
International Journal of Computer Trends and Technology- volume4Issue2- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 176

Omprakash Deshmukh Mandakini Kaushik,
 M.Tech.(SE) IIIT Gwalior M.Tech.(CSE) Scholar, Dept. of CSE,,

 System Analyst, Netcracker Rungta College of Engg. & Tech.,
#5&43 HiTec City,Hyderabad, AP - 500081. Bhilai – 490 024(C.G.), INDIA

Abstract— In recent years many Software verification and
validation techniques are introduced. This curriculum paper
provides an overview needed to understand in-depth
curriculum modules in the verification and validation area.
This paper also addresses planning considerations for V&V
processes, including the selection and integration of V&V
techniques throughout the software evolution process. Our
work identified, along with their possible V&V objectives.
The V&V process consists of numerous techniques and
tools, often used in combination with one another. Due to
the large number of V&V approaches in use, this paper
cannot address every technique. Instead, it will analyze five
categories of V&V approaches. These are:
• Technical reviews,
• Software testing,
• Proof of correctness (program verification),
• Simulation and prototyping, and
• Requirements tracing.
In the development of a software system, it is important to
be able to determine if the system meets specifications and
if its outputs are correct. This is the process of verification
and validation (V & V) and its planning must start early in
the development life cycle. Both aspects are necessary as a
system meeting its specifications does not necessary mean it
is technically correct and vice versa. There are many
different V & V techniques which are applicable at different
stages of the development life cycle. Thorough V & V does
not prove that the system is safe or dependable, and there is
always a limit to how much testing is enough testing.
Therefore, extreme care should be taken in the development
of software systems to make sure that the right amount of
time is spent on V & V [7].
Software quality is achieved through the application of
development techniques and the use of verification
procedures throughout the development process Careful
consideration of specific quality attributes and validation
requirements leads to the selection of a balanced
collection of review, analysis, and testing techniques for
use throughout the life cycle. This paper surveys current
verification, validation, and testing approaches and
discusses their strengths, weaknesses, and life-cycle usage.

In conjunction with these, the Paper describes automated
tools used to implement validation, verification, and testing.
In the discussion of new research thrusts, emphasis is given
to the continued need to develop a stronger theoretical basis
for testing and the need to employ combinations of tools and
techniques that may vary over each application [7].

Keywords- verification and validation, system Testing,
Module Testing, Regreation Testing, simulation and
prototyping, requirement tracing, Proof of correctness

I. INTRODUCTION
Programming is an exercise in problem Solving. As with
any problem-solving activity, determination of the validity
of the solution is part of the process. This survey discusses
testing and analysis techniques that can be used to
validate software and to instill confidence in the quality
of the programming product. It presents a collection of
verification techniques that can be used throughout the
development process to facilitate software quality assurance.

1. Terminology

The evolution of software that satisfies its user expectations
is a necessary goal of a successful soft ware development
organization. To achieve this goal, software engineering
practices must be applied throughout the evolution of the
software product. Most of these software engineering
practices attempt to create and modify software in a manner
that maximizes the probability of satisfying its user
expectations. Other practices, addressed in this module,
actually attempt to insure that the product will meet these
user expectations. These practices are collectively referred
to as software verification and validation (V&V). The reader
is cautioned that terminology in this area is often confusing
and conflicting. The glossary of this module contains
complete definitions of many of the terms often used to
discuss V&V practices [7]. This section attempts to clarify
terminology as it will be used in the remainder of the
module.

A Overview of Software Verification &
Validation and Selection Process

International Journal of Computer Trends and Technology- volume4Issue2- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 177

 Validation refers to the process of evaluating soft- ware at
the end of its development to insure that it is free from
failures and complies with its requirements. A failure is
defined as incorrect product behavior. Often this
validation occurs through the utilization of various testing
approaches. Other intermediate software products may
also be validated, such as the validation of a requirements
description through the utilization of a prototype.

