
International Journal of Computer Trends and Technology (IJCTT) – Volume 46 Number 1- April 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1

Code Readability: A Review of Metrics for
Software Quality
Ankit Pahal*1 , Rajender S. Chillar2

1Student, Department of Computer Science & Application, M.D. University, Rohtak (Haryana)
Address: 1796/22 Azad Nagar, Rohtak-124001, Haryana, India

2Professor, Department of Computer Science & Application, M.D. University, Rohtak (Haryana)
Abstract: Various software metrics evaluate the
complexity of software by using some physical
software characteristics. Readability Metrics is
exceptional amongst the present software complexity
metrics for considering a non-physical software
characteristics i.e. readability. Readability should be
the key quality attributes for program source codes.
The readability of the software is strongly associated
to its maintainability, and is thus the crucial feature
in whole quality of software. More the readable code,
greater the chances of having easier to modify, less
mistakes, more maintainable, easy to reuse, and more
reliable. Readability is used to improve source codes
for future preservation and extensibility. But code
readability is not simply computable with a
deterministic function. In this review paper, we will
study various common readability metrics present in
the literature such as Flesch-Kincaid metric,
Gunning-Fog metric, SMOG index and Automated
Readability Index (ARI) and how to calculate
readability score metrics. Then we will relate the
notion of code readability and examine its relation to
software quality. Lastly, based on this review study,
we will classify challenging issues for the future work
of the code readability.

Keywords: software engineering, code readability,
software quality, code maintainability.

I. INTRODUCTION

Software metrics are a mathematical description
representing the entities of a software programs to
numeric metrics values [1]. Moreover, we take
software metrics tool as a platform which implements
a set of software metrics definitions. It allows
evaluating a software program according to the
metrics by taking the requisite entities from the
software and delivers the corresponding metrics
values. In 1990, Chung and Yung introduced
Readability Metrics [2]. To evaluate the complexity
of software programs, Software firms use the

software metrics for the cost estimation of the
software projects, software reassurance, regulating
the software development, for testing of the
developed software, and software maintenance.
Various software metrics evaluate the complexity of
software by using some physical software
characteristics. We typically classify the software
entities that are used by software metrics for
determining complexity in three categories: length,
data flow, and control flow [2]. Each of the
categories is associated with the physical aspects of
software program. Readability Metrics is exceptional
amongst the present software complexity metrics for
considering a non-physical software characteristics
i.e. readability. These applications of Readability
Metrics are worthy for signifying the further efforts
needed for less readable software programs, and
helps in preserving the source code maintenance [3].

Code readability is the proficiency of software code
which makes it legible and comprehensible even for a
non-technical staff. Usually readability is measured
by the ratio between number of lines of code and
comments which are provided for the
understandability of programmers and the machine
do not understand them. That is, if without looking
for the definitions or implementation of the language
if we can understand the working of the code, the
program is said to be readable. It is undoubtedly
appears that readability is a characteristic related to
reusability, maintainability, modifiability and
robustness. In software maintenance phase, code
readability is very significant. Analyzing the code by
reading is first stage in software maintenance [4].
Therefore the code readability has much significance
in software development cycle [5]. In this paper, we
review the various code readability metrics presents
in the literature and how readability effects on the
development cost and how to increase code
readability according to the metrics.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 46 Number 1- April 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2

II. APPROACHES FOR READABILITY

In this section we will discuss traditional readability
formulas which are namely ARI, SMOG, Gunning’s
Fog Index, Flesch-Kincaid Readability Index and
Coleman-Liau Index. These are simple formulas that
measure code readability on the basis of sentence
length and word count or syllable count found in the
text.

A. The Automated Readability Index (ARI):
Sentence and word difficulty ratios are used
in ARI (automated readability index) [6].
Here word difficulty implies the total
number of letters contained within a word
whereas sentence difficulty implies the total
number of words contained within a
sentence. The syllable count is not reliable.
The equation to compute readability with
ARI is

B. SMOG: G Harry Mclaughlin in 1969

proposed the readability metric named
SMOG [7]. The term SMOG stands for
Simple Measure of Gobbledygook. This
metric evaluates the time (in years) required
by any person to read the text. It is said to be
an improved readability formula when
compared with other existing metrics of that
time.

SMOG = 3 + Square Root of Word Count
C. The Gunning’s Fog Index: This metric was

proposed by Robert Gunning [8]. The FOG
metric value can be calculated by adding the
average sentence length to the percentage of
hard word. And the average sentence length
is calculated by the ratio of words count to
the total number of sentences.

FOG = 0.4 (ASL + PHW)
D. Flesch-Kincaid Readability Index: Flesch-

Kincaid [9] check results specifies the
reading ease of the given code, for a high
value readability is high and for less value
that implies code is hard to read.

