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Abstract— We present in this paper a method of 
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I. INTRODUCTION 

Concerning optical distortions, BORN and WOLF 

[1] assert that it is impossible to produce axially 

symmetrical optical systems free of all the primary 

geometric aberrations of SEIDEL (spherical 

aberration, coma, astigmatism, curvature of Field, 

distortion). Fortunately, only the last two affect the 

position and shape of the image. It is therefore 

important to consider these aberrations in optical 

models.  

We will do this for the geometric distortion 

systematized by fig 1. 

 

 

Fig. 1: distorsion 

II. SELECTED MODEL: 

Several studies have been carried out on this subject 

[2], [3], [4]. The model we have chosen is inspired by 

that of GROSKY-TAMBURINO [5]. The solution 

consists in determining the nonlinear correction 

independently of the camera, and the model is 

described by the equations which follow: 

 

 vp+up+vup+up+up=u' 43210 1.1 eq  ²²   

1.2 eq    ²² vq+uq+vuq+uq+uq=v' 43210   

 

Where u and v are the measured coordinates, u' and 

v' the corrected coordinates. We stopped at the order 2 

because a polynomial modeling of the distortion 

higher than the order 2 does not improve the 

performance of our model. The coefficients p0, p1, p2, 

p3, p4, q0, q1, q2, q3 and q4 are determined by 

minimizing the error between the coordinates (u', v') 

and those measured (u, v): 

 

       2 eq ²/¹²² vv'+uu'=vu,C   

 

To minimize this criterion, we derive C (u, v) and 

then equalize to 0, ie: 

 

3.1 eq  0=
u

C




 

3.2 eq  0=
v

C




 

 

We are thus led to solve a system of 10 non-linear 

equations with 10 unknowns. This criterion has been 

applied for different zoom positions of f1 to f5 which 

represent the extreme positions of the focal length. 

III. CHOICE OF POINTS (U, V) FOR THE 

DEVELOPMENT OF THE DISTORTION MODEL: 

We have retained as an observed object a calibrated 

grid constructed with precision, the Squares are 

dimensional. This system makes it possible to know 

precisely the coordinates in pixels of the intersections 

of the rows and the columns which will define the 

retained points (u, v). 

The image being much more distorted at the edges 

than at the center, a distribution of the points for the 

construction of the distortion model has been imposed 

in order to better take into account the characteristics 

of the image under consideration. In fact, we divided 

the image into 4 quadrants in which the points had 

similar and symmetrical features with respect to the 

center of the image. The required points were selected 

and were selected in a single quadrant, reducing the 

area of prospecting by three quarters. In practice, we 

chose two points near the center of the image and the 

other three on its edge. 

 

 

 

IV. RESULTS: 

Once the parameters of the distortion model have 

been determined, we compute the coordinates u 'and v' 

corrected. Figs. 2.1 to 2.3 show that the optical 

distortion becomes more and more important as one 

moves away from the center of the image as well as 



International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 2– January 2017 

ISSN: 2231-2803                     http://www.ijcttjournal.org                                       Page 114 

when the focal length decreases. This distortion can 

reach up to 2 pixels at the periphery of the image. 

 

Fig 2.1 

 

Fig 2.2 

 
Fig 2.3 

V. APPLICATION : 

We have taken for application of our model of 

distortion the improvement of the results of the 

location 3-D in monocular vision 

The location of polyhedral objects in computer 

vision requires a necessary step which is the camera 

calibration. This latter is to establish the relationship 

between the coordinates of a point in the numerated 

image and their 3-D homologue belonging to the 

reference related to the object considered. In 

monocular vision, many techniques in which a 

synthesis was made by [6] [7], use common objects in 

the scene: ellipses, grid ... etc .... with a significant 

number of points. Using a zoom, whose characteristic 

is obviously to determine the focal distance being 

tested, makes these methods outdated 

The method used was developed by [8], uses common 

objects in the scene. It has a direct resolution and uses 

a minimum number of non-redundant information: 5 

points. Using various transformations and changes of 

reference, we determine with very acceptable accuracy 

the position of the source and of the object in the 

scene. 

A. Model of the camera 

The retained model as shown in figure 3, is pinhole. 

It has the advantage of being best suited for writing 

equations and greatly simplifying the calculation. In 

this model we have: 

 

 
 

Fig 3 pinhole model 

 

The mathematical optical axis is the  line passing in 

O1 and C, where C is the orthogonal projection of 

optical center O1 of the image plane. 
The O1z0 axis is carried by the mathematical optical 

axis. 

The O1x0 axis is parallel to the lines of the numerated 

image. 

(x,y,z) coordinates of the point P in the coordinate 

"scene" (A,x,y,z) 

(Xc,Yc): coordinates of the point C in the numerated 

image. 

