
 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3580

Design And Implementation Of USART IP Soft
Core Based On DMA Mode

Peddaraju Allam1

1M.Tech Student, Dept of ECE, Geethanjali College of Engineering & Technology, Hyderabad, A.P, India.

Abstract— A Universal synchronous Asynchronous
Receiver/Transmitter is a type of "synchronous asynchronous
receiver/transmitter", a piece of computer hardware that
translates data between parallel and serial forms. The universal
designation indicates that the data format and transmission
speeds are configurable and that the actual electric signaling
levels and typically is handled by a special driver circuit external
to the USART. A USART is usually an individual (or part of an)
integrated circuit used for serial communications over a
computer or peripheral device serial port. USARTs are now
commonly included in microcontrollers. A dual USART, or
DUART, combines two USARTs into a single chip. Many modern
ICs now come with a UART that can also communicate
synchronously; these devices are called USARTs (universal
synchronous/asynchronous receiver/transmitter).The USART IP
hard core is poor at flexibility and transportability while
USART IP soft core is only based on poll and interrupt mode at
present which consumes so much time of CPU that the
performance of embedded system is reduced greatly. USART
(with reference of clock) IP soft core based on DMA mode is
proposed and well elaborated using the characteristic of
DMA. The IP core is AVALON bus-compatible with the
control and arithmetic logic of entire IP core completed by a
single FPGA chip so that it is very suited to NIOSII
embedded system. Five main sub modules are well designed
and the whole IP core is tested and verified in a simple NIOSII
embedded hardware system. It turns out that USART IP soft
core based on DMA mode can reduce elapsed time of CPU
greatly in data transmission process so that the performance of
NIOSII system can be improved and design requirement can
be better met with less resources occupied, high speed, high
flexibility and high transportability.

Keywords- NIOSII; USART; IP; DMA; AVALON bus

I.INTRODUCTION
The Universal Asynchronous Receiver Transmitter

(USART) is a popular and widely-used device for data
communication in the field of telecommunication. There are
different versions of USARTs in the industry. Some of them
contain FIFOs for the receiver/transmitter data buffering and
some of them have the 9 Data bits mode (Start bit + 9 Data bits
+ Parity + Stop bits). This application note describes a fully
configurable USART optimized for and implemented in a
variety of Lattice devices, which have superior performance

and architecture compared to existing semiconductor ASSPs
(application-specific standard products USART is the most
basic and most commonly used method of communication in
the embedded system, whose performance will to some extent
determine whether the overall system can meet the design
requirements. The implementation of USART basically uses
the on-chip USART IP hard core, including SCM (such as
STM32 [1]) or ARM (such as S3C44B0 [2]) currently. It
makes the design of the whole system has great limitations
for the parameters of which is solidify already on the chip(that
they cannot be changed anymore)and which combine with the
other on-chip peripherals that cannot be separated, although
the performance is high. Because of the design beyond change,
the poor flexibility, the small application, and the poor
transportability, it’s usually unable to meet the high
requirements of the customer.

Figure1. The Basic USART Communication

With the rapid development of FPGA (field

programmable gate array) and SOPC (system on a
programmable chip), soft core plays an increasingly important
role in embedded system depending on the high performance,
high flexibility, transportability and configuration. Some
companies (such as Altera) have provided USART IP
(intellectual property) soft core, which only supports the poll
and interrupt mode [3] currently. Since the two kinds of
transmission will often interrupt the operation of CPU during
the data transmission process, especially when transmitting
large data, it will occupy a lot of time of CPU, thus greatly
reducing the performance of the overall NIOSII system.

