
 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 4 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page214

Meticulous Tasks of Various Cryptographic
Techniques in Secure Communications

Dr. P. Ramesh Babu1 D. Nagamalleswara Rao2 Hunde Merga Dugassa 3 Abebe Gemeda4

1Associate Professor, Faculty of Informatics, Wollega University

2Lecturer, Faculty of Informatics, Wollega University
3Head, Faculty of Informatics, Wollega Universit.

 4Dean, College of Engineering & Technology, Wollega University

Abstract - Our main intention of writing this paper is to
provide a understandable knowledge about cryptographic
techniques. This paper deals with various Message
Authentication Codes, Hash functions and encryption
techniques and provides in-depth analysis of these
techniques. This paper also provides a discussion of how
the two related fields of encryption and hash functions are
complementary, not replacement technologies for one
another.

Keywords - Message, Security, Encryption, Hash Function,
Supervisor and Data.

I. INRODUCTION TO HASH FUNCTION AND
DATA INTEGRITY

A hash function is a function that takes a
relatively arbitrary amount of input and
produces an output of fixed size. The properties
of some hash functions can be used to greatly
increase the security of a system supervisor’s
network; when implemented correctly they can
verify the integrity and source of a file,
network packet, or any arbitrary data [16].

To understand the feasibility of using hash
functions to verify integrity and source of
information, one must first examine the
properties and origin of the basic hash function.
The standard hash function serves as a basis for
the discussion of Cryptographic Hash
Functions. There are several hash functions
currently in use today, including MD5 and
SHA1. By examining the history and security
available in each function, the user can
determine which algorithm is best suited for
their application.

Data integrity is a crucial part of any secure
system. By using the message digests
generated by a cryptographic hash function a
system supervisor can detect unauthorized
changes in files. This is especially important
when safeguarding critical system binaries and
sensitive databases. After learning the theory
behind data integrity verification, the system
supervisor is given a brief introduction into
several freely available tools that can be used
immediately for data verification [2]. The tools
mentioned are all based on cryptographic hash
functions and include Tripwire, md5sum and
sha1sum. When used by a knowledgeable
system supervisor, these tools are invaluable in
verifying that a malicious user did not tamper
with important system files.

Hash functions can also be combined with
other standard cryptographic methods to verify
the source of data. When hashing algorithms
are combined with encryption, they produce
special message digests that identify the source
of the data; these special digests are called
Message Authentication Codes. The standard
algorithm currently used today is called
HMAC. The HMAC algorithm provides
verification of the source of data, and also
prevents against attacks such as the replay
attack. Network programmers can use the
HMAC algorithm in their applications today; it
is currently available in the latest version of
Java.

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 4 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page215

II. ANALYSIS OF A HASH FUNCTION

Hash functions are mathematical computations
that take in a relatively arbitrary amount of data
as input and produce an output of fixed size.
The output is always the same when given the
same input. The inputs to a hash function are
typically called messages, and the outputs are
often referred to as message digests. Nearly
any piece of data can be defined as a message,
including character strings, binary files and
TCP packets. An example of a simple hash
function would be the following: Hash function
H accepts messages of any length, and outputs
a fixed length digest of one-bit. H returns 0 as
the message digest if the input has an even
number of characters and returns 1 if the output
has an odd number of characters [17].

All hash functions have the property that it is
impossible to determine the input knowing
only the output. In our example function,
knowing that the output is 1 does not reveal
any information about the input other than it
has an odd number of digits. For example, if an
attacker was given the fact that a message has a
digest of “1”, the original message could have
been “102”, “xqpr3”, or any input of odd
length. The attacker has no way of determining
what the original message was by being given
the digest. This property makes this hash
functions a one way function, meaning that it is
difficult, if not impossible to deduce the input
for a given output.

There are some hash functions which are much
more powerful than the example given above;
they are known as Cryptographic hash
functions. Cryptographic hash functions have
another property that most hash functions do
not; the property that it is very difficult to find
two different messages that produce the same
message digest. Two distinct messages that
result in the same digest are called collisions.