F: focal distance. 

B. Position of the problem 

We seek to determine the position of the focal point 

and the object relative to the projection plane (retina). 

Our unknown, defined in a reference linked to plane 

image are: 

 

 Focal point position 

 Object location: U, V, W origin of the object, 

and 3 successive rotations 

It is therefore necessary to have 9 independent 

relationships that will give sufficient constraints to 

check this problem. 
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1) Study Subject 

The object of study is a rectangular parallelepiped 

of known dimensions a, b and c, characterized by its 

rectangular face ABEC and an edge AD perpendicular 

to this face. 

On the numerated image of the object, we carried out 

an operation of edge detection [9] [10] followed by a 

polygonal approximation to locate the coordinates 

with a very acceptable accuracy in the numerated 

image of the summits of object: (uA, vA) ... (uE, vE). 

By assumption, projections of segments AB, AC, 

AD and AE should be distinct; any alignment result 

belonging to the source at a plane passing through one 

of the adjacent sides of the peak A and then lead to 

indetermination. 

 

Transformations and changes of reference 

a. Rotation  

The first transformation given by equation (4) is to 

define an intermediate reference (A,x,y) whose origin 

is the projection (uA,vA) and the 2nd axis is collinear 

with the projection of the direction AD, which gives 

us: 
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equ 4 

 

with c  =cos and s =sin 

b. Scaling: 

This 2nd transformation, applied to the coordinates 

of projections, allows to obtain the coordinates of the 

projections of the object points  in a plane parallel to 

that of the retina and passing through the summit. 

Equations (2.1) to (2.5) give the coordinates of points 

A, B, C, D and E in the new reference: 

A:(0, 0, 0)  equ 5.1 

B:(wxB, wyB, 0) equ 5.2 

C:(wxC, wyC, 0) equ 5.3 

D:(0, wyD, 0) equ 5.4 

E:(wxE, wyE, 0)  equ 5.5 

With w: strictly positive unknown designating the 

scaling ratio and yD=L. 

2) Reference change of the source 

The source or the focal point is positioned in the 

retinal plane. Its position is then xS, yS, zS (zS> 0). We 

propose two reference rotations δ et ε which cause the 

source to a Ak axis of a marking (A; i, j, k) to be 

determined.  

In the new system of axes the coordinates of the 

source are: S(0,0,Z) 

The coordinates of the projections A, B, C, D and E 

become (equ (6.1) to (6.5): 

A:(0,0,0)    

 equ 6.1 

B:(wxBc δ ,wyBcε+wxBsδsε,wxBsδcε-wyBsε)

 equ 6.2 

C:(wxCcδ,wyCcε+wxCsδsε,wxCsδcε-wyCsε) 

 equ 6.3 

D:(0,wyDcε,-wyDsε)   

 equ 6.4 

E:(wxEcδ,wyEcε+wxEsδsε,-wyEsε+wxEsδcε) 

 equ 6.5 

with cδ=cosδ, sδ=sinδ,  cε=cosε 

 sε=sinε 

3) Positioning of the parallelepipede 

The object with dimensions a, b and c, is positioned 

in the reference (A, i, j, k) using 2 rotations α and β, 

giving (equ 7.1 to 7.5): 

A:(0,0,0)    

 eq 7.1 

B:(acα,asαcβ,asαsβ)   

 eq 7.2 

C:(-bsα,bcαcβ,bcαsβ)   

 eq 7.3 

D:(0,-cαsβ,cαcβ)    

 eq 7.4 

E:(acα-bsα,asαcβ+bcαcβ,asαsβ+bcαsβ) 

 eq 7.5 

 

with cα=cosα, sα=sinα,  cβ=cosβ 

 sβ=sinβ 

 

4) Resolution 

The above changes have reduced the size of our 

problem to 6 unknowns: 

α and β which reflect the inclination of the object, ε 

and δ which reflect the inclination of the source, Z 

side of the source that represents the position, w: 

scaling ratio. 

Constraints: 

 

β ϵ ]- π,0[-{-π/2}  α ϵ ]- π, π [-{-

π/2,0, π /2} 

ε ϵ ]- π/2, π/2 [-{0} δ ϵ ]- π/2, π/2 [-{0} 

Z>0   w>0 

The only equations that may approximate the 

solution are the alignment constraints between The 

Source S (0,0,Z), each summit of the object P (I, J, K) 

and its projection p (i, j, k ) in the retina plane,  
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namely: SP = λ.Sp which can also be written in 

projection : 

λ = I / i= J / j = (K-Z) / (k-Z). equ 8 

Applying these relationships to each point B, C, D, 

E and their respective projections gives (equ 9.1 to 

9.4): 

9.4equ    
Zcswxswy

Zsbcsas

sswxcwy

cbccas

cwx

bsac
:E

9.3equ                                             
Zswy

Zcc

cwy

cs

0

0
:D

9.2equ      
Zcswxswy

Zsbc
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cwx
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:C

9.1equ       
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5) Analytical solution 

At this stage all our unknowns are now determined 

analytically and we can easily calculate the camera's 

features and the relative position of the object. 

