
International Journal of Computer Trends and Technology (IJCTT) – Volume 53 Number 1 November 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 9

Debugging and Finding the Errors in Security

Testing Techniques
1
Dr.S.Kannan,

2
Mr.T.Pushparaj

1
Research Supervisor,

2
Research Scholar,

Madurai Kamaraj University, Madurai

ABSTRACT

Software testing is significant to decrease

mistakes, maintenance and overall software costs.

One of the main problems in software testing part is

how to get an appropriate set of test cases to test a

software system. There is lot of exploration which has

been through in past to improve overall testing

procedure with determined of refining quality of

software in a smallest quantity of time. After

assessing all obtainable testing procedures it has

been found that dissimilar improvement models are

used for dissimilar types of requests and dissimilar

testing techniques are achieved to test the same. In

this paper main testing approaches and methods are

shortly described. There are many methods to

software testing, but active testing of complex

product is basically a process of investigation, not

simply a material of making and following route

method. It is often incredible to find all the mistakes

in the program. This important problem in testing

thus throws open question, as to what would be the

approach that we should accept for testing. Thus, the

assortment of right approach at the right time will

make the software testing competent and effective. In

this paper I have described software testing methods

which are categorized by purpose.

Keywords Software testing techniques, umbrella

activities, Software Testing strategies, Debugging,

Block box testing, White box testing.

I INTRODUTION

Software testing is the highest activity of

assessing and implementing software through a view

to find out mistakes. It is the procedure where the

system necessities and system apparatuses are

exercised and assessed manually or by using

automation tools to find out whether the system is

satisfying the quantified necessities and the

alterations between estimated and actual results are

determined. This paper at a high - level is separated

into two sections. The first section covers improved

testing procedure, which elaborates all stages of the

testing life cycle and the second section covers

testing types.

The first section accentuates the highest

actions, which are Analysis, Development and

Preparation, Implementation and Closure. Where

closure comprises statement and root reason

exploration doings and implementation phase goes

hand in hand with bug classification and tracking.

The software bug life cycle described in the paper in

the coming section highlights the obligatory phases

for bug classification and tracking. The test

preparation phase comprises test case preparation,

test case assortment, test case optimization and test

data preparation which is going to be enlarged later in

this paper. There are lots of obtainable difficult types

like black box testing, white box testing, state created

testing, security testing, look and feel testing,

receiving testing, system testing, alpha and beta

testing, and arrangement based testing, verification

and validation testing. Based on the exploration and

study complete this paper considered all of them

under three high - level testing types, which is

Functional, Performance and Security. The last

segment deals with the assumption, which shows

significance of our elevated software testing

procedure and FPS as a basis for testing methods.

However, maximum people difficult in

noticing and eliminating those faults would it as an

art reasonably than a technique. All bugs stem from a

one simple statement: something assumed to be

correct, was in fact mistaken. Due to this modest

value, truly inexplicable bugs can defy reason,

manufacture debugging software challenging. The

typical behavior of many inexperienced programmers

is to freeze when unexpected problems arise. Without

a denote process to follow, solving problems seems

impossible to them. The maximum apparent response

to such a condition is to kind some random variations

to the code, hoping that it will start occupied again.

The problem is simple: the programmers have no

awareness of how to method debugging. This address

is an effort to appraisal some methods and

implements to assist non-experienced programmers

in debugging. It contains both tips to solve problems

and proposals to avoid bugs from establishing

themselves. Finding a bug is a procedure of combing

what is working until something wrong is found.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 53 Number 1 November 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 10

Therefore, an algorithm good in every

situation should not be expected: there is no silver

bullet for debugging. Experience and ingenuity are

part of the quest for bugs, but also disciplined usage

of tools. The importance of a method of ending errors

and axing them during the life-cycle of a software

product cannot be stressed enough. Testing and

debugging are fundamental parts of programmer's

everyday activity but some people still consider it an

annoying option. When not carried out properly,

consequences can be dreadful. A group associate of

the guided-missile vessel USS Yorktown incorrectly

arrived a zero as information assessment, which

occasioned in a detachment by zero. The mistake

cascaded and ultimately shut depressed the ship's

impulsion system. The ship was dead in water for

numerous hours since a program didn't patterned for

valid input.

