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Abstract— As with the development of the IT technologies, 
the amount of accumulated data is also increasing. Thus 
the role of data mining comes into picture. Association 
rule mining becomes one of the significant responsibilities 
of descriptive technique which can be defined as 
discovering meaningful patterns from large collection of 
data. The frequent pattern mining algorithms determine 
the frequent patterns from a database. Mining frequent 
itemset is very fundamental part of association rule 
mining. Many algorithms have been proposed from last 
many decades including majors are Apriori, Direct 
Hashing and Pruning, FP-Growth, ECLAT etc. The aim of 
this study is to analyze the existing techniques for mining 
frequent patterns and evaluate the performance of them 
by comparing Apriori and DHP algorithms in terms of 
candidate generation, database and transaction pruning. 
This creates a foundation to develop newer algorithm for 
frequent pattern mining. 
 
Keywords— Association rule, Frequent pattern mining, 
Apriori, DHP, Foundation Implementation Study 

I. INTRODUCTION 
Automated data collection tools and mature database 

technology lead to tremendous amounts of data accumulated 
and/or to be analysed in databases, data warehouses, and other 
information repositories [7]. We are drowning in data, but 
starving for knowledge! What is the solution for this problem? 
I think its Data Mining - Mining interesting knowledge (rules, 
regularities, patterns, constraints) from data in large databases. 
Data mining refers to the use of sophisticated data analysis 
tools to discover previously unknown, valid patterns and 
relationships in large data sets.[1]” 

   
Fig. 1  Data to Information with Data Mining[1] 

 

 
 

Fig. 2  Data Mining – A KDD process[1] 
 

Frequent Patterns are patterns (such as itemsets) that 
appear in a data set frequently:  A set of items, like milk and 
bread, that appear frequently together in a transaction dataset 
is a frequent itemsets. Frequent pattern mining searches for 
recurring relationships in a given data set. Researcher can  
focus on frequent patterns mining like Frequent itemsets from 
the small and/or from the large amount of data, where the data 
are either transactional or relational[7]. So many applications 
are there which we can be considered as frequent pattern 
applications like Supermarket for product placement & special 
promotions, Websearch for which keywords often occur 
together in webpages, Health care for frequent sets of 
symptoms for a disease, Basically works for all data that can 
be represented as a set of examples/objects having certain 
properties like patient / symptoms, movies / ratings, web 
pages / keywords, basket / products etc. Considering Market 
Basket Analysis we can find that Market basket analysis 
might tell a retailer that customers often purchase shampoo 
and conditioner together, so putting both items on promotion 
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at the same time would not create a significant increase in 
profit, while a promotion involving just one of the items 
would likely drive sales of the other.  

Association rule learning is a popular and well researched 
method for discovering interesting relations between variables 
in large databases[6]. It is intended to identify strong rules 
discovered in databases using different measures of 
interestingness. Based on the concept of strong rules[2], 
introduced association rules for discovering regularities 
between products in large-scale transaction data recorded by 
point-of-sale (POS) systems in supermarkets. The volume of 
data is increasing dramatically as the data generated by day-
to-day activities. Therefore, mining association rules from 
massive amount of data in the database is interested for many 
industries which can help in many business decision making 
processes, such as cross-marketing, Basket data analysis, and 
promotion assortment. The problem of association rule mining 
is defined as: Let I = {i1, i2,.....,in} be a set of n binary 
attributes called items. Let D = = {t1, t2,.....,tm} be a set of 
transactions called the database. Each transaction in D has a 
unique transaction ID and contains a subset of the items in I. 
A rule is defined as an implication of the form X==>Ywhere 
X, Y I and X ∩ Y = θ. The sets of items (for short itemsets) 
X and Y are called antecedent (left-hand-side or LHS) and 
consequent (right-hand-side or RHS) of the rule respectively. 
To illustrate the concepts, we use a small example from the 
supermarket domain. The set of items is I = {milk, bread, 
butter, beer}. An example rule for the supermarket could be 
{butter, bread} ==> {milk} meaning that if butter and bread 
are bought, customers also buy milk. In short we summaries 
association rule as given:  Given database of transactions and 
each transaction is a list of items(purchased by a customer in a 
visit) then find  all rules that correlate the presence of one set 
of items with that of another set of item. Example 98% of 
people who purchase tires and auto accessories also get 
automotive services done[2]. 