 Verification refers to the process of determining whether
or not the products of a given phase of a software
development process fulfill the requirements established
during the previous phase. Software technical reviews
represent one common approach for verifying various
products. For example, a specifications review will
normally attempt to verify the specifications description
against a requirements description. Proof of correctness is
another technique for verifying programs to formal
specifications. Verification approaches attempt to identify
product faults or errors, which give rise to failures.

2. Evolving Nature of Area

As the complexity and diversity of software products
continue to increase, the challenge to develop new and more
effective V&V strategies continues. The V&V approaches
that were reasonably effective on small batch-oriented
products are not sufficient for concurrent, distributed, or
embedded products. Thus, this area will continue to evolve
as new research results emerge in response to new V&V
challenges.

II. OVERVIEW OF V&V IN SOFTWARE
EVOLUTION

The evolution of a software product can proceed in many
ways, depending upon the development approach used. The
development approach determines the specific intermediate
products to be created. For any given project, V&V
objectives must be identified for each of the products
created.

1. Types of Products

To simplify the discussion of V&V objectives, five types of
products are considered in this module. These types are not
meant to be a partitioning of all software documents and
will not be rigorously defined. Within each product type,
many different representational forms are possible. Each
representational form determines, to a large extent, the
applicability of particular V&V approaches. The intent here
is not to identify V&V approaches applicable to all products
in any form, but instead to describe V&V approaches for
representative forms of products. References are provided
to other sources that treat particular approaches in depth.

 Requirements: The requirements document
[9]:“customer/user-oriented requirements” or C-
requirements) provides an informal statement of the
user’s needs.

 Specifications: The specifications document (Rombach:
“design- oriented requirements” or D-requirements)
provides a refinement of the user’s needs, which must be
satisfied by the product. There are many approaches for
representing specifications, both formal and informal [9]

 Designs: The product design describes how the
specifications will be satisfied. Depending upon the
development approach applied in the project, there many
design representation approaches are described in
Introduction to Software Design [10].

 Implementations: “Implementation” normally refers to the
source code for the product. It can, however, refer to other
implementation-level products, such as decision tables
[11].

 Changes: Changes describe modifications made to the
product. Modifications are normally the result of error
corrections or additions of new capabilities to the product.

2. V&V Objectives

The specific V&V objectives for each product must be
determined on a project-by-project basis. This
determination will be influenced by the criticality of the
product, its constraints, and its complexity. In sure that the
product satisfies the user needs. Thus, everything in the
product’s requirements and specifications must be the target
of some V&V activity. In order to limit the scope of this
module, however, the V&V approaches described will
concentrate on the for many systems, will not be addressed
here. This is consistent with the V&V approaches normally
described in the literature. The broader picture of
“assurance of software quality” is addressed else- where
[12].
Limiting the scope of the V&V activities to functionality
and performance, five general V&V objectives can be
identified [3]. These objectives provide a framework within
which it is possible to determine the applicability of various
V&V approaches and techniques [7].
 Correctness: The extent to which the product is fault free.
 Consistency: The extent to which the product is consistent

within itself and with other products.
 Necessity: The extent to which everything in the product

is necessary.
 Sufficiency: The extent to which the product is complete.
 Performance: The extent to which the product satisfies its

performance requirements.

III. SOFTWARE V&V APPROACHES AND THEIR
APPLICABILITY
Software V&V activities occur throughout the evolution of
the product. There are numerous techniques and tools that

International Journal of Computer Trends and Technology- volume4Issue2- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 178

may be used in isolation or in combination with each other.
In an effort to organize these V&V activities, five broad
classifications of approaches are presented. These
categories are not meant to provide a partitioning, since
there are some techniques that span categories. Instead, the
categories represent a practical view that reflects the way
most of the V&V approaches are described in the literature
and used in practice. Possible combinations of these
approaches are discussed in the next section.

1. Software Technical Reviews

The software technical review process includes techniques
such as walk-through, inspections, and audits. Most of these
approaches involve a group meeting to assess a work
product. A comprehensive examination of the technical
review process and its effectiveness for software products is
presented in The Software Technical Review Process.
Software technical reviews can be used to examine all the
products of the software evolution process. In particular,
they are especially applicable and necessary for those
products not yet in machine process able form, such as
requirements or specifications written in natural language.