The miscarriage answerable for damage of

the orbiter was accredited to a failure of NASA's

system engineering procedure. The method did not

identify the system of capacity to be used on the

project. As a consequence, one of the increase teams

used Imposing measurement while the additional

used the metric system. When strictures from one

component were approved to alternative, during orbit

navigation alteration, no alteration was achieved,

subsequent in the loss of the craft. These two

renowned bugs, as others in history of software, must

create the reader appreciate the position of ending

mistakes in software: it is not just an inescapable

portion in the increase cycle but vital portion of every

software system's life span.

II. SOFTWARE TESTING TECHNIQUES

In this Part the responsiveness is mostly on

the different software testing Approaches. Software

Testing Methods can be parted into two types:-

2.1. Manual testing

It is a slow procedure and difficult where

testing is done statically .It is complete in primary

stage of life cycle. It is also named static testing. It is

complete by analyst, designer and testing team.

Different Manual testing Methods are as follows:

A) Walk through

B) Casual Assessment

C) Procedural Review

D) Assessment

2.2. Automated Testing

In this tester runs the script on the testing

device and testing is complete. Automated testing is

also called dynamic testing.

Automated testing is further categorized into four

types

A) Correctness testing

B) Performance testing

C) Reliability testing

D) Security testing

FIG 1 Further classification of Automated

software Testing

2.3 Performance Testing

Performance Testing include all the stages

as the mainstream testing life cycle as an independent

correction which contain approach such as plan,

enterprise, performance, analysis and reporting. This

testing is directed to appraise the acquiescence of a

system or section with detailed performance

necessity. Assessment of a concert of any software

system comprises resource usage, amount and

incentive reaction time. By concert difficult we can

amount the features of performance of any

submissions.

One of the maximum significant purposes of

performance testing is to sustain a low latency of a

website, high amount and low exploitation.

Characterize two types of presentation testing

approximately of the main areas of performance

testing are:

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 53 Number 1 November 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 11

1) Determining answer period of end to end

connections.

2) Capacity of the interruption of network between

 Client and server.

3) Observing of method possessions which are under

 Numerous loads.

FIG 2 Performance Testing Process

Some of the mutual faults which ensue through

Performance testing is:

1) Ignoring of errors in input.

2) Analysis is too complex.

3) Erroneous analysis.

4) Level of details is inappropriate.

5) Ignore significant factors.

6) Incorrect Performance matrix.

7) Important parameter is overlooked.

8) Approach is not systematic.

There are seven dissimilar stages in performance

testing procedure:

 Phase 1 – Necessity Study

 Phase 2 – Test plan

 Phase 3 – Test Design

 Phase 4 – Scripting

 Phase 5 – Test Implementation

 Phase 6 – Test Analysis

III. DEBUGGING

After numerous days of suggesting, planning

and coding, the programmer lastly has a delightful

portion of code. He accumulates it and runs it.

Despite being the monarchy of creativity and

improbability, a debugging procedure can be

separated into four main steps:

1. Restricting a bug

2. Categorizing a bug

3. Thoughtful a bug

4. Renovating a bug

3.1 Localizing a bug

A characteristic assertiveness of unproven

programmers concerning bugs is to contemplate their

localization an easy mission: they sign their code

does not do what they predictable and they are led

afield by their assurance in significant what their

code must do. This assurance is entirely deceptive

because noticing a bug can be precise difficult. As it

was explained in the introduction, all bugs stem from

the statement that approximately assumed to be right,

was in detail wrong. Here is a very humble example

of a conceivable difficult.

3.2 Classifying a bug

Although the entrance, bugs have often a

mutual background. This permits endeavoring a

relatively abrasive, but infrequently useful,

organization. The list is decided in order of aggregate

exertion (which providentially resources in direction

of decreasing frequency).

1) Syntactical Errors

It should be simply gathered by your

compiler. I say "should" since compilers, besides

being very complicated, can be buggy themselves.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 53 Number 1 November 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 12

FIG 3 Debugging Processes

In some case, it is energetic to recollect that

rather frequently the difficult might not be at the

exact location designated by the compiler error

message.

2) Build Errors

That originates from connecting object _les

which remained not recreated after a modification in

some basses. These difficulties can simply be

avoided by expending tools to drive software

structure, like GNU Make.

3) Basic Semantic Errors

Then include using uninitialized variables,

dead code (code that will not ever be executed) and

problems with variable types. A compiler can

highpoint them to your attention, though it frequently

has to be explicitly requested finished flags (cp. 2.1).

4) Semantic Errors

It comprises using wrong variables or

operators. No tool can catch these difficulties, since

they are syntactically precise declarations, though

reasonably wrong. A test case or a debugger (see par.

2.8) is necessary to spot them.

