
International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 219

Performance and Dependency Analysis of Data in
Distributed Systems

Anitha.G.S#1, Sivagami.V.M*2
1 PG Scholar, 2Associate Professor

Department of Information technology,
Sri Venkateswara College of Engineering,
Sriperumbudur – 602105, Chennai, INDIA.

Abstract— Atomic Broadcast is important in fault-tolerant
distributed computing. It ensures that messages broadcast by
different processes are delivered to all destinations in same order.
Token circulation is one of the important ordering mechanisms
in atomic broadcast. A single proposal is contained in the token.
The proposal contains a batch of messages to be ordered and a
decision on a batch can be taken at the earliest f (fault)
communication steps after the batch is proposed. In the existing
system, token based atomic broadcast algorithm relay on the
group membership service. This algorithm helps in ordering but
it does not tolerate the failure and also a wrong suspicion can
lead to two costly membership operations namely addition and
removal of process. To solve this problem, token-based atomic
broadcast algorithm that uses an unreliable failure detector
instead of a group membership service is used .It is efficiently
implemented by combining a failure detector and a token-based
mechanism. Overhead of a wrong failure suspicion is low when
compared to group membership service. The performance of this
algorithm is evaluated in both local and wide area networks. The
new token-based algorithm provides the better performance of
the other algorithms in most small-system settings.
.

Keywords— Atomic Broadcast, Fault tolerance, Token

I. INTRODUCTION

Grid computing is defined as applying the resources of
many computers in a network to a single problem at the same
time. Fault-tolerance is an important issue in computational
grid. Generally faults occur when a grid resource is unable to
complete its job in the given deadline. Fault-tolerance is the
property that enables a system to continue operating properly
in the event of the failure of some of its components. If its
operating quality decreases at all, the decrease is proportional
to the severity of the failure, as compared to a natively-
designed system in which even a small failure can cause total
breakdown. Fault-tolerance is particularly sought-after in
high-availability or life-critical systems. Atomic Broadcast is
important in fault-tolerant distributed computing. It is defined
by four properties namely Validity, Uniform agreement,
Uniform integrity, Uniform total order. Token circulation is
one of the important ordering mechanisms in atomic broadcast.
A single proposal is contained in the token. The proposal
contains a batch of messages to be ordered and a decision on a

batch can be taken at the earliest f(fault) communication steps
after the batch is proposed. In most traditional token-based
algorithms, processes are organized in a logical ring and, for
token transmission, communicate only with their immediate
predecessor and successor (except during changes in the
composition of the ring).Section II presents the system
model which explains about atomic broadcast and problem
definition. Section III explains about Token based algorithm
and section IV explains about Failure detector.

II. EXISTING SYSTEM
State machine replication[6], is a well known approach

for rendering services to fault tolerant. The idea is to fully
replicate the service state on several servers and execute every
client command in every non-faulty server in the same order.
It achieves strong consistency by regulating how client
commands must be propagated to and executed by the replicas.
Limitation here is an overhead in service response time. Ring
Paxos [2], which is a high throughput atomic broadcast
protocol is used for fault tolerance. The idea is to replicate a
service so that the failure of one or more replicas does not
prevent the operational replicas from executing service
requests. Limitation is Lost messages have a negative impact
on Ring Paxos, as they result in retransmissions.

Leader follower replication technique [7], which is used in
The low latency fault tolerance (LLFT) system, provides fault
tolerance for distributed applications. The LLFT system
achieves low latency message delivery during normal
operation and low latency reconfiguration and recovery when
a fault occurs. Mutual distributed algorithm on a token ring
[4], is based on the token ring approach and allows
simultaneous existence of several tokens in the logical ring of
the network. Each process generates a unique token and sends
it as request to enter the critical section that travels along the
ring. The process can only enter the critical section if it gets
back its own token. Drawback is, it does not work well in case
of lost tokens.

III. PROPOSED SYSTEM
We consider an asynchronous system of n processes p0...

pn−1. The processes communicate by message passing over
reliable channels and at most f processes may fail by crashing.
A process that never crashes is said to be correct, otherwise it

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 220

is faulty. The system is augmented with reliable failure
detectors.

A. System Architecture

\

Fig 1.System architecture

B. Atomic Broadcast
Atomic broadcast or total order broadcast is a broadcasting

messaging protocol that ensures that messages are received
reliably and in the same order by all participants. This
problem is usually considered in environments where
participants can fail, for example, by crashing. Participants
who never fail are called correct, the others are faulty. The
following properties are usually required from an atomic
broadcast protocol.