2. Software Testing

Software testing is the process of exercising a product to
verify that it satisfies specified requirements or to identify
differences between expected and actual results [3].

 Levels of Testing: In this section, various levels of testing

activities, each with its own specific goals, are identified
and described. This listing of levels is not meant to be
complete, but will illustrate the notion of levels of testing
with particular goals. Other possible levels of testing not
addressed here include acceptance testing, alpha testing,
beta testing, etc. [4].

(i) Module Testing

Module (or unit) testing is the lowest level of testing and
involves the testing of a software module or unit. The goal
of module-level testing is to insure that the component
being tested conforms to its specifications and is ready to be
integrated with other components of the product. Module
testing is treated in depth in the curriculum module Unit
Testing and Analysis

(ii) Integration Testing

Integration testing consists of the systematic combination
and execution of product components. Multiple levels of
integration testing are possible with a combination of
hardware and software components at several different
levels. The goal of integration testing is to insure that the
interfaces between the components are correct and that the

product components combine to execute the product’s
functionality correctly.

(iii) System Testing

System testing is the process of testing the integrated
hardware and software system to verify that the system
meets its specified requirements [3]. Practical priorities
must be established to complete this task effectively. One
general priority is that system testing must concentrate more
on system capabilities rather than component capabilities
[4]. This suggests that system tests concentrate on insuring
the use and interaction of functions rather than testing the
details of their implementations. Another priority is that
testing typical situations is more important that testing
special cases. This suggests that test cases be constructed
corresponding to high-probability user scenarios. This
facilitates early detection of critical problems that would
greatly disrupt a user.

(iv) Regression Testing

Regression testing can be defined as the process of
executing previously defined test cases on a modified
program to assure that the software changes have not
adversely affected the program’s previously existing
functions. The error-prone nature of software modification
demands that regression testing be performed. An important
regression testing strategy is to place a higher priority on
testing the older capabilities of the product than on testing
the new capabilities provided by the modification [13]. This
insures that capabilities the user has become dependent
upon are still intact. This is especially important when we
consider that a recent study found that half of all failures
detected by users after a modification were failures of old
capabilities, as a result of side effects of implementation of
new functionality. The effectiveness of these strategies is
highly dependent upon the utilization of test matrices (see
below), which enable identification of coverage provided by
particular test cases.

IV. TESTING TECHNIQUES AND THEIR APPLICABILITY

(i) Functional Testing and Analysis

Functional testing develops test data based upon documents
specifying the behavior of the software. The goal of
functional testing is to exercise each aspect of the software’s
specified behavior over some subset of its input. How- den
has developed an integrated approach to testing based upon
this notion of testing each aspect of specified behavior [7].
A classification of functional testing approaches and a
description of representative techniques is presented in [14].
Functional testing and analysis techniques are applicable for
all levels of testing. However, the level of specified
behavior to be tested will normally be at a higher level for

International Journal of Computer Trends and Technology- volume4Issue2- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 179

integration and system-level testing. Thus, at a module
level, it is appropriate to test boundary conditions and low-
level functions, such as the correct production of a particular
type of error message.
Limitation: The automation of functional testing techniques
has been hampered by the informality of commonly used
specification techniques. The difficulty lies in the
identification of the functions to be tested. Some limited
success in automating this process has been obtained for
some more rigorous specification techniques.