In our example function, it is simple to create
collisions. Our example above could not be
considered a cryptographic hash function
because it would be trivial to construct two
inputs to this hash function that would create
the same output, for example, both the inputs
“101” and “32821” would have an output of 1,
because they both have a length which is odd.
In modern hash functions, it is so difficult to
create collisions that there are no known
efficient methods to produce them.

Since different messages almost always
produce different digests, one can conclude
that if messages digest of a file changes, then
the file itself has changed. This property can be
used to provide data integrity and data
authentication to a system supervisor, as one
will soon see.

III. POPULAR HASH FUNCTIONS

There are two primarily cryptographic hash
functions in use today, MD5 and SHA1.MD5
stands for “Message Digest 5” because it is the
fifth revision of a message digest algorithm.
The early revisions of this algorithm were
published prior to 1989, and the most recent
revision of the algorithm was published in
1991. It has an arbitrary input length and
produces a 128-bit digest.
SHA1 stands for “Secure Hash Algorithm 1”, it
is the first revision of a hash algorithm
developed by the National Security Agency.
The algorithm was first published in 1995.
SHA1 supports messages of any length less
than 264 bits as input, and produces a 160-bit
digest. In the unlikely event that one wishes to
compute the digest of a message larger than 264
bits in length, the simplest solution would be to
divide the large messages into smaller
messages. There are no known weaknesses in
SHA1, and it is generally considered the more
secure of the two algorithms. There are also
variations of SHA1 which produce longer

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 4 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page216

digests, SHA-256, SHA-512. They produce
digests of 256 bits and 512 bits, respectively.
The SHA1 and MD5 algorithms are considered
secure because there are no known techniques
to find collisions, except via brute force. In a
brute force attack random inputs are tried,
storing the results until a collision is found. If
we do not limit ourselves to finding a collision
with a specific message, one can expect to find
a collision within 2n/2 computations, where n
is the number of bits in the digest. This is also
called as birthday attack. This means that an
attacker would need to compute the digests of
approximately 264 messages to find a collision
in the MD5 function, and approximately 280
computations to find a collision in SHA1. Note
that SHA1 may be more secure than MD5, but
it is more costly to compute a message digest
using SHA1 than MD5. If one is expressing
security concerns SHA1 would be the function
of choice, however, if speed is an issue it is
likely that MD5 would result in faster
performance, and would likely still be secure
enough for most applications. In August 2001,
a complex computing grid theorized by IBM
was believed to be able to achieve 13.6 trillion
calculations per second, which would make it
one of the most powerful computers known
(IBM Press Release). Even at this rate,
assuming one computation of a digest per super
computer calculation, it would take over 2800
years to find a collision in SHA1. In the
unlikely event that a collision was ever found,
security minded individuals could just use one
of the SHA algorithms that produce larger
outputs; these algorithms would require an
even greater amount of time to find collisions
in.

IV. DATA INTEGRITY

Since two distinct messages are extremely
unlikely to generate identical message digests,
one can use this property of cryptographic hash
functions to detect when a message has been

altered. If one takes a binary file and computes
a digest of the file, one can record this baseline
digest. In the future, the digest can be
recomputed on the file. If the new digest differs
from the original baseline digest, then one can
be assured that the file has been altered in some
way [3]. Since collisions are extremely
unlikely to occur, if the new digest matches the
original digest, it is extremely likely that the
file has not been altered. Therefore, we see that
the properties of cryptographic hash functions
can be used to verify that files have not been
altered; one can quickly determine file
integrity. Notice though that one cannot
determine specifically what contents of the
message have changed, only that something in
the message has changed. For example, if an
attacker were to alter bank account records, one
could detect the change by seeing a changed
digest, although one would not be able to
determine which records were altered[5,17].

Note that using message digests to verify data
integrity is not possible if an attacker is able to
modify the place at which the digests are
stored. An attacker could simply make an
unauthorized change, compute the new digest
for the file, and modify the digest database to
include the new digest. A system supervisor
would not know the difference (unless a digest
of the database itself was stored in an
independent location unavailable to the
attacker). One should always at a minimum
password protect their digest database, or risk
having their digests corrupted by a malicious
user.

