
International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 320

SQL Query Optimizer-based Query Progress
Indicator

Dr.S.D.Joshi#,Prof.L.V.Patil*,Urmila Mane$.

Department of Information Technology,SKN College of Engineering,Pune,India.

Abstract- Nowadays, widely used Business Intelligence(BI) and
Data Warehousing(DW) technologies are mostly based on long-
running and complex queries. So for this purpose it is important
for users to have information about progress of query execution.
Recently interest in the development of percent-done progress
indicators has been increased. In this paper, we propose a
method that constructs model of a percent-done progress
indicators based on optimizer-based approach. Percent-done
progress indicators basically used as a technique that graphically
shows query execution time that means total and remaining or
degree of completion. Also the proposed technique is based on
postgerSQL database engine. PostgreSQL is a powerful, open
source object-relational database system. Currently Postgres
doesn’t have SQL query progress indicator for long-running
queries. With the help of user-system interaction (interface) the
progress indicator show the progress of SQL queries through
various phases like parsing, analyzing, rewrite, execution. The
graphical user interface show all the queries running on system
and their estimated time completion. The execution phase of
query is critical phase and also the cost of query varies
depending disk read time, type of join used, distribution or
broadcast of table, order in which tables are joined, statistics
information available.

Keywords- ACID, BI, DW, GUI, PostgreSQL, RDBMSs, SQL,
UNIX.

I. INTRODUCTION

Progress indicators have been studied in various contexts
(typical example is file transfer or file download) but there
exists very limited work on this topic in case of data
management context. In day to day life a typical progress
indicator is used to estimate how much of the task has been
completed and when the task will finish. Figure 1 shows an
example of progress indicator which actually we are trying to
develop for database queries.

Fig.1. Typical File Transfer using TeraCopy.

In recent years, there has been increasing interest regarding
development of progress indicators for SQL queries. A
progress indicator in case of database queries is used to

estimate precisely the value of a function that is related to the
progress towards completion of a running query. For this
purpose availability of such indicators can be of great help
both to database administrators and end users. Given the
complexity of any query in decision support or data
warehousing applications, it is common for queries to take
hours or days to terminate. During such cases, these indicators
can greatly aid a user’s understanding of the progress of a
query towards completion and allow the user to plan
accordingly for example, terminate the query and/or change
the query parameters. Also from the point of view of
administrators, unsatisfactory progress of queries may point to
bad plans, poor tuning or inadequate access paths.

Many modern software systems nowadays provide progress
indicators for long-running tasks. These progress indicators
aim to make systems more user-friendly by helping the user
quickly estimate how much of the task has been completed
and when the task will finish. But already existing commercial
RDBMSs provide progress indicator for long running queries
which were not easy to prove.

Percent-done progress indicators basically used as a technique
that graphically shows query execution time that means total
and remaining or degree of completion. Also the progress
indicator in proposed technique is based on PostgerSQL
database engine. PostgreSQL is a powerful, open source
object-relational database system. Currently PostgreSQL
doesn’t have SQL query progress indicator for long-running
queries. With the help of user-system interaction (interface)
the progress indicator show the progress of SQL queries
through various phases like parsing, analyzing, rewrite,
execution. The graphical user interface show all the queries
running on system and their estimated time completion. The
execution phase of query is critical phase and also the cost of
query varies depending disk read time, type of join used,
distribution or broadcast of table, order in which tables are
joined, statistics information available.

Why use PostgreSQL?
PostgreSQL is a powerful, open source object-relational
database system. It has more than 15 years of active
development and a proven architecture that has earned it a
strong reputation for reliability, data integrity, and correctness.
It runs on all major operating systems, including Linux, UNIX
and Windows. It is fully ACID compliant, has full support for
foreign keys, joins, views, triggers, and stored procedures (in
multiple languages). It includes most SQL: 2008 data types. It

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 321

also supports storage of binary large objects, including
pictures, sounds, or video. It has native programming
interfaces for C/C++, Java, .Net, Perl, Python, Ruby, Tcl,
ODBC.
PostgreSQL prides itself in standards compliance. Its SQL
implementation strongly conforms to the ANSI-SQL:2008
standard. It has full support for subqueries (including
subselects in the FROM clause), read-committed and
serializable transaction isolation levels. And while
PostgreSQL has a fully relational system catalog which itself
supports multiple schemas per database, its catalog is also
accessible through the Information Schema as defined in the
SQL standard.
The rest of the paper is organized as follows: Section II
describes related work regarding the topic. Section III
discusses proposed optimizer-based query progress indicator.
Section IV concludes the paper. Finally section V describes
future enhancement regarding this topic.