3.3 Understanding a bug

A bug must be fully assumed previously

struggling to _x it. Trying to _x a bug earlier

thoughtful it totally could end in aggravating even

extra impairment to the code, since the difficult could

alteration form and patent itself anywhere else,

maybe casually. Again, a characteristic example is

retention exploitation: if there is any suspicious

recollection was corrupted through the

implementation of some procedure, all the data

complicated in the algorithm must be patterned

already trying to alteration them. More about

memory exploitation is obtainable.

The subsequent check-list is valuable to promise

a accurate method to the exploration:

 Do not complicate perceiving indications

with finding the real basis of the problem;

 Check if similar faults (especially wrong

assumptions) remained complete elsewhere

in the code;

 Confirm that just a programming error, and

not a more important problem (e.g. an

incorrect algorithm), was found.

3.4 Repairing a bug

The ending step in the debugging procedure

is bug protective. Repairing a bug is additional than

changing code. Any answers must be recognized in

the code and verified correctly. Additional

significant, education from mistakes is an operative

approach: it is good practice substantial a small file

with thorough clarifications about the way the bug

was exposed and modified. A check-list can be a

useful aid.

Several points are worth recording:

 How the bug was observed, to help in

inscription a test case;

 How it was followed down, to give you a

improved perception on the method to select

in similar conditions;

 What type of bug was faced;

 If this bug was encountered often, in order

to set up a approach to avoid it from

frequent;

 If the primary suppositions were unfounded;

this is frequently the highest purpose why

following a bug is so time consuming.

 IV UMBRELLA ACTIVITIES

A procedure is defined as a assortment of

effort doings, actions, and tasks that are achieved

when some work creation is to be formed.

Respectively of these doings, movements, and tasks

reside inside a framework or classical that describes

their association with the procedure and with one

another. The software procedure is characterized

schematically to the each framework movement is

inhabited by a set of software engineering

movements. Each software engineering achievement

is well-defined by a task set that recognizes the work

tasks that are to be concluded, the work products that

will be formed, the quality declaration points that will

be essential, and the milestones that will be used to

designate development.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 53 Number 1 November 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 13

FIG 4 Umbrella Activities

 A mutual process outline for software

engineering defines five framework activities

communication, progress, modeling, construction,

and standing. In intention, a set of umbrella actions

development subsequent and control, risk association,

quality declaration, preparation association, technical

assessments, and others are practical finished the

technique. It necessity note that one important part

of the software process has not yet been convened.

This part named procedure flow designates how the

framework doings and the actions and tasks that

happen within each framework movement are

prepared with deference to arrangement and time.

The existence of a software procedure is no assurance

that software will be distributed on time, that it will

happen the customer„s wants, or that it will exhibit

the practical entrances that will central to long-term

excellence characteristics. Process patterns must be

attached with solid software engineering exercise.

IV SECURITY TESTING TECHNIQUES

4.1 Model-based security testing

Model-based security testing is an MBT

technique that validates software system

requirements associated to security properties. It

relations security properties like preference, integrity,

obtainability, verification, agreement and non-

repudiation with a traditional of the SUT and

identifies whether the calculated or proposed security

assemblies hold in the model. Both MBT and MBST

have in company, that the input thing is a model and

not the SUT. Consequently the concept gap between

the model and the SUT has to be lectured.

In specific, a recognized concern at the

classical level does not repeatedly authorize a

concern at the SUT. Consequently an additional step

is desirable to map an intellectual test case to an

executable test case that can be performed on the

SUT. Possible imperfections essential to be

designated by imperfection hypotheses. In direction

to turn these suppositions into functioning adequacy

standards, they essential to be captured by some form

of categorical defect model. One procedure of defect

is a fault, unstated as the root reason of an incorrect

scheme state (error) or improper system output

(failure). As we show below, susceptibilities can be

understood as faults. In addition to categorical

replicas of (the functionality of) the system under

test, model based security testing typically varieties

use of one or more of the three subsequent models for

test assortment: possessions, susceptibilities, and

aggressors. Models of an attacker encode an

attacker's performance: the data they need, the

dissimilar steps they take, the way they craft

adventures. Attacker replicas can be seen as models

of the situation of a organization under test, and

knowledge about a targeted susceptibility frequently

is left implicit.

