver motor 
system Wipers is checked for ON condition of Component driver motor 

 

Table II.  Process Map For Requirement Statement 

Component Pre-

Condition 
Input Output Effect Action Sequence 

Wiper Wiper is 

OFF 
Humidity sensor=ON and Drive Motor in 9v to 

14v 
Wiper=On Wiper=On Humidity 

sensor=ON and 

Drive Motor in 9v 

to 14v 
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The representation of extracted information 

regarding the tasks or actions to be performed is 

stored in a structured representation in tabular format. 

Information stored in tabular representation consists 

of entity class, entity, relation class, relation, attribute, 

pre-condition, post-condition and action sequence. All 

these information is captured in three different tables. 

For the requirement statement, the data 

extracted from Knowledge base is shown in Table I 

and data extracted from State Transition Tables or 

Behavior Trees is shown in figure 6. Data extracted 

from the action sequence is shown in Table 

II. 

By consolidating all the three tables, a 

structured representation of data is created which is a 

source for template creation. 

G. Test Template creation 

Test case template is used as an input for 

auto generation of test cases using Natural Language 

Generation/Rule based Algorithm. It acts as an 

intermediary step between knowledge extracted for a 

given requirement from knowledge base and actual 

test cases user will look for testing. 

The essence of creating a test template for auto 

generation of test cases of given requirement 

statement is to ensure the coverage of the test cases. 

Task that needs to be performed as extracted and 

validated against testable intent from domain ontology 

is captured in the test template in structured 

representation. Task that requires sequence of actions 

to be performed in achieving a task is extracted from 

the process map. For Req2Test, test template is 

generated by custom built algorithm by aggregating 

the necessary information from the files that were 

populated with the necessary data extracted from the 

knowledge base. 

The template representation of test cases to be 

generated is shown in figure 8. 

 

 
Fig. 8.Test Template for Requirement Statement 

 

H. Test Case Generation using Template 

      A test case (denoted as TC) comprises of a Test 

Condition (C), the Test Sequence (TS) and the 

Expected Results (ER). The Test Condition defines 

the logical condition for which the test is to be 

performed. The Test Sequence is a set of execution 

steps. The corresponding output from a correctly 

implemented system is captured in the expected 

results. The test condition, the test sequence and the 

expected results are identified and extracted from 

requirement sentence through the Req2Test pipeline. 

Test template is sourced as input for generation of 

Test cases. Template provides information about the 

hierarchy of the entities participate in test case 

generation and preconditions to be met for the 

requirement, post-conditions to be validated. Template 

also includes attribute range a variable can hold, also 

the test sequence extracted from the process maps if 

any test sequence exists for the combination of entity 

and action participating in the test case generation. 

An Algorithm is written with logical template rules 

to identify different combinations possible to extract 

test cases. Template generated will take care of 

hierarchy of the entities present in the requirement 

which will reduce the false positives in the generated 

test cases. By prioritizing the sequence, redundancy in 

the generated test cases will be eliminated. For any 

false positives the accuracy of the information 

extracted from the Knowledge base is cross verified 

and will be corrected for any missing information. 

A false positive is identified as test case which is 

not part of test case to be verified and is identified by 

algorithm. A false negative is test case which is not 

generated by the algorithm but has to be verified. 

Positive Test Cases: Positive test case verifies for 

the action stated in the requirement sentence. Positive 

test cases generated were shown in Table III. 

Negative Test Cases: Negative test case will 

identify all conditions where the affirmative action of 

the system should not happen. Negative test cases 

Generated were shown in Table IV. 

For every test case, the expected output is cross 

checked along with post-conditions with actual output 

and actual post conditions of the application being 

tested. 

VI.  VALIDATION AND DISCUSSION 

Req2Test was run on the requirement 

statements and the generated test cases were analyzed 

manually for accuracy. The accuracy of parser is 

measured by its ability to link grammatically correct 

sentences and by the number of correct (and 

intelligible) test cases as a percentage of the total 

number of test cases generated and to the overall test 

coverage. 

The generated Test cases showed a 

significant percent where the information extracted 

from the Knowledge Graphs, Behavior Trees and 

Process Maps regarding entities participating in the 

testable intent is complete. The completeness in the 

test cases is dependent on the Test Template. 

Req2Test includes better test granularity 

through Test Intents which helps to ensure all aspects 

are tested and better covered through positive 

conditions and negative conditions. Req2Test could 

able to generate test cases that were missed by the 

human analysts. Req2Test has applicability to 

Business Analysts too, who can estimate the 

complexity of projects through the number of Positive 

and Negative test cases generated. The test coverage 

included in the requirements selected is completed for 
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the requirement statements where parser could able to 

identify the testable intent for single line requirement  

 

statements. For multi line requirement statements the 

test coverage is comparatively less than single line 

requirement statement because of multiple entities to 

be considered as a single state which Req2Test 

couldn‘t achieve. 

We validated Req2Test against different industrial 

requirement statements on Automatic Wiper Control 

module. Requirement statements were classified for 

validation, as single line requirements having few 

entities and relations making a test sequence to be 

executed and multiple line requirements having 

multiple entities and actions form a test sequence 

within same domain. The accuracy for multi line 

requirement statements is lower than that of single 

line requirement statements. We found the accuracy of 

such sentences is low because of test coverage should 

include sequences and pre-conditions of multiple 

entities as a single entity, which couldn‘t be retrieved 

by Req2Test. Req2Test Validation results are shown 

in figure 9. 