II. FREQUENT PATTERN MINING ALGORITHMS 
Hundreds of algorithms have been proposed for 

sparse/dense data, many rows/columns, data fits/does not fit in 
memory etc. Among these we can filter out most useful 
methods which we can categorize them as scalable methods 
for mining frequent patterns. Scalable mining methods: Four 
major approaches are: Apriori : Fast Algorithms for Mining 
Association Rules[2], Direct Hashing and Pruning (DHP) : An 
Effective Hash-Based Algorithm for Mining Association 
Rules[3], Frequent pattern growth (FP – Growth) : Mining 
Frequent Patterns without Candidate Generation: A Frequent-
Pattern Tree Approach[4], Vertical data format approach 
(ECLAT): New Algorithms for Fast Discovery of Association 
Rules[5] 

A. Apriori: A Candidate Generation-and-Test Approach 
Apriori is a classic algorithm for frequent itemset mining and 
association rule learning over transactional databases [2]. It 
proceeds by identifying the frequent individual items in the 
database and extending them to larger and larger item sets as 

long as those item sets appear sufficiently often in the 
database. The frequent item sets determined by Apriori can be 
used to determine association rules which highlight general 
trends in the database: this has applications in domains such as 
market basket analysis. 
 

Apriori is designed to operate on databases containing 
transactions (for example, collections of items bought by 
customers, or details of a website frequentation). Each 
transaction is seen as a set of items (an itemset). Given a 
threshold C, the Apriori algorithm identifies the itemsets 
which are subsets of at least C transactions in the database. 
Apriori uses a "bottom up" approach, where frequent subsets 
are extended one item at a time (a step known as candidate 
generation), and groups of candidates are tested against the 
data. The algorithm terminates when no further successful 
extensions are found. Apriori uses breadth-first search and a 
Hash tree structure to count candidate item sets efficiently [2]. 
It generates candidate item sets of length k from item sets of 
length k-1. Then it prunes the candidates which have an 
infrequent sub pattern. According to the downward closure 
lemma, the candidate set contains all frequent k-length item 
sets. After that, it scans the transaction database to determine 
frequent item sets among the candidates. In short, it finds the 
frequent itemsets : the sets of items that have minimum 
support and a subset of a frequent itemset must also be a 
frequent itemset  i.e., if {AB} is a frequent itemset, both {A} 
and {B} should be a frequent itemset. Also iteratively find 
frequent itemsets with cardinality from 1 to k (k-itemset) with 
two step process: Join Step: Ck is generated by joining Lk-

1with itself and Prune Step:  Any (k-1)-itemset that is not 
frequent cannot be a subset of a frequent k-itemset. Apriori 
follows the following method: (i) initially, scan DB once to 
get frequent 1-itemset, (ii) generate length (k+1) candidate 
itemsets from length k frequent itemsets, (iii) test the 
candidates against DB and finally (iv) terminate when no 
frequent or candidate set can be generated. We can note down 
that any subset of large itemset is large therefore to find large 
k-itemset: create candidates by combining large k-1 itemsets, 
delete those that contain any subset that is not large. Example 
of Generating Candidates Let L3={abc, abd, acd, ace, bcd} the 
we can have self-joining: L3*L3 abcd  from abc and abd , acde  
from acd and ace. Also we can have pruning: Pruning: acde is 
removed because ade is not in L3 and  C4 will be {abcd}. 