4.2 Vulnerabilities as faults

Frequently, as a response to known

applicable pressures, effects are endangered by

categorical security apparatuses. Mechanisms

comprise input purification, Address Space Layout

Randomization (ASLR), encryption of password

files, but also intrusion detection systems and access

control components.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 53 Number 1 November 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 14

 FIG 5 Testing Dimensions

There is a portion of code (the mechanism)

that is invented to defend the benefit; or there is no

such portion of code. Susceptibility is a singular

kind of responsibility with security consequences. It

is distinct as the deficiency of a suitably effective

mechanism. This can mean both

(1) That there is no mechanism at all (e.g.,

no input purification receipts residence which can

lead to buffer over flows or SQL Injections)

(2) That the instrument does not work

appropriately, i.e., is incompletely or inaccurately

executed, for occurrence, if an admission device

strategy is damaged.

4.3 Classification of Security Testing
Numerous publications have been available

that proposition taxonomies and classifications of

current MBT and MBST methods. The authors

entitlement that MBST requirements to be created on

dissimilar types of models and differentiate three

types of input models for security test generation, i.e.,

architectural and functional models, threat, fault and

risk models, as well as weakness and vulnerability

models. Architectural and practical replicas of the

SUT are disturbed with security necessities and their

execution. They focus on the predictable system

performance. Threat, error and risk models focus on

what can go wrong, and distillate on reasons and

significances of system botches, weaknesses or

susceptibilities. Weakness and susceptibility models

describe weaknesses or vulnerabilities by themselves.

V PROPOSED SYSTEM

 Towards authenticate our proposed

framework, we organized a test bed contained of one

server machine and one added machine which hosts

numerous customer apparatuses in the method of

essential machines. For this determination, we

produced four virtual machines on the computer

using VMware Workstation 10.0. All these effective

apparatus were associated to the server and we

connected soft bots on individually of the client

machine as well as on the server side. These proxies

are in detail a portion of code to interconnect and

organize with other managers organized on other

client machine as well as server machine.

 It‟s to be achieved the testing actions; we

used a web-based request for “Employee

Management”. This web-based application was

organized for a company “Cafedunord”. Employee

organization is a shift organization platform to make

a shift roaster for dissimilar employees of an

association. The manager can generate dissimilar

shifts and can assign them to dissimilar employees.

Employees obtain emails about their entire weekly or

monthly working schedule. Manager can also

produce shifts connected work report for employees.

We arranged 50 functional test cases which relate to

dissimilar functionalities delivered by the software

such as login, totaling employee, and allocating tasks

to the employee, formulating shift schedule, making

duty rostrum.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 53 Number 1 November 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 15

Sr. No. Type
Testing

Environment

Effective (fault

detection)

Size of test

pool

Testing

technique

1

Random

Testing
Black Least effective Large

Specification

based

2
Functional

Testing
Black Effective Large

Specification

based

3
Control Flow

Testing
White Effective Medium Code based

4
Data Flow

Testing
White Effective Small Code based

5
Mutation

testing
White Most Effective Small Fault based

6
Regression

testing
White/ Black Most Effective

Based on

Program size
validation

Table 1 Comparison of testing techniques

VI PERFORMANCE ANALYSIS

Some of the specific test cases are attached

as Annex-1 to this statement. The organized test

cases were then changed into test scripts consuming

the Selenium testing tool. The test cases were run on

the Selenium using the “record” selection, for which

Selenium organized the test scripts consequently. We

saved these test scripts for future use. The test scripts,

which were in executable form, were then approved

on to the test manager for circulation to the client

apparatuses for their implementation.

Then designated a web-based application

called “Cafedunord employee organization system”

to test its functionalities for authentication of our

framework. It is essentially a shift organization

submission for the employees. We can generate

dissimilar shifts e.g. day-shift or night-shift and then

we can assign them to dissimilar employees.

Employee obtains their complete weekly or monthly

schedule by email. We have produced 50 test cases in

the establishment from which we particular specific

test cases to perform testing which are designated in

Table 1. Our framework is a allocating functional

testing with multi-agent in which we must a server

and a minor bunch of client machines. In our test bed,

the client machines are not physical machines but are

effective machineries formed using VM-ware

Workstation. For the difficult determination, we use

Selenium computerization testing tool. Selenium is a

collection of tools to industrialize web browser across

many platforms. This testing tool is free and open

source software.

So, we can initial create a circulated

organization and then generate numerous tests cases,

which will be implemented in this disseminated test

environment. Selenium is powerful tool which can

work with dispensing environment and we can also

greatest a test script for a specific test case. When we

have to authenticate a test case, we will run its

correspondent test script. Selenium automation

difficult tool and that are be organized on server and

client machines. Software manager is in fact a part of

code snippet that displays and controls all the work

connected to statement and collaboration between the

system nodes. To initiate with the testing, all of our

test cases are located in the Test Suite Repository.