II. RELATED WORK

Gang Luo [14] proposed technique sufficient for
implementing progress indicator for a large subset of RDBMS
queries. They consider select-project-join queries, assume that
the available join algorithms are hash-join, nested loops join,
and sort-merge join, and those base relations can be accessed
by either table-scans or index-scans. They collect statistics at
some selected points of a query plan and use that improved
and precise information to continuously refine the estimated
cost of given query. Thus they estimate remaining execution
time of query but don’t deal with the percentage of work that
has been completed. Also they do not provide estimates for
some SQL queries which are non-trivial.

The amount of time required for complete execution of query
would be reported to the user at any point during the query’s
execution. But any existing method which will provide such a
measure will subject to the uncertainty arising from
concurrent execution of other queries. Hence, due to this
difficulty [13] focus on this problem of estimating the
percentage remaining or equivalently completed of the given
query, at any point during its execution. This paper also deals
with the problem of reporting a “progress bar” for query
execution. The follow-up work [11] proves that it is
impossible for this proposed progress indicator to provide
robust guarantees for the problem of progress estimation in
the worst case. They provide estimates which are imprecise in
certain cases.

Jeffrey F. Naughton [10] considers the problem of supporting
the progress indicators for a wider class of SQL queries with
more precise estimates. They also discuss and deal with the
need of such a progress indicator which is not easy to prove.
This paper aims to increase the coverage of progress indicator
to large set of queries. They propose techniques to improve
the accuracy of the estimates and also to provide new
functionality that was not covered in previous work.

Before this all the previously proposed query progress
indicators mainly consider each and every query in isolation
and thus they ignore the impact of simultaneously running
queries on each other’s performance. For this purpose Gang
Luo and Jeffrey F. Naughton [8] proposes technique to extend
the single-query progress estimation to enable progress
estimation for multiple queries. They explore a multi-query
progress indicator, which deals with concurrently running
queries and also queries predicted to arrive in the future at the
time of producing its estimates. Also they extend the use of
progress indicators beyond just being a GUI tool by showing
how to apply that multi-query progress indicator to workload
management.

Jiexing Li [1] implements a cost-based approach for query
progress indicator with the help of two proposals which were
proposed simultaneously and independently in [12, 13]. They
summarize some common cases in which both are accurate
and also some cases in which they fail to provide accurate and
reliable estimates. This proposed query progress indicator is
similar to these early progress indicators but without the
uniform speed assumption. The previously proposed progress
indicators make a common simplifying uniform future speed
assumption. Also the developers of these progress indicators
were aware that this assumption could cause errors but they
did not explore how large those errors might be as well as they
did not investigate the feasibility of removing that assumption.

III. OPTIMIZER-BASED QUERY PROGRESS
INDICATOR

A. General Features of Progress Indicators

A Progress indicator for postgresql database will provide
feedback to the user/DBA on.

 How much percentage of query is completed.
 How much percentage and time is required by the

query to run to its completion.
 Current phase of executing query.
 Control over the query execution i.e. either allow the

query to run to its completion or to abort the query.

The proposed system is having the following features To
provide enhanced feedback to the user/DBA on how much of
a SQL query execution has been completed i.e. phase of the
query and how long it will take for query execution.

 Multiple Query Progress Graph Display: The
system is designed to handle and display multiple
queries progress in form of graphs. The graphs can
be disguised by the distinct transaction-id and XY-
Line color. The transaction-id is unique local
transaction-id given by postgresql for every query.

 Estimated Time for Query Completion: The
system gives the estimated time for query
completion. The estimated time is dynamic i.e. it
varies depending on the system load, resource etc.

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 322

 History of Committed Queries: The system is also
featured with query history. It shows both last
committed query and the list of committed queries.

 Dynamic Variation of Y-Axis: The Y axis is the
time axis and is dynamic in nature as query
completion time for different queries is different i.e.
one query may commit early and other may long time
to complete.

 Client-Server Implementation: The system is
implemented in 2 tier architecture i.e. client-server
.From client side user can fire the query and GUI of
query progress will be at client side. At server side
query execution is done by the database.

B. Model and Implementation

The architecture shown below, describes how the different
components of the system interact and there working
collaboratively to achieve the desired functionality of the
system. The system mainly consists of user/dba, postgresql
database, and the GUI which shows the progress of the query
and all these components interact with each other.

Fig.2.General Outline of system.

When user/DBA fires a query then it passes through different
phases i.e. parsing, analyze, rewrite, planning, execution of
postgresql and at every phase it gives the feedback to the
user/dba through the GUI .The feedback is about how much
percent of query is completed , how long it will take for query
to run to its execution. Also the user/DBA can interact with
the GUI during execution by aborting the query in between
and the DBA can see at what percentage of the query it is
aborted. Aborting the query in between will not harm the data
as the kill signal is sent which cause the shutdown of query
execution i.e. data integrity is maintained. Effect is only
reflected into the database when the execution of the query is
complete. GUI also handles the history of committed queries.