(ii) Structural Testing and Analysis

Structural testing develops test data based upon the
implementation of the product. Usually this testing occurs
on source code. However, it is possible to do structural
testing on other representations of the program’s logic.
Structural testing and analysis techniques include data flow
anomaly detection, data flow coverage assessment, and
various levels of path b. Testing Techniques and their
Applicability coverage. A classification of structural testing
approaches and a description of representative techniques is
presented in [14]
Structural testing and analysis are applicable to module
testing, integration testing, and regression testing. At the
system test level, structural testing is normally not
applicable, due to the size of the system to be tested. For
example, appear discussing the analysis of a product
consisting of 1.8 million lines of code, suggests that over
250,000 test cases would be needed to satisfy coverage
criteria [2]. At the module level, all of the structural
techniques are applicable. As the level of testing increases
to the integration level, the focus of the structural techniques
is on the area of interface analysis [6]. This interface
analysis may involve module interfaces, as well as
interfaces to other system components. Structural testing
and analysis can also be performed on designs using manual
walk-through or design simulations [3].
Limitation: Structural testing and analysis techniques are
very effective in detecting failures during the module and
integration testing levels. Structural testing is very
cumbersome to perform without tools, and even with tools
requires considerable effort to achieve desirable levels of
coverage. Since structural testing and analysis techniques
cannot detect missing functions (nor some other types of
errors), they must be used in combination with other
strategies to improve failure detection effectiveness

(iii) Error-Oriented Testing and Analysis

Error-oriented testing and analysis techniques are those that
focus on the presence or absence of errors in the
programming process.
Error-oriented testing and analysis techniques are, in
general, applicable to all levels of testing. Some techniques,
such as statistical methods, error seeding, and mutation

testing, are particularly suited to application during the
integration and system levels of testing

(iv) Hybrid Approaches

Combinations of the functional, structural, and error-
oriented techniques have been investigated and are
described in [14]. These hybrid approaches involve
integration of techniques, rather than their composition.
Hybrid approaches, particularly those involving structural
testing, are normally applicable at the module level.

(v) Integration Strategies

Integration consists of the systematic combination and
analysis of product components. It is assumed that the
components being integrated have already been individually
examined for correctness. This insures that the emphasis of
the integration activity is on examining the interaction of the
components [4, 6]. Although integration strategies are
normally discussed for implementations, they are also
applicable for integrating the components of any product,
such as designs.

(vi) Transaction Flow Analysis

Transaction flow analysis develops test data to execute
sequences of tasks that correspond to transaction, where a
“transaction” is defined as a unit of work seen from a
system user’s point of view [4, 1, and 2]. An example of a
transaction for an operating system might be a request to
print a file. The execution of this transaction requires
several tasks, such as checking the existence of the file,
validating permission to read the file, etc.
The first step of transaction flow analysis is to identify the
transactions. McCabe suggests the drawing of data flow
diagrams after integration testing to model the logical flow
of the system. Each transaction can then be identified as a
path through the data flow diagram, with each data flow
process corresponding to a task that must be tested in
combination with other tasks on the transaction flow [1].
Once the transaction flows have been identified, black-box
testing techniques can be utilized to generate test data for
selected paths through the transaction flow diagram.
 Transaction flow analysis is a very effective technique for
identifying errors corresponding to interface problems with
functional tasks. It is most applicable to integration and
system level testing. The technique is also appropriate for
addressing completeness and correctness issues for
requirements, specifications, and designs.

(vii) Stress Analysis

Stress analysis involves analyzing the behavior of the
system when its resources are saturated, in order to assess
whether or not the system will continue to satisfy its
specifications. For example, one typical stress test for an

International Journal of Computer Trends and Technology- volume4Issue2- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 180

operating system would be a program that requests as much
memory as the system has available.
The first step in performing a stress analysis is identifying
those resources that can and should be stressed. This
identification is very system dependent, but often includes
resources such as file space, memory, I/O buffers,
processing time, and interrupt handlers. Once these
resources have been identified, test cases must be designed
to stress them. These tests often require large amounts of
data, for which automated support in the form of test-case
generators is needed.
Although stress analysis is often viewed as one of the last
tasks to be performed during system testing, it is most
effective if it is applied during each of the product’s V&V
activities. Many of the errors detected during a stress
analysis correspond to serious design flaws. For example, a
stress analysis of a design may involve an identification of
potential bottlenecks that may prevent the product from
satisfying its specifications under extreme loads
Stress analysis is a necessary complement to the previously
described testing and analysis techniques for resource-
critical applications. Stress analysis techniques can also be
combined with other approaches during V&V activities to
insure that the product’s specifications for such attributes as
performance, safety, security, etc., are met.