 
Apriori Algorithm Implementation Summary using java 
sample code: 
Ck: Candidate itemset of size k 
Lk : frequent large itemset of size k 
find_frequent_itemsets(long m_sup) 
{ 
        int k=1;   // Initially k=1 
        min_sup = m_sup; 
        LinkedList<FrequentItem> L; 
        LinkedList<FrequentItem> C=null; 
        L = Find_frequent_1_itemsets();     
        while(L.size() >= 1)// Line No: 2 
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        { 
            C = apriori_gen(L,k);  //Generate new k-itemsets 
candidates 
            C=CandidateSupportCount(C,k); //Find the support of 
all the candidates 
            if(C.size()<=0) 
                break; 
            L=FindLargeItemsets(C); // Take only those with 
support over minsup 
            if(L.size()<=0) 
                break; 
            k++; 
        } 
       aps.txtaResult.setText(aps.txtaResult.getText()+outputstr);  
    } 
 
//Candidate Generation :  
apriori_gen(L,k) 
{ 
        LinkedList<FrequentItem> C = new 
LinkedList<FrequentItem>(); 
        for(int i=0;i<L.size();i++) 
        { 
            for(int j=i+1; j<L.size();j++) 
            { 
             if(IsPosibleInter(L.get(i).itemset, L.get(j).itemset, k-1)) 
                { 
                    int temp = L.get(j).itemset.lastIndexOf(",")+1; 
                    FrequentItem c = new  

FrequentItem(L.get(i).itemset+"," 
  + L.get(j).itemset.substring(temp),0); 

                    if(!Has_Infrequent_Subset(c,L,k)) 
                        C.addLast(c); 
                } 
            } 
        } 
        return C; 
    } 
Considering an example for joining and pruning : Let  L3 = 
{ {1 2 3}, {1 2 4}, {1 3 4}, {1 3 5}, {2 3 4} } After joining  : 
{ {1 2 3 4}, {1 3 4 5} } and After pruning : {1 2 3 4} since {1 
4 5} and {3 4 5} are not in L3. 

Also Apriori algorithm can be modified to improve its 
efficiency (computational complexity) by hashing, removal of 
transactions that do not contain frequent itemsets, sampling of 
the data, partitioning of the data, and mining frequent itemsets 
without generation of candidate itemsets. 

 

B.  The DHP Algorithm (Direct Hashing and Pruning) – 
Improvement approach towards Apriori 

 
DHP can be used for efficient large itemset generation. It 

has two major features: efficient generation for large itemsets 
and effective reduction on transaction database. It uses 
hashing technique. In particular, for the large 2-itemsets, 
where the number of candidate large itemsets generated by 

DHP is, in orders of magnitude, smaller than that of by 
Apriori method[3]. Thus improving the performance 
bottleneck of the whole process. It Uses pruning technique to 
reduce the size of the database progressively[6].  

Hashing is used to reduce the size of the candidate k-
itemsets, i.e., itemsets that are generated from frequent  
itemsets from iteration k-1, Ck, for k>1. For instance, when 
scanning D to generate L1 from the candidate 1-temsets in C1, 
we can at the same time generate all 2-itemsets for each 
transaction, hash (map) them into different buckets of the hash 
table structure and increase the corresponding bucket 
counts[1]. A 2-itemset, which corresponding bucket count is 
below the support threshold, cannot be frequent and thus we 
can remove it from the candidate set C2. In this way we reduce 
the number of candidate 2-itemsets that must be examined to 
obtain L2. It finds the frequent itemsets : the sets of items that 
have minimum support - a subset of a frequent itemset must 
also be a frequent itemset  i.e., if {AB} is a frequent itemset, 
both {A} and {B} should be a frequent itemset.  DHP uses the 
technique due to this which is more powerful than Apriori i.e. 
Candidate large 2-itemsets are huge - DHP trims them using 
hashing and transaction database is huge that one scan per 
iteration is costly - DHP prunes both number of transactions 
and number of items in each transaction after each iteration[6]. 

 
Hash Table Construction 
Consider two items sets, all items are numbered as I1, I2, …In.  
For any pair (x, y), has according to  Hash function bucket # = 
h({x y}) = ((order of x)*10+(order of y)) % 7. Example: Items 
= A, B, C, D, E,  Order  = 1, 2,  3  4, 5,  then H({C, E})= 
(3*10 + 5)% 7 = 0. Thus, {C, E} belong to bucket 0. 
 