 Fig.3. Working of Proposed System.

1) SQL Query Execution Plan-background

SQL divides a query plan for each query [1]. Choosing the
right plan to match the query structure and the properties of
the data is absolutely critical for good performance, so the
system includes a complex planner that tries to select good
plans.

The structure of a query plan is a tree of plan nodes. Nodes at
the bottom level are table scan nodes: they return raw rows
from a table. There are different types of scan nodes for
different table access methods: sequential scans, index scans,
and bitmap index scans. If the query requires joining,
aggregation, sorting, or other operations on the raw rows, then
there will be additional nodes “atop” the scan nodes to
perform these operations. Again, there is usually more than
one possible way to do these operations, so different node
types can appear here too. The output of EXPLAIN has one
line for each node in the plan tree, showing the basic node
type plus the cost estimates that the planner made for the
execution of that plan node. The first line (topmost node) has
the estimated total execution cost for the plan; it is this
number that the planner seeks to minimize.

Here is a trivial example, just to show what the output looks
like.

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

Seq Scan on tenk1 (cost=0.00…458.00, rows=10000,
width=244)

The numbers that are quoted by EXPLAIN are:

 Estimated total cost (If all rows were to be retrieved,
though they might not be: for example, a query with
a LIMIT clause will stop short of paying the total
cost of the Limit plan node’s input node.).

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 323

 Estimated number of rows output by this plan node
(Again, only if executed to completion.).

 Estimated average width (in bytes) of rows output by
this plan node.

The costs are measured in arbitrary units determined by the
planner’s cost parameters. Traditional practice is to measure
the costs in units of disk page fetches; that is, sequential page
cost is conventionally set to 1.0 and the other cost parameters
are set relative to that.

It is important to note that the cost of an upper-level node
includes the cost of all its child nodes. It is also important to
realize that the cost only reflects things that the planner cares
about. In particular, the cost does not consider the time spent
transmitting result rows to the client which could be an
important factor in the true elapsed time; but the planner
ignores it because it cannot change it by altering the plan.
(Every correct plan will output the same row set, we trust.).

Rows output is a little tricky because it is not the number of
rows processed or scanned by the plan node. It is usually less,
reflecting the estimated selectivity of any WHERE-clause
conditions that are being applied at the node. Ideally the top-
level rows estimate will approximate the number of rows
actually returned, updated, or deleted by the query.

2) Mathematical Model

The planner cost and rows output will be used to estimate the
query completion time. The cost estimates are expressed in
arbitrary units, but thing to pay attention to is ratios of actual
time taken by query and estimated planner cost is somewhat
consistent.

The mathematical model for query completion time estimate
would be based on planner cost, rows output and feedback
mechanism.

2.1 Feedback Mechanism

As explained in the previous section, the query plan is divided
into number of nodes (for large query) and each node has
cost/”rows output”. We will extrapolate planner cost and rows
output (and some heuristic, which will be based on testing of
large TPCH queries) of all the nodes in plan to come with
rough query completion estimates, when query start
execution.

As query progresses we will go on refining estimates based on
actual time taken by each node (sometimes also called as
snippet). The current execution node estimates will be then
taken based on above feedback and planner cost/”rows
output”. Please note we are considering that query is going to
take maximum (around 90%) time in execution phase and
very less time in parsing, analyze, rewrite, planning,
optimization phase.

2.2 Plan Tree Walker

The structure of a query plan is a tree of plan nodes. We will
walk the entire plan tree to come up with rough query
estimates at start and then go on refining the estimates based
on above mathematical model. The planner has different types
of nodes based on kind of operation node is going to perform.
For example, there are different types of scan nodes for
different table access methods: sequential scans, index scans,
and bitmap index scans. If the query requires joining,
aggregation, sorting, or other operations on the raw rows, then
there will be additional nodes “atop” the scan nodes to
perform these operations.

We will walk the entire query plan tree to get rough total
query completion estimate at start. During query execution,
execution engine walks through all the plan nodes
sequentially. At each plan node we will use our feedback
model to refine the particular node’s estimate and also total
query completion estimates.

2.3 Percentage Completion
// Calculate the percentage or contribution with
respect to total cost of tree.

// percentage_so_far: stores the accumulated
percentage

// final_cost: total cost of plan tree. Calculated prior
at the end of planning phase.

// value: cost of the current executing node.

// Used “90” based on heuristic – considering the fact
that execution phase going to eat most of // the time

 percentage_so_far = percentage_so_far + (value
* 90) / final_cost;

2.4 Estimate updating based on feedback
Below calculation will be done by execution engine during
each plan node execution.