Test Controller makes the test cases from the

repository. In Test Controller milieu, we use

Selenium to make test scripts for those cases and

managers will allocate those test scripts between the

client machines depending upon the load on

individually device.

Each client apparatus will authenticate the

assessment script using challenging tool and will

deliver the result. Agents can segment those

consequences with respectively other comprehensive

message passing which can generate an immediate

implementation of test cases as well as dependable

and robust testing atmosphere. Every test

consequence is directed to the Test Analyzer. Test

Analyzer appraises the fountain with the test case

position whether the test has remained approved or

unsuccessful. Test Controller can run the failed test

cases again at a later period.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 53 Number 1 November 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 16

Functionality

Test cases

Passed

Failed

Remarks

Employee

Authentication

8

6 2

The logoff functionality was not occupied

correctly.

Registering New

Employee
7 7 3

Alteration password selection on the first login

attempt was not energetic. Also employee's

roles alteration was not being approved out.

Shift Organization

15 14 1

All the test cases approved in this module.

Preparation

19 17 2

Erroneous performance detected while

allocating off days. Similar off day could be

allocated to all the employees.

Produce Reports

7 5 3

Two of the immediate reports in the menu list

did not produce everything.

Table 2 Test Case Execution

Test Cases Quantity Percentage

Passed 50 76%

Failed 8 16%

Deferred (Error in test script) 4 8%

Total 62 100%

Table 3 Passed and Failed Test Case Execution

Fig 6 Test Execution Summary

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 53 Number 1 November 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 17

Fig 7 Execution Time Analysis

VII CONCLUSION

Testing requires remained extensively used

as a method to help engineers develop high-quality

systems and the methods for testing have progressed

from ad hoc activities resources of minor group of

programmers to a prepared correction in software

engineering. The core purpose for execution testing

actions in the dispersed situation was to decrease the

cost, time and determinations generally required to

perform functional testing. We return to the problem

that how to get an appropriate set of test cases to test

a software system and find out mistakes. A portion of

time is consumed on Functional testing and there is

hardly any software which grew crashed due to lack

of functional testing in current past. So this paper

proposed a new accurate mix of testing which must

comprise some concert and security testing checks in

totaling to functionality testing for improved quality

of software. As there is continuously a possibility so

Additional to this paper a exploration and study can

be complete on the software testing to intend a

generic testing framework and methods to support

practical, performance and security testing for object

oriented improvement framework and added

platforms consuming some algorithm with/ without

use of tools in smallest quantity of period.

REFERENCE
[1] Somerville, I, "Software Engineering", 8th edn. , Addison

Wesley, 2006.

[2]K.K Aggarwal, Yogesh Singh, "Software Engineering", 2003.
[3] Testing Computer Software, by C. Kaner, J. Falk, and H.

Nguyen volume 2 Issue 3 March 2015.

[4].N.Divya, M.Sudarson, An Efficient Secure Node Selection

with Trust Based Aware For QOS in Mobile, volume 2 Issue
1 Jan to Feb 2015.

[5]. N.Suresh, An Overview of Object Oriented Software

Testability, volume 1 Issue 1–Feb 2014.
[6]. N.Sendhil Kumar1 D.Dilli Babu2 C.Thulasiram, Secure Data

Aggregation for the Wireless Sensor Networks, volume 2

issue 5 May 2015.
[7]. S.Kokila1 , T. Princess RaichelSoftware as a Service, a

Detailed Study on Challenges and Security Threats, volume 2

issue 12 December 2015.
[8]. Dr.G.J Joyce Mary Asso. Prof,, R.Kokila, Secure Data

Aggregation in Mobile Sensing, volume 2 Issue 3 March

2015.
[9] Khan, Mohd Ehmer, and Farmeena Khan. "A Comparative

Study of White Box, Black Box and Grey Box Testing

Techniques." International Journal of Advanced Computer
Sciences and Applications 3, no. 6 (2012): 12-15 .

[10]Grey Box Testing from Wikipedia available at

http://en.wikipedia.org/wiki/Gray_box_testing.
[11]Swain,Kumar,Santosh.Mohapatra,Durga,Prasad.Mall,Rajib.20

10. Test Case Generation Based on Use case and Sequence

Diagram. International Journal of Software
Engineering(IJSE). Swain et al.3,2(July 2010).