Tools to compute digests

Many tools exist and are readily available to
system supervisors that can be used to quickly
compute the digests of files. Two simple tools
that are included in most Linux distributions
are md5sum and sha1sum. Both programs are
executed by typing md5sum <filename> or

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 4 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page217

sha1sum <filename> at the command prompt
and hitting return. The resulting message digest
is displayed. In the exercise below, one
computes the digest of a file, alters it, and then
re computes the digest. One can then verify
that the digest changes as well [1, 2].

First, a new file is created. In this example, the
file myfile.txt is created with the message
“moo” within (Figure 1).

Figure 1

Now the digest of the file is computed using
md5sum (Figure 2).

Now the file content is altered, “moo” is
changed to “foo” (Figure 3). Note that a file is
considered change with any addition or
deletion of any character, including whitespace
and case changes.

Figure 3

Now rerun the hash function programs on the
same input file to get new digests.
Notice that when the new digest is compared to
the original, it is different (Figure 4).

Remember this only shows you that the file
was changed, not how it was changed. Digests
are certainly not a substitute for backups. There
are many products that will take periodic
digests of the files you specify and compare
them to the previous digests. If they change,
they have the ability to notify the system
supervisor of a problem. This is especially
valuable for verifying the integrity of
commonly used, but rarely changed files, such
as ls or pwd. Such files are common targets of
hackers and root kits (Prosise). One popular
tool that automates the file integrity checking
process is called Tripwire (developed by
Tripwire, Inc.). Tripwire is available as both a
commercial product and free open-source
Linux project. Unfortunately, the configuration
and usage of Tripwire exceeds the scope of this
paper.

Data Authentication

Another application of cryptographic hash
functions is data authentication. Data
authentication is the process of being able to
verify the source of data. With data
authentication, one can distinguish messages
originating from the intended sender and an
attacker. Hash functions alone, unfortunately,
cannot provide data authentication. Since the
hashing functions are freely available, it is
trivial to anyone, including an attacker, to
create a digest for an arbitrary message. If one
is given both a message and a digest, one can
verify the integrity of the message. However, it
does not necessarily mean that it was the
message sent by the original sender. For
example, if an email is sent with a message
digest attached, the recipient could use the
digest to verify the integrity of the message [4].

However, it is possible that an attacker
modified both the message and the digest. This
change would be undetectable to the recipient.
The point is illustrated in the example below:

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 4 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page218

Suppose Customer A sends a message to their
bank, asking them to transfer 10,000 Rupees
from their checking to their savings account.
Attacker A then blocks the transmission of
Customer A’s message, and creates one of their
own stating to transfer 10,0000 Rupees from
Customer A’s checking account into Attacker
A’s account. Attacker A then computes the
appropriate md5 checksum (something similar
to b7ab99c9fc23453f77fb6bfef131bc07) for
the fraudulent message and sends it to the
bank. The bank could then verify that the data
was not modified in transit, because the digest
matches the message sent. However, the
message did not originate from Customer A,
the only one who is authorized to make
transactions from their checking account.

This is a very common attack called forgery. If
the bank simply verified the message digest
matches the message, it can never be assured
that the sender was actually Customer A. One
would like a method by which the authenticity
of the source of data can be verified.
Fortunately, using cryptographic hash
functions and secret key cryptography, this can
be achieved.

Message Authentication Codes

Any time one sends a message masquerading
as another user this is forgery, and as one can
see from the above example, this is a very big
problem. In order to prevent this type of attack,
Message Authentication Codes were
developed. Message authentication codes are
similar in usage to a message digest. By taking
the message and performing some
computations, one can verify the integrity of
the data. Additionally, message authentication
codes are also able to verify the source of data.
Message authentication codes are specially
created message digests that can be created
only by the original sender [18].