How to trim candidate itemsets 
In k-iteration, hash all “appearing”  k+1 itemsets in a 
hashtable, count all the occurrences of an itemset in the 
correspondent bucket. In k+1 iteration, examine each of the 
candidate itemset to see if its correspondent bucket value is 
above the support (necessary condition)[3]. 
 
        
 
 (I) In trasaction  (A, C, D) , a single candidate AC is found in 
C2. Occurrence frequencies of all the items are : a[0] = 1, a[1] 
= 1, a[2] = 0. Since all the values of a[i] are less than k (k=2), 
this transaction is deemed not useful for generating large 3-
itemsets and thus discarded. (II) In transaction(A, B, C, E), 
has four candidate 2-items (AC, BC, BE, CE) found in C2. 
Occurrence frequencies of all the items are : a[0] = 1, a[1] = 2, 
a[2] = 2, a[3] = 2. Since all the values of a[0] are less than k 
(k=2), and remaining are >=2, this transaction will be reduced 
to (B, C, E) and A is thus discarded. 
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Implementation Evaluation Comparison 
 

 

Apriori Result DHP Result 

Transactions/ 
Itemsets Analysis 

No. of 
Rows in  

Database  
Table 

(After Ck) 

K Transactions/ 
Itemsets Analysis 

No. of Rows in  
Database  

Table 
(After Ck) 

A,C,D 
B,C,E 

A,B,C,E 
B,E 

4  - transactions  
considered  
for study 

4  

A,C,D 
B,C,E 

A,B,C,E 
B,E 

4  - transactions  
considered  
for study 

4 

====== C1  ===== 
A| 2 
B| 3 
C| 3 
D| 1 
E| 3 

5 - itemsets  
for C1 4 1 

A| 2 
B| 3 
C| 3 
D| 1 
E| 3 

5 - itemsets  
for C1 4 

====== L1  ===== 
A| 2 
B| 3 
C| 3 
E| 3 

4 - itemsets selected 
for L1 4  

A| 2 
B| 3 
C| 3 
E| 3 

4 - itemsets selected 
for L1 4 

====== C2  ===== 
A,B| 1 
A,C| 2 
A,E| 1 
B,C| 2 
B,E| 3 
C,E| 2 

6 - itemsets  
for C2 4  

A,C| 2 
B,C| 2 
B,E| 3 
C,E| 2 

4 - itemsets  
for C2 2 

====== L2  ===== 
A,C| 2 
B,C| 2 
B,E| 3 
C,E| 2 

4 - itemsets selected 
for L2 4  

A,C| 2 
B,C| 2 
B,E| 3 
C,E| 2 

4 - itemsets selected 
for L2 2 

====== C3  ===== 

B,C,E| 2 1 - itemset  
for C3 4  B,C,E| 2 1 - itemset  

for C3 0 

====== C3  ===== 

B,C,E| 2 1 - itemset  
for L3 4  B,C,E| 2 1 - itemset  

for L3 0 
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 Comparison of Apriori and DHP 
Apriori behaves like - Generate Candidate Set and Perform 
Count Support from Database. While DHP behaves in a 
sequence – Generate candidate set, perform count support 
from the database and make new hash table using database for 
the next stage. 
 
Effective Database Pruning 
Apriori - don’t prune database but prune Ck  by support 
counting on the original database, while DHP -Its more 
efficient support counting can be achieved on pruned 
database[3]  

III. CONCLUSION 
Apriori is best for frequent pattern mining approach for 

newer algorithm development. But after implementation you 
can find some challenges like multiple scans of transaction 
database, huge number of candidates, tedious workload of 
support counting for candidates and we can improve Apriori 
with effective hash-based algorithm for the candidate itemset 
generation i.e. a two phase transaction database pruning  and 
much more efficient ( time & space ) than Apriori algorithm. 
Following implementation statics we can find that for the 
below example 6-itemsets for C2 & 4-transactions for 
database in Apriori while 4-itemsets for C2 & only 2-
transactions for database in DHP. 
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