(viii) Failure Analysis

Failure analysis is the examination of the product’s reaction
to failures of hardware or software. The product’s
specifications must be determined precisely which types of
failures must be analyzed and what the product’s reaction
must be. Failure analysis is sometimes referred to as
“recovery testing” Failure analysis must be performed
during each of the product’s V&V activities. It is essential
during requirement and specification V&V activities that a
clear statement of the product’s response to various types of
failures be addressed in terms that allow analysis. The
design must also be analyzed to show that the product’s
reaction to failures satisfies its specifications. The failure
analysis of implementations often occurs during system
testing. This testing may take the form of simulating
hardware or software errors or actual introduction of these
types of errors.
Failure analysis is essential to detecting product recovery
errors. These errors can lead to lost files, lost data,
duplicate transactions, etc. Failure analysis techniques can
also be combined with other approaches during V&V
activities to insure that the product’s specifications for such
attributes as performance, security, safety, usability, etc., are
met.

(ix) Concurrency Analysis
Concurrency analysis examines the interaction of tasks
being executed simultaneously within the product to insure
that the overall specifications are being met. Concurrent
tasks may be executed in parallel or have their execution

interleaved. Concurrency analysis is sometimes referred to
as “background testing”. For products with tasks that may
execute in parallel, concurrency analysis must be performed
during each of the product’s V&V activities. During design,
concurrency analysis should be performed to identify such
issues as potential contention for resources, deadlock, and
priorities. A concurrency analysis for implementations
normally takes place during system testing. Tests must be
designed, executed, and analyzed to exploit the parallelism
in the system and insure that the specifications are met.

(x) Performance Analysis

The goal of performance analysis is to insure that the
product meets its specified performance objectives. These
objectives must be stated in measurable terms, so far as
possible. Typical performance objectives relate to response
time and system throughput [4].
A performance analysis should be applied during each of the
product’s V&V activities. During requirement and
specification V&V activities, performance objectives must
be analyzed to insure completeness, feasibility, and
testability. Prototyping, simulation, or other modeling
approaches may be used to insure feasibility. For designs,
the performance requirements must be allocated to
individual components. These components can then be
analyzed to determine if the performance requirements can
be met. Prototyping, simulation, and other modeling
approaches again are techniques applicable to this task. For
implementations, a performance analysis can take place
during each level of testing. Test data must be carefully
constructed to correspond to the scenarios for which the
performance requirements were specified.

V. ANOTHER V&V TECHNIQUES
 Proof of Correctness: Proof of correctness is a collection

of techniques that apply the formality and rigor of
mathematics to the task of proving the consistency
between an algorithmic solution and a rigorous, complete
specification of the intent of the solution. This technique
is also often referred to as “formal verification.”

Limitation: There are several limitations to proof of
correctness techniques. One limitation is the dependence of
the technique upon a correct formal specification that
reflects the user’s needs. Current specification approaches
cannot always capture these needs in a formal way,
especially when product aspects such as performance,
reliability, quality, etc., are considered. Another limitation
has to do with the complexity of rigorously specifying the
execution behavior of the computing environment.
 Simulation and Prototyping: Simulation and prototyping

are techniques for analyzing the expected behavior of a
product. For V&V purposes, simulations and prototypes
are normally used to analyze requirements and
specifications to insure that they reflect the user’s needs.
Simulations and prototypes can also be used to analyze

International Journal of Computer Trends and Technology- volume4Issue2- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 181

predicted product performance, especially for candidate
product designs, to insure that they conform to the
requirements. It is important to note that the utilization of
simulation and prototyping as V&V techniques requires
that the simulations and prototypes themselves be correct.
Thus, the utilization of these techniques requires an
additional level of V&V activity.

 Requirements Tracing: Requirements tracing is a

technique for insuring that the product, as well as the
testing of the product, addresses each of its requirements.
The usual approach to performing requirements tracing
uses matrices. One type of matrix maps requirements to
software modules. Construction and analysis of this
matrix can help insure that all requirements are properly
addressed by the product and that the product does not
have any superfluous capabilities Requirements tracing
can be applied for all of the products of the software
evolution process.