[12]Akhilesh,Babu,Kolluri.K,Tameezuddin.Kalpana,Guddikadula.

2012.Effective Bug Tracking Systems. Theories and
Implementation”, IOSR Journal of Computer Engineering

ISSN:2278-0661 Volume 4,Issue 6(Sept-Oct 2012), pp 31-

36.

[13]Rina,DCSK,KU,Haryana,INDIA,Tyagi,Sanjay.DCSA,KU,Har

yana.2013.AComparative Study Of Performance Testing

Tools. IJARC SSE. 3,2(May 2013).
[14] Karen ,Scarfone.2012. Intro to Information Security Testing

& Assessment.ScarfonecyberSecurityCsr.nist.gov.(7June

2012).
[15] B,Beizer.1990.Software Testing Techniques. Technology

Maturation and Research Strategies Carneige Mellon

University Pittsburg, USA.
[16] B.Beizer .1995.Software Testing Techniques.2006.Van

NostrandReinhold,New York.1990.ISBN.0-442-20672-
0.(31.Oct.2006).

http://www.ijcttjournal.org/
http://en.wikipedia.org/wiki/Gray_box_testing

International Journal of Computer Trends and Technology (IJCTT) – Volume 53 Number 1 November 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 18

[17] A,Bertolino.2001.Chapter 5: Software Testing . IEEE

SWEBOK trial version 1.00.IEEE(May 2001).
[18] Khan,Mohd.Khan,Farmeena.2012.A Comparative Study of

White Box, Black Box and Grey Box Testing

Techniques.2012. International Journal of Advanced
Computer Science and Applications(IJACSA). Vol. 3.No.6.(

2012).

[19] Tarika,Bindia. Computer Programmer
CSE,GNDEC,Ludhiana,Punjab-India.IJRITCC.2,1 .68-

72.(2321-8169).

[20] B,Swarnendu.R,Mall.CSeDeptt,IIT Kgp.2011.Regression Test
Selection Techniques, A Survey-Informatics 35 .2011.

[21] Swain,S.k.Mohapatra,D.P.Mall,R.2010.Terst Case Generation

Based on Use Case and Sequence Diagram. International
journal of Software Engineering (IJSE).3, 2.(July

2010),(289-321).

[22]Thakre,Sheetal.Chavan,savita.Chavan,P.M.]2012.Software
Testing Strategies and Techniques. International Journal of

Emerging Technology and Advanced Engineering .Website:

www.ijetae.com .2, 4.(April 2012), (2250-2459).

[23] An Approach to Cost Effective Regression Testing in Black-

Box Testing Environment - IJCSI International Journal of

Computer Science Issues. 8, 3, 1(May 2011),(1694-0814).
[24] Chauhan,Kumar,Vinod.2014.Smoke Testing- International

Journal of Scientific and Research Publications4,2 (February

2014),(2250-3153).
[25] Gupta,Varuna.Sen,Saxena,Vivek.2013.Software Testing:

Smoke and Sanity- International Journal of Engineering

Research & Technology (IJERT).2,10(October 2013) (2278-

0181).
[26]Liskin,olga.Hermann,christoph.Knauss,Eric.Kurpic,Thomas.R

umpe,Bernhard.Schneida,Kurt.2012.Supporting Acceptance

Testing in Distributed Software Projects with Integrated
Feedback Systems: Experiences and Requirements. IEEE

Seventh International Conference on Global Software

Engineering.(2012).
[27] Yoo, Shin. Harman, mark2012.Regression Testing

Minimization, Selection and Prioritizations.

A Survey. King‟s College London. Centre for Research on
Evolution, Search &Testing. Strand, London, WC2R 2LS,

UK.22,2 (March 2012) (67-

120).http://onlinelibrary.wiley.com/resolve/doi?DOI=10.100
2/stv.430.

[28] Sumalatha, Mary.Raju,G.2013. Object Oriented Test Case

Generation Technique using Genetic Algorithms.
International Journal of Computer Applications (0975-8887).

61, 20 (January 2013).

[29] Ostrand,T,J.Balcer,M, J.1988.The category-partition method

for specifying and generating functional tests.

Communications of the ACM 31 ,6(June 1998) (676-

686).doi>10.1145/62959.62964.
[30] Nirpal, B,Premal.Kale,K,V.2011.Using Genetic Algorithm for

Automated Efficient Software Test Case Generation for Path

Testing. Int. J. Advanced Networking and Applications.(911-
915).02,06 (January 2011).

http://www.ijcttjournal.org/