// Take feedback into account. We have taken actual
time taken by query so far (for estimated // cost so
far) into account to project remaining time query will
probably take

// final_cost is global variable and its updation will
reflect in all the alogorithms

final_cost = final_cost * actual_time_so_far /
total_cost_so_far

current_cost = current_node_cost *
actual_time_so_far / total_cost_so_far

total_cost_so_far = total_cost_so_far + current_cost

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 324

IV. CONCLUSION

The SQL progress indicators for long-running queries are
nowadays becoming a desirable user-interface tool to monitor
progress of executing query in RDBMSs. But all the
previously proposed techniques for supporting the
construction of progress indicators for SQL queries are having
very limited functionality and accuracy. In this paper, we have
implemented a technique based on query optimizer which can
be used for the development of query progress indicator. Also
we have modeled some of the features of the proposed system
along with its general architecture and principle working.

V. FUTURE ENHANCEMENT

As we know that today’s world is completely dependent on
the internet and online tools. We can enhance our idea and can
make our tool as web portal, so that anyone can use it at any
time. We can also send the progress status of the query
through email or the sms to the DBA. So that he can know the
progress of the query without running the GUI and sitting in
front of the machine. So like this possibilities are endless.

REFERENCES

(1) Jiexing Li, Rimma V. Nehme , Jeffrey Naughton; “GSLPI: a
Cost-based Query Progress Indicator”; 2012 IEEE 28th
International Conference on Data Engineering.

(2) Basit Raza, Abdul Mateen, M M Awais and Muhammad Sher;
“Survey on Autonomic Workload Management:
Algorithms,Techniques and Models”; Journal of computing,
volume 3,Issue 7,July 2011, ISSN 2151-9617.

(3) Kristi Morton, Abram Friesen, Magdalena Balazinska, Dan
Grossman; “Estimating the Progress of MapReduce
Pipelines”;ICDE Conference 2010.

(4) Elnaz Zafarani, Mohammad_Reza Feizi_Derakhshi, Hasan Asil,
Amir Asil; “Presenting a New Method for Optimizing Join
Queries Processing in Heterogeneous Distributed Databases”;
2010 Third International Conference on Knowledge Discovery and
Data Mining.

(5) Mario Milicevic, Krunoslav Zubrinic, Ivona Zakarija; “Dynamic
Approach to the Construction of Progress Indicator for a Long
Running SQL Queries”; international journal of computers issue
4, volume 2, 2008.

(6) Mario Milicevic, Krunosla V Zubrinic, Ivona Zakarija; “Adaptive
Progress Indicator for Long Running SQL Queries”; Proceedings
of the 8th WSEAS International Conference on Applied Computer
Science(ACS’08).

(7) Chaitanya Mishra, Nick Koudas; “A Lightweight Online
Framework For Query Progress Indicators”; 2007 IEEE.

(8) Gang Luo , Jeffrey F. Naughton , and Philip S. Yu;” Multi-query
SQL Progress Indicators”; Y. Ioannidis et al. (Eds.): EDBT 2006,
LNCS 3896, pp. 921 – 941, 2006, Springer-Verlag Berlin
Heidelberg 2006.

(9) Christian M. Garcia-Arellano, Sam S. Lightstone, Guy M.
Lohman, Volker Markl, and Adam J. Storm; “Autonomic Features
of the IBM DB2 Universal Database for Linux, Unix, and
Windows”; IEEE Transactions on systems, MAN, And
Cybernetics Part C:Applications And Reviews, Vol.36,No.3, May
2006.

(10) Gang Luo, Jeffrey F, Naughton, Curt J. Ellmann, Michael W.
Watzke; “Increasing the Accuracy and Coverage of SQL Progress

Indicators”; Proceedings of the 21st International Conference on
Data Engineering (ICDE 2005).

(11) S. Chaudhuri, R. Kaushik, and R. Ramamurthy, “When can we
trust progress estimators for SQL queries?” in SIGMOD, 2005.

(12) DB2, “IBM DB2 query monitor for z/OS,”
ftp://ftp.software.ibm.com/software/data/db2imstools/whitepapers/
db2querymon-wp05.pdf, 2005.

(13) Suraji Chaudhuri, Vivek Narasayya, Ravishankar Ramamurthy;
“Estimating Progress of Execution for SQL Queries”; SIGMOD
2004, June 13–18, 2004, Paris, France, 2004 ACM.

(14) Gang Luo , Jeffrey F. Naughton , Curt J. Ellmann , Michael W.
Watzke; “Toward a Progress Indicator for Database Queries”;
ACM SIGMOD 2004, June 13–18, 2004, Paris, France,2004
ACM.

(15) Chaitanya Mishra, Nick Koudas; “A Lightweight Online
Framework For Query Progress Indicators”; 2002 ACM.