 Validity- If a correct process p broadcasts a message
m, then it eventually a delivers m,

 Uniform Agreement- If a process delivers m, then

all correct processes eventually deliver m,

 Uniform Integrity- For any message m, every
process p delivers m at most once and only if m was
previously a broadcast

 Uniform total order- If some process, correct or
faulty, delivers m before m0, then every process
delivers m0 only after it has delivered m.

C. Problem Defnition
In this paper, Atomic Broadcast or Total Order

Broadcast problem is focused. A Total Order Broadcast
ensures that processes in a distributed system deliver
messages in the same order, which is essential for
implementing services that require coherence between
processes such as distributed databases or collaborative
edition. This problem can be defined by four properties, as
presented below:

Validity - If a correct process (a process is called Correct
only if it does not crash during the entire execution, although
even a correct process can be incorrectly suspected of
crashing) broadcasts a message m to a list of processes, then
some correct process in eventually delivers m to the
application.
.
Agreement - If a correct process delivers a message m, then
all correct processes in eventually deliver m.

Integrity - For any message m, every correct process p
delivers m at most once and only if (1) m was previously
broadcast by sender(m) and (2) p is a process in the set .

D. Consensus Problem

 Consensus is defined by the primitives propose(v)
and decide(v), where v is an arbitrary value; atomic broadcast
is defined by the primitives broadcast(m) and
deliver(m),where m is a message.Consensus guarantees that (i)
if a process decides v then some process proposed v; (ii) no
two processes decide different values; and (iii) if one (or more)
correct process proposes a value then eventually some value is
decided by all correct processes. Atomic broadcast guarantees
that (i) if a process delivers m, then all correct processes
deliver m; (ii) no two processes deliver any two messages in
different orders; and (iii) if a correct process broadcasts m,
then all correct processes deliver m.

E. Group membership Vs Failure detector

 A group membership service provides consistent
membership information to all the members of a group. Its
main feature is to remove processes that are suspected to have
crashed. In contrast, an unreliable failure detector, e.g., _S,
does not provide consistent information about the failure
status of processes. For example, it can tell to process p that r
has crashed, while telling at the same time to process q that r
is alive. Both mechanisms can make mistakes, e.g., by
incorrectly suspecting correct processes. However, the cost of
a wrong failure suspicion is higher when using a group
membership service than when using failure detectors. This is
because the group membership service removes suspected
processes from the group, a costly operation. This removal is
absolutely necessary for the atomic broadcast algorithm that
relies on the membership service: the notification of the
removal allows the atomic broadcast algorithm to avoid being
blocked. There is no such removal of suspected processes with
a failure detector.

 Moreover, with a group membership service, the
removal of a process is usually followed by the addition of
another (or the same) process, in order to keep the same
replication degree. So, with a group membership service, a
wrong suspicion leads to two costly membership operations:
removal of a process followed by the addition of another
process. In an environment where wrong failure suspicions are

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 221

frequent, 2 algorithms based on failure detectors thus have
advantages over algorithms based on a group membership
service. The cost difference has been experimentally evaluated
in the context of two specific (not token based) atomic
broadcast algorithm. Atomic broadcast algorithms based on a
failure detector have another important advantage over
algorithms based on group membership: they can be used to
implement the group membership service. Indeed, since a
(primary partition) group membership service orders views, it
seems intuitive to solve group membership using atomic
broadcast: this leads to a much simpler protocol stack than
implementing atomic broadcast using group membership.
However, this is not possible if atomic broadcast relies on
group membership.

IV. TOKEN BASED ALGORITHM
A. Token based algorithm

In token-based algorithms, processes are organized in
a logical ring and, for token transmission they communicate
only with their immediate predecessor and successor. An
algorithm is said to be token-based only if 1) processes are
organized in a logical ring, 2) each process must have failure
detector module FDi that provides information only about its
immediate predecessor and 3) each process only sends tokens
to and receives tokens from its f predecessors and successors,
where f is the number of tolerated failures.