E. Coleman-Liau Index: Meri Coleman and

T. L. Liau [10] give another readability
index like ARI however different from all
others to estimate the use of text. This index

emphases on the letters per word however
not on the syllables. The Coleman–Liau
index formula is following:

𝐶𝐶𝐿𝐿𝐼𝐼 = 0.0588𝐿𝐿−0.296𝑆𝑆−15.8
Where L and S are average number of letters
and sentences.

Although these traditional readability formulas have
been widely criticized as being weak indicator as they
do not consider the comprehension skills of the
reader i.e. irrespective of the readers ability to
comprehend the given text snippet, the calculation is
completely based on the text structure. However, due
to the simplicity of readability formulas, these are the
widely used in the literature.

III. REVIEW AND DISCUSSIONS

In 1997, Chung Yung [11] proposed an approach that
assimilates software metrics with the complexity of
code, regarding the readability of the implemented
algorithm. For the assessment of source code of the
program, they proposed four different metrics that
are; the unique number of operators, the unique
number of operands, the number of total operator
occurrences, and the number of total occurrences.
The operators are the signs or groupings of signs
which affect the values or serializing of operands,
and the operands are the constants or variables. The
inspiration is the association of code readability and
software maintainability.

In 2006, Emilio and Valerdi [3] highlighted the role
of code readability on software development cost.
They analyze various software development activities
and found that code readability has a widespread
influence on the cost of software development and is
not affected by the size of software. Furthermore,
they discover the relations between software
readability and domain knowledge of programming.
Their conclusions determine that enhanced
readability results in less reading time which
subsequently means lower costs during every stage of
the life cycle. Contrariwise, lesser readability results
in more time spending on code reading which leads
to higher cost. Increasing the code readability may
improve the probabilities of reusing the code. The
cost of redeveloping may be saved as the readability
of existing code increases.

In 2010, Raymond Buse et al. [1] proposed a
readability tool that calculates readability value.
Relationship between errors or faults and evaluation
with the code readability were studied. They establish

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 46 Number 1- April 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3

a relationship between the size of code and the code
readability as the size of code straightly effects the
code readability; as it is easier to read short code as
compared to large code. To justify the metric some
java codes snippets were selected and the readability
was tested with the proposed metric as well as human
annotators. Readability metric value from their
proposed metric was compared with the results
obtained from the experts. The accuracy of the metric
was found to be 80%.

In 2011, Daryl Posnett et al. [12], argue that Buse
readability scores [1] were not collected from
developers which were given an exact task, however
from students who have no contribution in the code.
More exactly they were not being evaluated on their
aptitude skills to read. Though this, as such, cannot
essentially have influenced the legitimacy of Buse's
scores, it's somewhat imaginable that code readability
means something different to a developer.
Considering this, they specify that readability of code
depends very much on the information containing in
the source code. They proposed a model which
depend on two main constraints size and entropy.
Where entropy is measured from the counts of terms
(tokens or bytes) in addition to the no. of unique
terms and bytes. The more the entropy of the snippet
greater the readable the code is. Up to a given entropy
level, a rise in length of code certainly increase the
readability. The simpler model of code readability
proposed by them is:

In 2011, X Wang et al. [13] specify the role of source
code readability in the development of software
quality. They emphasize on the fact that code
readability is essential also in the later phases of
Software development life cycle mainly in the
maintenance phase. As maintenance phase affects the
most of the software development cost. They asked
some expert programmers to rate the code’s
complexity from open source snippets pertaining on
the commands, statements, keywords, loops etc.
which is then compared with the metric value of their
developed tool which evaluate the readability of
code. The tool proves out to be a really efficient than
the human judgment.

In 2012, P. Sivaprakasam et al. [14] presented a
programed system to enhance code readability in the
program. They argue that blank lines could be added
in source code to improve the code readability and

the points could be located from the inner
documentation. They presented a tool for the
proposed method, which takes java methods itself as
input and returns a readable source code by inserting
blank lines after every valid code blocks. In this way
code readability can be increased and it also helps for
deciding the suitable place for the internal comments.
Experimental results proves that the computerized
insertion of blank line is as effective as blank lines
added by human annotators.

ARI metric for code readability measurement is
specified in [6]. The two characteristics were stated
for ARI (automated readability index) for measuring
the readability of the test snippet. First characteristic
is the sentence difficulty which can be measured by
calculating words per sentence [15]. And second
characteristic is the word difficulty that can be
measured by calculating the letters per word. By
using the formula, the readability of the source code
can be achieved.

SMOG, Simple Measure of Gobbledygook was
suggested in 1969 by G Harry McLaughlin [7].
SMOG is used for computing code readability. This
metric provides an expected level for reading and
comprehending a snippet of code. SMOG results are
measured by adding 3 in square root of the
polysyllable count. It was said to be an improved
readability formula when compared with other
existing metrics of that time.

Robbert Gunning [8] presented another one
readability metric called FOG. To calculate a FOG
metric average length of sentences is added to the
hard word’s percentage. The average length of
sentences can be calculated by dividing no. of words
by the no. of sentences.