VI. IDENTIFICATION OF V&V GOAL
V&V goals must be identified from the requirements and
specifications. These goals must address those attributes of
the product that correspond to its user expectations. These
goals must be achievable, taking into account both
theoretical and practical limitations

VII. SELECTION OF V&V TECHNIQUESDENTIFICATION

Once a set of V&V objectives has been identified, specific
techniques must be selected for each of the project’s
evolving products. We see the selection of V&V techniques
based on software life cycle.
 Requirements: The applicable techniques for

accomplishing the V&V objectives for requirements are
technical reviews, prototyping, and simulation. The
review process is often called a System Requirements
Review (SRR). Depending upon the representation of the
requirements, consistency analyzers may be used to
support the SRR.

 Specifications: The applicable techniques for
accomplishing the V&V objectives for specifications are
technical reviews, requirements tracing, prototyping, and
simulation. The specifications review is sometimes
combined with a review of the product’s high-level
design. The requirements must be traced to the
specifications.

 Designs: The applicable techniques for accomplishing the
V&V objectives for designs are technical reviews,
requirements tracing, prototyping, simulation, and proof
of correctness. High-level designs that correspond to an
architectural view of the product are often reviewed in a
Preliminary Design Review. Detailed designs are
addressed by a Critical Design Review. Depending upon

the representation of the design, static analyzers may be
used to assist these review processes. Requirements must
be traced to modules in the architectural design; matrices
can be used to facilitate this process [16]. Prototyping and
simulation can be used to assess feasibility and adherence
to performance requirements. Proofs of correctness,
where applicable, are normally performed at the detailed
design level

 Implementations: The applicable techniques for
accomplishing the V&V objectives for implementations
are technical reviews, requirements tracing, testing, and
proof of correctness. Various code review techniques
such as walk-through and inspections exist. At the source-
code level, several static analysis techniques are available
for detecting implementation errors. The requirements
tracing activity is here concerned with tracing
requirements to source-code modules. The bulk of the
V&V activity for source code consists of testing. Multiple
levels of testing are usually performed. Where applicable,
proof-of-correctness techniques may be applied, usually
at the module level.

 Changes: Since changes describe modifications to
products, the same techniques used for V&V during
development may be applied during modification.
Changes to implementations require regression testing.

VIII. V&V LIMITATION
The overall objective of software V&V approaches is to
insure that the product is free from failures and meets its
user’s expectations. There are several theoretical and
practical limitations that make this objective impossible to
obtain for many products.
 Theoretical Foundations:Some of the initial theoretical

foundations for testing were presented by Goodenough
and Gerhart in their classic paper. This paper provides
definitions for reliability and validity, in an attempt To
characterize the properties of a test selection strategy. A
mathematical framework for investigating testing that
enables comparisons of the power of testing methods is
described in [15]. How-den claims the most important
theoretical result in program testing and analysis is that no
general purpose testing or analysis procedure can be used
to- prove program correctness. A proof of this result is
contained in his text [6].

 Impracticality of Testing All Data: For most programs, it
is impractical to attempt to test the program with all
possible inputs, due to a combinatorial explosion. For
those inputs selected, a testing oracle is needed to be-
determine the correctness of the output for a particular
test input.

 Impracticality of Testing All Paths: For most programs, it
is impractical to attempt to test all execution paths
through the product, due to a combinatorial explosion. It
is also not possible to develop an algorithm for generating

International Journal of Computer Trends and Technology- volume4Issue2- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 182

test- data for paths in an arbitrary product, due to the
inability to determine path feasibility.

 No Absolute Proof of Correctness: Howden claims that
there is no such thing as an absolute proof of correctness.
Instead, he suggests that there are proofs of equivalency,
i.e., proofs that one description of a product is equivalent
to another description. Hence, unless a formal
specification can be shown to be correct and, indeed,
reflects exactly the user’s expectations, no claim of
product correctness can be made.