Direct memory access (DMA) is a feature of modern
computers that allows certain hardware subsystems within the
computer to access system memory independently of the
central processing unit (CPU).Without DMA, when the CPU is

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3581

using programmed input/output, it is typically fully occupied for
the entire duration of the read or write operation, and is thus
unavailable to perform other work. With DMA, the CPU
initiates the transfer, does other operations while the transfer is
in progress, and receives an interrupt from the DMA controller
when the operation is done. This feature is useful any time the
CPU cannot keep up with the rate of data transfer, or where the
CPU needs to perform useful work while waiting for a relatively
slow I/O data transfer. Many hardware systems use DMA,
including disk drive controllers, graphics cards, network cards
and sound cards. DMA is also used for intra-chip data transfer
in multi-core processors. Computers that have DMA channels
can transfer data to and from devices with much less CPU
overhead than computers without a DMA channel. Similarly, a
processing element inside a multi-core processor can transfer
data to and from its local memory without occupying its
processor time, allowing computation and data transfer to
proceed in parallel.

A brief introduction firstly is made about the overall
architecture of DMA mode USART IP soft core in this
article, and then it focuses all the attention on the design of all
the sub- modules of the entire IP core, whose realization using
Verilog HDL language is given. Then it makes a hardware
validation about the function of the entire IP. At last,
comparing the USART IP core of the three different forms of
transmission, we make summarization about the design method
and characteristics of the USART IP soft core with the DMA
mode. The whole system completes the hardware verification
on the Altera's FPGA chips Cyclone II EP2C35F672C8 and
eventually is applied to a USART communication system.

II.THE OVERALL FRAMEWORK OF USART IP SOFT

CORE IN DMA MODE
USART IP soft core is designed using DMA

transmission here. Its overall architecture is shown in Figure 1.
The entire USART IP soft core in DMA mode mainly includes
the following 5 sub-modules: USART send controller, USART
Receive controller, Register file with the Interface of Avalon-
MM Slave, Master Read type DMA controller with the interface
of Avalon-MM Master and Master Write type DMA controller
with the interface of Avalon-MM Master. When the NIOSII
processor sends data through serial port, firstly, it’s necessary to
make configuration to the USART sent controller and the
Master Read type DMA controller through the register file with
the interface of Avalon-MM Slave to set the baud rate of the
serial port, the number of bytes of the data to be sent and the
base address of the data stored in the memory.

Secondly, write the data to be sent to the specified
location in the memory and then start the Master Read type
DMA controller, thus the data stored in the memory is sent out

one by one through the USART sent controller. When all the
data that you want to send has been sent, an interrupt will be
generated in the NIOSII processor to inform the processor that
the transmission of serial data is completed, so as to start the
next data transmission. Since the whole process of data sent is
managed by the Master Read type DMA controller, NIOSII
processor can concentrate on other things and not be disturbed,
thus the utilization ratio of NIOSII CPU increases greatly.
When the NIOSII processor need to receive data through serial
ports, firstly, it’s necessary to fulfill the configuration on the
USART receive controller and a Master Write type of DMA
controller through the register file with Avalon-MM Slave
interface to set baud rate of the serial port, the number of bytes
of data which will be received and the base address of the data
stored in the memory. Secondly, start the Master Write type of
DMA controller, thus the data received through the USART
controller can be stored in the specified location in the memory
one by one, when all the data is received, an interrupt will be
generated in the NIOSII processor to inform the processor that
the transmission of serial data is completed, so as to read the
data that has been received from the memory for processing
and start the next data transmission. Since the whole process of
data reception is managed by the Master Write type of DMA
controller, NIOSII processor can concentrate on other things
and not be disturbed, thus the utilization ratio of NIOSII CPU
increased substantially.

Figure2. The overall framework of USART IP core in DMA mode

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3582

III. THE DESIGN AND IMPLEMENTATION OF
EACH MODULE

 A. The design of USART receiver controller

The reception of serial port uses the basic frame format.
First of all, detect the start-bit is low-level. Then receive the
bytes of data bit by bit under the control of the clock in the
baud rate. Finally, receive the high-level of the stop bit.
In this paper, a USART receiver controller is designed using
the way of finite state machine in the hardware description
language of Verilog HDL, thus completing the timing control
of the data reception of serial port. Its state transition diagram
is shown in Figure 3.