 

 

Fig. 9. Experimental Results of Req2Test on Industrial 

Requirement statements 

 

VII.   CONCLUSIONS 

In this paper, we presented Req2Test 

methodology and tool to generate functional test cases 

from natural language  

 

(English) functional requirement specification 

document. Req2Test identifies the entities using 

named entity recognition model. The sentence is then 

parsed to extract information which result in triplets in 

the form of subject - predicate/action - object. These 

entities with their actions to be performed were cross 

checked with domain ontology for testability. 

Information regarding the entities that needs to be 

extracted and how depth the graph to be traversed to 

extract knowledge of entities along with their 

attributes,pre-conditions and post-conditions were 

identified. Procedural knowledge for performing tasks 

were extracted from process maps. We have presented 

the accuracy of the tool over industrial project 

requirements. Req2Test has received positive 

feedback in its practical review from test engineers 

and business analysts. Our future research will be 

focusing on improving the accuracy, deployment by 

improving domain knowledge representation and 

identifying and extracting pre and post conditions 

when multiple domain components involve for test 

case generation. 

 

 

Table III. Req2test Positive Test Cases Generated For Requirement Sentence 

No Test case Expected Result 

1 Wiper.Humidity sensor = 0 AND wiper.Drive Motor = On AND Drive Motor.Voltage Range = 9v to 14v Wiper=On 

2 Wiper.Humidity sensor = 0 AND wiper.Drive Motor = Off AND Drive Motor.Voltage Range = 9v to 14v Wiper=On 

3 Wiper.Humidity sensor = 1 AND wiper.Drive Motor = On AND Drive Motor.Voltage Range = 9v to 14v Wiper=On 

4 Wiper.Humidity sensor = 1 AND wiper.Drive Motor = Off AND Drive Motor.Voltage Range = 9v to 14v Wiper=On 

 

Table IV. Req2test Negative Test Cases Generated For Requirement Sentence 

N

o Test Case Expected Result 

1 

Wiper.Humidity sensor <> 0 AND wiper.Drive Motor = On AND Drive Motor.Voltage Range = 9v to 

14v Wiper=Off 

2 

Wiper.Humidity sensor = 0 AND wiper.Drive Motor <> Off AND Drive Motor.Voltage Range = 9v to 

14v Wiper=Off 

3 

Wiper.Humidity sensor = 0 AND wiper.Drive Motor = Off AND Drive Motor.Voltage Range <> 9v to 

14v Wiper=Off 

4 

Wiper.Humidity sensor <> 1 AND wiper.Drive Motor = On AND Drive Motor.Voltage Range = 9v to 

14v Wiper=Off 

5 

Wiper.Humidity sensor = 1 AND wiper.Drive Motor <> Off AND Drive Motor.Voltage Range = 9v to 

14v Wiper=Off 

6 

Wiper.Humidity sensor = 1 AND wiper.Drive Motor = Off AND Drive Motor.Voltage Range <> 9v to 

14v Wiper=Off 

7 

Wiper.Humidity sensor <> 1 AND wiper.Drive Motor <> On AND Drive Motor.Voltage Range = 9v to 

14v Wiper=Off 

8 

Wiper.Humidity sensor = 1 AND wiper.Drive Motor <> Off AND Drive Motor.Voltage Range <> 9v to 

14v Wiper=Off 

9 

Wiper.Humidity sensor <> 1 AND wiper.Drive Motor = Off AND Drive Motor.Voltage Range <> 9v to 

14v Wiper=Off 
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VIII.   APPENDIX 

The following is the dataset processed to 

construct knowledge graph, domain ontology for the 

requirement statement processed in the paper. 

‖Wiper control system play a key role in keeping 

driver safe in times of precipitation. Wiper system has 

seen a change in approach over a period of time from 

traditional wiper system to automated sensor based 

system. Sensors like Humidity, precipitation and 

temperature are used to detect the environment 

conditions and switch on the wiper automatically. 

Wiper system is activated and controlled by Engine 

control unit(ECU) in tandem with Body control unit 

(BCU). Controller area network (CAN) is used as a 

primary form of communication between ECU and 

other components for automated wiper control like 

sensors, micro controllers etc. The motor drive 

primarily depends on the Pulse width modulator 

(PWM) for the drive voltage and control of speed. The 

wiper switch on and off is subjected to various 

conditions like sensor condition of humidity, 

visibility, range of temperatures and vehicle 

conditions as given by the ECU through data CAN 

protocol. Further to the automated switching of wipers 

is checked for the ON and OFF condition of the driver 

motor. The visibility of the vehicle driver is sensed 

through the image sensor and the speed of the wiper 

driver motor is varied by the PWM based on these 

inputs. For every start condition the wiper driver 

motor voltage range is checked, this is done to protect 

from heat and stress conditions of the wiper driver 

motor. The BCM module is coupled with the ECU so 

that vehicle conditions and the wiper play conditions 

are coupled. The ECU sends the signals through the 

data CAN to the BCM module which in turn checks 

the TRUE or FALSE condition of the all prevalent 

condition like sensor inputs, drive voltage, motor 

speed and status, required variation speed parameters 

for the PWM etc. The micro controller works in slave 

condition to the ECU and connected by CAN 

protocol. for the automatic start of wiper, humidity 

sensor condition is checked for 1 or 0, driver motor 

condition if checked for ON or OFF, driver motor 

voltage range is set between 9v to 14v. Driver motor 

over-voltage condition is checked during the running 

condition.‖ 
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