IV. CONCLUSION

Various software metrics are used in software
development businesses to evaluate the software
programs complexity for finding the software
maintenance cost. In the paper we reviews the notion
of code readability and study its significance in
software quality and the software maintenance cost.
The metrics of Code Readability have been
outstanding in the present complexity metrics of
source code for considering a non-physical software
characteristics i.e. readability. The applications of
Code Readability metrics suggests the extra efforts
requisite for software systems that are less readable,
and thus provide assistance in retaining the software

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 46 Number 1- April 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 4

systems maintainable. Yet the plentiful metrics and
the complex formulas for the code readability
commonly make it tiresome to relate Readability
Metrics to huge scale software systems. Therefore
various simplified readability metrics were proposed
from time to time. One of our objectives is to review
a readability model that indicates the code readability
and the software systems’ complexity by bearing in
mind the readability difference in various different
employments. Such that, we have a standard metric to
specify the readability of the software code so as to
keep it maintainable, and a benchmark for calculating
the complexity of software program regarding their
readability. There are some elements which make a
program code easy to read, for example appropriate
comments; whereas some others make a program
code difficult to read, for example poorly defined
variables. One of the normally familiar characteristics
which make source code less readable is the very
composite expressions. In such situations, dividing
the highly composite expressions commonly aids in
making the program highly readable. The
applications of Readability Metrics support in
retaining the source code of software programs
readable for the software programs to be maintainable
in the future stages of the software development life-
cycle. Furthermore, we observes that readability
displays an important level of association with
another traditional metrics of software quality, for
example defects etc. Additionally, we discussed how
considering the aspects which affect readability has
tendency to improve the programming practice
relating to this significant aspect of software quality.

REFERENCES

[1]. R. P. L. Buse and W. R. Weimer, “Learning a metric for code
readability”, Software Engineering, IEEE Transactions,
doi:10.1109/tse.2009.70, vol. 36, no. 4, (2010), pp. 546-558.

[2]. C. M. Chung, W. R. Edwards, and M. G. Yang, "Static and
Dynamic Data Flow Metrics," Policy and Information, Vol.
13, No. 1, pp. 91-103, June 2010.

[3]. E. Collar and R. Valerdi, “Role of software readability on
software development cost”, Proceedings of the 21st Forum
on COCOMO and Software Cost Modeling, Herndon, VA,
(2006) October.

[4]. R. Fitzpatrick, “Software quality: definitions and strategic
issues”, Reports, (1996), pp. 1.

[5]. R. Land, “Measurements of software maintainability”,
Proceedings of ARTES Graduate Student Conference,
ARTES, (2002), pp. 1-7.

[6]. “The Automated Readability Index (ARI)”,
http://www.readabilityformulas.com/automatedreadability-
index.php

[7]. “The smog readability formula”,
http://www.readabilityformulas.com/smog-readability-
formula.php

[8]. “The Gunning’s Fog Index (or FOG) Readability Formula”,
http://www.readabilityformulas.com/gunning-fog-
readabilityformula.php

[9]. "Flesch-Kincaid Readability Index"
http://www.mang.canterbury.ac.nz/writing_guide/writing/fles
ch.shtml

[10]. "Coleman-Liau Index"
http://en.wikipedia.org/w/index.php?title=Meri_Coleman&ac
tion=edit&redlink=1

[11]. C. Yung, “Simplified readability metrics”, Information
Systems Working Papers Series, (1997).

[12]. D. Posnett, A. Hindle & P. Devanbu "A Simpler Model of
Software Readability" MSR ’11, Waikiki, Honolulu, USA
Copyright 2011.

[13]. X. Wang, L. Pollock and K. Vijay-Shanker, "Automatic
segmentation of method code into meaningful blocks to
improve readability", Reverse Engineering (WCRE), 2011
18th Working Conference on IEEE, (2011).

[14]. P. Sivaprakasam and V. Sangeetha, "An accurate model of
software code readability", International Journal of
Engineering Research and Technology. ESRSA
Publications,(2012)August, vol. 1, no. 6.

[15]. R. Namani1 and J. Kumar, “A New Metric for Code
Readability”, IOSR Journal of Computer Engineering, vol. 6,
Issue 6, (2012) November-December.

[16]. K. Aggarwal, Y. Singh, and J. Chhabra. An integrated
measure of software maintainability. In Reliability and
Maintainability Symposium, 2002. Proceedings. Annual,
pages 235-241. IEEE, 2002.

[17]. P. Sivaprakasam and V. Sangeetha, “An accurate model of
software code readability” International Journal of
Engineering, vol. 1, no. 6, (2012).

[18]. C. M. Chung, and C. Yung, "Measuring Software
Complexity Considering Both Readability and Size,"
Infomration and Communication, Tamkang Univ., Taiwan.

http://www.ijcttjournal.org/