IX. CONCLUSION
In conclusion, verification and validation is a crucial part of
the development life cycle of an software system.
Verification starts from the requirements analysis stage
where design reviews and checklists are used to the
validation stage where functional testing and environmental
modeling is done. V & V is very important and an issue that
comes up is how much verification is enough verification.
Obviously, the more testing the better, but when do the
benefits from testing outweigh the cost and time of the
project. This will vary from project to project and only the
developer can determine this. In addition, V & V cannot be
used to prove that a system is safe or dependable [3].

Software testing is an important technique for the
improvement and measurement of a software system quality.
But it is really not possible to find out all the errors in the
program. So, the fundamental question arises, which strategy
we would adopt to test. In my paper, I have described some of
the most prevalent and commonly used strategies of software
testing which are classified by purpose and they are classified
into [5]

 Correctness testing, which is used to test the right behavior

of the system and it is further divided into black box, white
box and grey box testing techniques (combines the features
of black box and white box testing).

 Performance testing, which is an independent discipline
and involves all the phases as the main stream testing life
cycle i.e. strategy, plan, design, execution, analysis and
reporting. Performance testing is further divided into load
testing and stress testing.

 Reliability testing, which discovers all the failure of the
system and removes them before the system deployed.

 Security testing makes sure that only the authorized
personnel can access the system and is further divided into
Security Auditing and Scanning, Vulnerability Scanning,
Risk Assessment, Posture Assessment and Security Testing,
Penetration Testing and Ethical Hacking.

The successful use of these techniques in industrial software
development will validate the results of the research and
drive future research. [8]

X. REFERENCES

1. McCabe, T. J. and G. G. Schulmeyer. “System
Testing Aided by Structured Analysis: A Practical
Experience.” IEEE Trans. Software Eng. SE-11, 9
(Sept. 1985), 917-921.

2. Petschenik, N. H. “Practical Priorities in System
Testing.” IEEE Software 2, 5 (Sept. 1985), 18-23.

3. Powell, P. B. “Planning for Software Validation
Verification, and Testing.” In Software Validation,

4. Beizer, B. Software System Testing and Quality
Assurance. New York: Van Nostrand, 1984.

5. Software Testing by Cognizant Technology
Solution.

6. Howden, W. E. Functional Program Testing and
Analysis. New York: McGraw-Hill, 1987.

7. Introduction to Software Verification and
Validation SEI Curriculum Module SEI-CM-13-
1.1 December 1988

8. Paper by Lu Luo available at
http://www.cs.cmu.edu/~luluo/Courses/17939Repo
rt.pdF

9. Rombach, H. D. Software Specification: A
Framework. Curriculum Module SEI-CM-11-1.0,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., Oct. 1987.

10. Budgen, D. Introduction to Software Design.
Curriculum Module SEI-CM-2-2.0, Software
Engineering Institute, Carnegie Mellon University,
burgh, Pa., Nov. 1988.

11. Beizer, B. Software Testing Techniques. New
York: Van Nostrand, 1983.

12. Brown, B. J. Assurance of Software Quality.
Curriculum Module SEI-CM-7-1.1, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh,Pa., July 1987.

13. Petschenik, N. H. “Practical Priorities in System
Testing.” IEEE Software 2, 5 (Sept. 1985), 18-23

14. Morell, L. J. Unit Testing and Analysis.
Curriculum Module SEI-CM-9-1.1, Software
Engineering Insti- tute, Carnegie Mellon
University, Pittsburgh, Pa., Dec. 1988..

15. Gourlay, J. S. “A Mathematical Framework for the
Investigation of Testing.” IEEE Trans. Software
Eng. SE-9, 6 (Nov. 1983), 686-709.

16. Powell, P. B. “Software Validation, Verification
and Testing Technique and Tool Reference Guide.”
In Software Validation, Verification, Testing, and
Documentation, S. J. Andriole, ed. Princeton, N.
J.:Petrocelli, 1986, 189-310.