In many instances, when two parties
communicate they create a shared secret key
known only to themselves. This shared key is
used to encrypt data during the session. There
are several techniques used to create this
shared key without exposing it to an attacker,
such as the Diffie-Hellman key exchange
protocol.
Unfortunately, the mechanics of such key
exchange algorithms are outside the scope of
this document. If one assuming the two parties
can safely create a secret key, this key can be
used to generate message authentication codes.
Using the simple algorithm below, one can see
how when hash functions and secret keys are
combined, data authentication is achieved.

One simple method would be to append the
secret key to the message prior to performing
the digest. This digest becomes the message
authentication code, and it is sent to the
recipient. In order to verify the source, the
recipient would append the secret key to the
received message and perform the digest [9]. If
the digest is the same as the sent authentication
code, then both the integrity and the source of
the data has been verified; because only the
sender and recipient know the secret key, it is
not possible for an attacker to generate a
successful message authentication code.

V. THE HMAC SCHEME

A popular implementation of message
authentication codes is the HMAC (Hash
Message Authentication Code) scheme.
Although the algorithm described in the above
section seems secure, it is actually susceptible
to several attacks, such as the replay attack.
The standard protocol for creating and
verifying message authentication codes
generated via hash functions has many methods
for dealing with these attacks. This protocol in
use today has come to be known as the HMAC

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 4 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page219

algorithm. The HMAC algorithm is defined in
RFC 2085 and was developed by NIST
researchers in 1997. The use of HMAC is very
common in any system where messages require
authenticity of source. Many secure Internet
protocols use HMAC to provide authenticity of
data, including some variations of IPSec (IP
Security) [13, 15, and 16].

Replay Attacks let down by HMAC

One has already seen that message
authentication codes such as HMAC prevent
data forgery; that is it detects when messages
are sent by anyone other than the original
sender. There is another type of attack that is
particularly worrisome, the replay attack.

An attacker may not be able to successfully
create a message authentication code for a new
message. However, an attacker has likely
viewed previously valid message
authentication codes in transit. Imagine this
scenario:
Attacker A is an Internet merchant selling
books on cryptography. Whenever a purchase
is made, he watches the messages that are sent
to the bank to authorize the bank to transfer
money from the customer’s account into his
own. The attacker has now seen a valid
message (transfer money from his account to
my account) and the associated authentication
code. The attacker can then send this message,
along with its valid authentication code
repeatedly, eventually transferring the
customer’s entire account into his own [11].

HMAC prevents this type of attack by
appending a form of timestamp to each
message. The recipient can then verify that the
message has not been previously received. If it
is truly the case where multiple messages of the
same type are sent, then the new timestamp
will differentiate the messages.

Note that the mathematics behind the HMAC
algorithm is extremely complex and not as
straightforward as presented above. They are
presented above in simpler form for the sake of
simplicity.

VI. ENCRYPTION VS HASH FUNCTION

Many believe the related field of encryption
can be used to provide the same benefits as
hash functions, such as file integrity, because if
someone were able to modify the data it will be
obvious to the person after the file is
unencrypted. Unfortunately, in many cases it is
difficult, if not impossible to see these
corruptions in the file. Suppose the file
contained a random bit string; any change
would not be visible to the user. Digests afford
another luxury that encryption does not, which
is that the verification method can be made
publicly available. If one uses encryption to
perform file integrity checks, only one who
knows the key to decrypting the file can
determine its integrity. Therefore, if one wishes
the integrity of a file to be publicly verifiable,
they must divulge their decryption key, a large
breach of security to say the least. However,
with message digests, the digest can be
publicly distributed, and anyone able to
compute a message digest of the same type can
verify the integrity of the file. This verification
can come independently of the file being
encrypted or not [6, 18, 9].

Hash functions also have another property that
encryption algorithms do not; this property is
known as “transient” effect. What this means is
that past integrity and authentication of data is
always valid. If in the future, a hash function is
proven flawed, then all data that was verified
prior to this discovery of the flaw still
maintains its integrity. However, if in the
future an encryption algorithm is found to be
flawed, then all messages encrypted using that
algorithm can be decrypted. The primarily goal

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 4 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page220

of encryption, data secrecy, is compromised.
Hash functions, on the other hand, maintain
their past integrity [7, 18].