Numerical results and discussions 

In the experiment we considered a rectangular 

object of known size: a = 123mm, b = 115mm, c 

= 129mm. 

Each of the faces of the object is painted with a 

color. On the numerated image of the object, we 

realize the edge detection followed by a polygonal 

approximation. The various data are read coordinates 

u and v (pixels), on the numerated image, of different 

object summits considered and its dimensions a, b and 

c.  

Then for each position of the object, we will vary 

the focal distance between these two extremes noted 

f1 and f5. Table 1 shows the different parameters of 

the localization 

Table 1 : parameters of localization 

     w Z (mm) 

Position 1 

f1 to f5 

55,9 

55,1 

54,7 

52,6 

53,8 

155,4 

154,6 

153,0 

149,1 

154,0 

6,3 

7 

-7,2 

-4,8 

6,9 

44,7 

44,4 

43,7 

38,9 

44,2 

0,74 

1,02 

1,29 

2,05 

2,55 

1662 

1665 

1668 

1676 

1684 

Position 2 

f1 to f5 

63,9 

64,1 

59,1 

40,0 

62,3 

130,0 

128,2 

127,2 

134,4 

124,1 

15,2 

14,8 

-8,5 

26,9 

12,9 

45,5 

41,7 

38,9 

45,2 

38,3 

0,71 

0,97 

1,28 

2,44 

2,53 

1453 

1459 

1464 

1470 

1478 

Position 3 

f1 to f4 

76,8 

74,3 

74,6 

74,8 

113,4 

113 

111,6 

111,9 

13,4 

18,2 

17,7 

17,6 

42,6 

42 

38,2 

39,6 

1,62 

1,16 

0,89 

0,74 

1584 

1581 

1576 

1570 

We shall verify the validity of our results by 

comparing the value c obtained from the equation with 

the value c0 already known. Parameter c does not 

occur explicitly in the calculation 

 
10equ   

w+sεysβcββy

cεZy
=c

DD

D


 

The relative error on this parameter is given by 

equation 

  11equ     
c

cc
=cerr

0

0






 
 

 

 

Table 2 average error on the c parameter 

 
 c calculated 

(mm) 

err(c) % Average(err(c) %) Standard 

deviation 

Position 

1 

124,7 

129,2 

110,2 

110,5 

131,0 

3,3 

7,5 

14,5 

14,3 

1,2 

8,2 5,4 

Position 

2 

131,6 

125,0 

108,8 

129,8 

111,5 

2 

3,1 

15,6 

0,8 

13,5 

7 6,2 

Position 

3 

140,6 

124,2 

120,5 

120,8 

8,9 

3,7 

6,6 

6,3 

6,4 1,9 

Simulation studies conducted by [8] converge to an 

average localization error approaching 8%, which 

largely corresponds to our results. 

We give below (table 3) the new values of the 

control parameter c taking into account the model of 

the optical distortion calculated above. 

Table 3 

 c' calculated (mm) err(c') % errmoy(c') % 

c'0=257 mm 

264,3 

260,9 

255,2 

240,1 

2,8 

1,5 

0,6 

6,5 

2,9 

c'0=139 
129,2 

143,6 

7,5 

3,3 
5,4 

Graphs 1 and 2 show the distribution of the 

parameter c calculated around the known value c = 

129 mm, before and after taking into account our 

model of distortion. We see on graph 2 the very 

significant improvement of 3-D location settings. 
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Graph 1: before taking into account the 

distortion model 

 

 

Graph 2: after taking into account the distortion 

model 

 

Taking into account the geometric distortion, we 

significantly improve the localization results. 

Furthermore, simulation studies [3] have shown that 

excellent results can be obtained by this method if we 

get to a sub-pixel detection (0.1 to 0.2 pixel). For this, 

more complex distortions methods should be 

introduced. 

VI. CONCLUSION 

Our initial objective is the development of a model of 

optical distortion for a camera with variable focal 

length. The results obtained show that the distortions 

can reach up to 2 pixels at the periphery of the image 

for certain positions of the focal length. By taking this 

distortion model into account, we have been able to 

significantly improve the results of 3-D localization of 

polyhedral objects in monocular vision. 

The use of high-resolution cameras combined with 

sub-pixel detection methods of polyhedral object 

vertices as well as more complex distortion models 

will provide highly accurate 3-D localization results. 
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