In the token based atomic broadcast algorithm, the
token transports (i) sets of messages and (ii) sequences of
messages. More precisely, the token carries the following
information: (round, proposalSeq, votes, adeliv,
nextSet).Messages in the sequence proposalSeq are delivered
as soon as a sufficient number of consecutive “votes” have
been collected. The field adeliv is the set of all consensus
decisions that the token is aware of (i.e., a set of pairs
associating a consensus number to a sequence of messages).
When a process receives the token, it can therefore, if needed,
catch up with the message deliveries performed by other
processes. Finally, while the token accumulates votes for
proposalSeq, it simultaneously collects in nextSet the
messages that have been abroadcast, but not adelivered yet.
The set nextSet grows as the token circulates. Whenever
messages in proposalSeq can be delivered, nextSet is used as
the proposal for the next decision.

B.Token Circulation

In order to avoid the loss of the token due to crashes,
process pi sends the token to its f + 1 successors in the ring,
i.e., to pi+1, . . . , pi+f+1.6 Furthermore, when awaiting the
token, process pi waits to get the token from pi−1, unless it
suspects pi−1. If pi suspects pi−1, it accepts the token from
any of its predecessors. Finally, while the token accumulates
votes for proposalSeq, it simultaneously collects in nextSet the
messages broadcast atomically. The set nextSet grows as the
token circulates. Whenever messages in proposalSeq can be
delivered, next Set is used as the “proposals” for the next
decision.

C.Fault tolerance for token based synchronization
Synchronization primitives based on a privilege associated

with a token provide a simple method to ensure safety
properties in a distributed system. For example, in a
distributed protocol for mutual exclusion it is assumed that the
right to enter the critical section is a property associated with
the token. In other words, only the node in possession of the
token may enter the critical section. Similarly, conditional
synchronization may associate the property of signaling a wait
condition with a token, i.e., if a node receives a token, it may
wake up the first waiter suspended on the synchronization
object.

In a decentralized approach based upon token

passing, requests are collected in a distributed queue. New
requests are sent either directly to the tail of this queue or will
be forwarded along intermediate nodes before reaching the tail
and being appended to this queue. During request forwarding,
intermediate nodes perform path compression to log the
requester as the new tail of the distributed queue, i.e., later
requests will be sent directly to this last requester. On the
average, path compression results in an overhead of
O(logn)messages per request for nodes. These protocols
assume point-to-point communication (no broadcast necessary)
and do not require any centralized service, which enhances the
scalability of the approach. A fault-tolerant token-based
synchronization protocol should preserve the properties of the
base protocol, i.e., instead of broadcasts or centralized
services, it should rely on point-to-point communication and
decentralized control. Several issues have to be addressed in
this context:

 Fault detection
 Collection of fault correction information
 Election of a fault handling node
 Fault recovery
 False alarm recovery

V.FAILURE DETECTOR
Atomic broadcast algorithms based on a failure

detector have important advantage. They can be used to
implement the group membership service Failure-detector
based algorithms have advantages over group-membership
based algorithms, in case of wrong failure suspicions, and
possibly also in the case of real crashes. The failure detector
module of a process pi only needs to give information about
the state of pi-1.Failure detector is implemented with the help
of logical ring structure. The eventual perfect failure detector
P is defined by the following properties:

i. Strong completeness- Eventually, every process that

crashes is permanently suspected by every correct
process

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 222

ii. Eventual strong accuracy-There is a time after
which correct processes are not suspected by any
correct process.

For every process pi, R ensures the following properties:

 Completeness: If pi-1 crashes and pi is correct, then pi-

1 is eventually permanently suspected by pi,
 Accuracy: If pi-1 and pi are correct, there is a time t

after which pi-1 is never suspected by pi.

A. Token based consensus using failure detector
Consensus is achieved by passing a token between the

different processes. The token contains information regarding
the current proposal. The token is passed between the
processes on the logical ring p0; p1; . . . ; pn-1.To avoid the
loss of the token due to crashes, process pi sends the token to
its f + 1 successors in the ring,pi+1; . . . ; pi+f+1.The algorithm
is expressed as a sequence of rounds. In each round single
process sends its token.

B. Token based atomic broadcast using failure detector
It deals about the transformation of the token-based

consensus algorithm into an atomic broadcast algorithm .
Even though the consensus algorithm is simpler than the
atomic broadcast algorithm, a two-step presentation makes it
easier to understand the atomic broadcast algorithm. Note also
that it is well known how to solve atomic broadcast by
reduction to consensus. However, the reduction, which
transforms atomic broadcast into a sequence of consensus,
yields an inefficient algorithm here. The reduction would lead
to multiple instances of consensus, with one token per
consensus instance. A variation of the algorithm that follows
is presented. The algorithm presented here is easier to
understand, with processes that send regular messages and
tokens .To be correct, the atomic broadcast algorithm requires
the failure detector R, a number of processes n>f(f+1)+1, and
a vote threshold at f +1 in order to decide as was the case in
the consensus algorithm above.