VII. CONCLUSION

Obviously, the properties of cryptographic hash
functions have many applications in the area of
information security, and programs built on top
of cryptographic hash functions have the ability
to help a system supervisor detect changes of
valuable data on his network. They also are
able to prove the originator of messages in a
system. These concepts are particularly
relevant in the growing online world, where
every message sent across the wire can be
worth money, and every file on a server is a
valuable resource. Without safeguards such as
those afforded by hash functions, data would
be extremely vulnerable to attack. Now that the
system supervisor is aware of the issues that
exist, they can make an informed decision
when using and purchasing technologies to
protect data. Every application must be
scrutinized with respect to the integrity and
authentication checks it performs, and it must
use the latest hash functions to guarantee
security. The system supervisor now
understands that simply encrypting data is not
enough, and other precautions must be taken.
Customers and employees demand these
safeguards in our unsure digital world where
our data is constantly coming under attack
from hackers and malicious insiders.

We hope earnestly the paper we presented will
cater the needs of novice researchers and
students who are interested in cryptography
and network security subjects.

VIII. REFERENCES

[1] Eastlake, Motorola, Jones. “RFC 3174 - US Secure Hash Algorithm
1 (SHA1)“, http://www.faqs.org/rfcs/rfc3174.html

[2] Frankel, S. “Internet Draft - The HMAC-SHA-256-128 Algorithm
and Its Use With Ipsec”,

http://www.ietf.org/internet-drafts/draft-ietf-ipsec-ciphsha-256-01.txt

[3] IBM Press Release. “IBM Selected to Build World's Most Powerful
ComputingGrid”, August 2001. http://www-
916.ibm.com/press/prnews.nsf/jan/7613B7AF8EA527D385256AA300
6EC06B

[4] Krawczyk, Bellare, Canetti. “RFC 2104- HMAC: Keyed-Hashing
for Message
Authentication”, http://www.ietf.org/rfc/rfc2104.txt

[5] Lynch, William. “Getting Started with Tripwire (Open Source
Linux Edition)”,
http://www.linuxsecurity.com/feature_stories/feature_story-81.html.

[6] Oehler, Glenn. “RFC 2085 - HMAC-MD5 IP Authentication with
Replay
Prevention”, http://www.cis.ohio-state.edu/cgibin/rfc/rfc2085.html

[7] Palmgren, Keith. “Diffie-Hellman Key Exchange - A Non-
Mathematician's Explanation”,
http://networking.earthweb.com/netsecur/article.php/624441

[8] Prosise, Chris; Shahm Saumil. “Anatomy of a Hack”, January
2001.
http://dotphoto.cnet.com/webbuilding/0-7532-8-4561014-2.html

[9] Rivest, R. “RFC 1321 - The MD5 Message-Digest Algorithm“,
April 1992,
http://www.cis.ohio-state.edu/rfc/rfc1321.txt

[10] RSA Laboratories. “What are MD2, MD4, and MD5?”, Date
Unknown.
http://www.rsasecurity.com/rsalabs/faq/3-6-6.html.

[11] RSA Laboratories. “What is a hash function?”,
http://www.rsasecurity.com/rsalabs/faq/2-1-6.html

[12] RSA Laboratories. “What are Message Authentication Codes”
http://www.rsasecurity.com/rsalabs/faq/2-1-7.html

[13] Sptizner, Lance. “What is MD5, and why do I care”,
http://www.spitzner.net/md5.html

[14] Sun Microsystems. “JavaTM Secure Socket Extension (JSSE)
Reference Guide”,
http://java.sun.com/j2se/1.4.1/docs/guide/security/jsse/JSSERefGuide.
html

[15] Wikipedia. “SHA-1”,
 http://www.wikipedia.org/wiki/SHA-1

[16] Network Security Essentials by William Stallings – Applications
& Standards.

[17] Information Security-Reading room of United States of America.

[18] www.google.com for web resources.