VI. EXPERIMENTAL RESULTS
This work is implemented using GridSim toolkit which

provides a comprehensive facility for simulation of different
classes of heterogeneous resources, users, applications,
resource brokers, and schedulers. It can be used to simulate
application schedulers for single or multiple administrative
domains distributed computing systems such as clusters and
Grids. Application schedulers in the Grid environment, called
resource brokers, perform resource discovery, selection, and
aggregation of a diverse set of distributed resources for an
individual user. This means that each user has his or her own
private resource broker and hence it can be targeted to
optimize for the requirements and objectives of its owner.
Steps for implementation:

 Configure the grid using config Grid.

 Specify the number of nodes to be entered.

 Deployment of node is done.

 Specify the source.

 Specify the destination to which the packet is to be
routed.

 A Shortest path is created between source and

Destination.

 In case of packet loss or route failure, make any one
of the intermediate node between source and
destination to Sleep.

 Specify the Sleep node.

 Another shortest path is created for the same source

and destination.

Fig 2.Topology generation

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 223

Fig 3.Deployment of nodes

Fig 4.Source node specification

Fig 5.Destination node specification

Fig 6.Sleep node specification

VII. CONCLUSION
Token-based atomic broadcast algorithms are more

efficient in terms of throughput than other atomic
broadcast algorithms; the token can be used to reduce
network contention. However, all published token-based
algorithms rely on a group membership Service none of
them use unreliable failure detectors directly. This paper
presents the first token-based atomic broadcast algorithm
that solely relies on a failure detector. Such an algorithm
has the advantage of tolerating failures directly, instead of
relying on a membership service to exclude crashed
processes .Thus, failure-detector based algorithms have
advantages over group-membership-based algorithms, in
case of wrong failure suspicions, and possibly also in the
case of real crashes.

 In future, dynamic routing can be deployed in
distributed system by using route recovery. Fault
tolerance can be improved by means of check pointing
and replication.

.

REFERENCES
[1] Rachid Guerraoui, Ron R. Levy, and Bastian Pochon,

“Throughput Optimal Total Order Broadcast for Cluster
Environments” ACM Transactions on Computer Systems, Vol. 28,
No. 2, Article 5, Publication date: July 2010.

[2] I. S. Jacobs and C. P. Bean, “Fine particles, thin films and
exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H.
Suhl, Eds. New York: Academic, 1963, pp. 271–350.

[3] Parisa Jalili Marandi et.al, “Ring Paxos: A High-Throughput
Atomic Broadcast Protocol” in Dependable Systems and
Networks, pp. 527-536, 2010K. Elissa, “Title of paper if known,”
unpublished.

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 224

[4] Luiz Angelo Steffenel et.al, “Total Order Broadcast on Pervasive
System”, ACM Transactions on Distributed systems,
SAC’08,2008

[5] Chao-Chin Wu and Ren-Yi Sun, “An integrated security-aware job
scheduling strategy for large-scale computational grids”,
Department of Computer Science and Information Engineering,
National Changhua University of Education, Changhua City 500,
Taiwan.

[6] P. Urba´n, I. Shnayderman, and A. Schiper, “Comparison of
Failure Detectors and Group Membership: Performance Study of
two Atomic Broadcast Algorithms,” Proc. Int’l Conf. Dependable
Systems and Networks (DSN), pp. 645-654, June 2003.

[7] Marco Primi et.al, “High Performance State-Machine Replication”
in Dependable Systems and Networks - DSN, pp. 454-465, 2011.

[8] Wenbing Zhaoet.al,“ The Low Latency Fault Tolerance
System” Journal:Computing Research Repository - CORR , vol.
abs/1004.1, 2010.

[9] J.M. Chang and N. Maxemchuck, “Reliable Broadcast
Protocols,”ACM Trans. Computer Systems, vol. 2, no. 3,
pp. 251-273, Aug. 1984.

[10] F.Cristian, S. Mishra, and G. Alvarez, “High-
PerformanceAsynchronous Atomic Broadcast,”Distributed System
Eng. J.,vol. 4, no. 2, pp. 109-128, June 1997.