Figure 3. The state transition diagram of the USART receiver controller

As can be seen from figure 3, the state machine is in the

idle state at the beginning. When the DMA Master Write
controller is started to conduct a reception of the data, the state
machine enter into the start state. Start & ready, these two
states are mainly used to clear the receiver shift register and the
bit counter and prepare for receiving a byte of data. When it’s
ready, the state machine enters into the receiver state. Recv
& finish, these two states are mainly used to receive the byte
of data bit by bit under the control of serial port baud rate
clock and store it in the reception shift register. When the
reception of a byte of data is completed, the state machine
enters into the load state. Load, buffer_ready, these two states
are mainly used to move the byte data to the Master Write type
of DMA controller in order to complete write operation from
the bytes of data to the memory. Then the state machine enters
into the block_finish state. In this state, the state machine
makes a judgment of the number of bytes of the data that has
been received. If the number is less than the number of bytes
of data that should be received, it shows that all the data has
not been received, so the count plus 1 and the state machine
enters into the ready state to receive the next data byte and send
it to the Master Write type of DMA controller. The state
machine doesn’t enter into the state of master_done, until all
the data bytes are received. Master done and get_done, these
two states detect whether this DMA Transfer is completed. If

it’s done, the state machine will generate an interrupt signal
and enter into the idle state. At this point, a full serial data
reception in the DMA transfer mode.

B. The design of USART sending controller
The transmission of serial port uses the basic frame format.

First of all, send low to the start-bit, and then under the control
of the clock in the baud rate, send 8-bit data from D0 to D7,
finally sent high to the stop-bit. In this paper, a USART sending
controller is designed using the way of finite state machine in
the hardware description language of Verilog HDL, thus
completing the timing control of the data transmission of serial
port. Its state transition diagram is shown in Figure 4.

 Figure 4. The state transition diagram of the USART sending controller

As can be seen from Figure 2, the state machine firstly is in

idle state. When the Master Read type of DMA controller
starts to conduct a data transmission, the state machine
moves into the data_valid state. Data_valid, read_fifo and the
load, these three states are mainly used to access a byte
which is read by the Master Read type of DMA controller
from the memory. Splice the byte with the start bit and stop
bit together and send it to the shift register. After that, the
state machine enters into the send state. Send and finish, these
two states are mainly used to send the data in the transmit shift
register bit by bit under the control of serial port baud clock.
When the process of sending the data in the transmit shift
register is completed; the state machine will enter into the
state of block_finish.

In this state, the state machine makes a judgment of the
number of bytes of the data which has been sent out. If the
number is less than the number of bytes of data that should be
sent, it shows that all the data has not been sent out, so the
count plus 1 and the state machine enters into the state of
data_valid to read and send the next data byte. The state
machine doesn’t enter into the state of master_done, until all
the data bytes are sent out. In this state, the state machine
makes detection whether this DMA transfer is completed. If
it’s done, the state machine will generate an interrupt signal and
enter into the idle state. At this point, a full serial data
transmission in the DMA transfer mode.

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3583

C. The design of the register file with the interface of Avalon-
MM Slave

AVALON bus, an open interconnect bus; can be used to
connect the main peripherals and the minor peripherals. The
main peripheral can initiate bus transfers on the AVALON bus.
While the minor peripheral can only respond to the bus
transfers. The main peripheral connects with the AVALON bus
using the Avalon-MM Master interface, while the minor
peripheral using the Avalon-MM Slave interface.

The register file with the Avalon-MM Slave interface

designed in this passage is a peripheral with the Avalon-MM
Salve interface. There are a total of four 32-bit registers in it,
whose specific structure and function is shown in Table 1.The
NIOSII processor accesses these 4 registers by the way of base
address plus address offset, which can control the configuration
of the USART IP soft-core in the DMA mode as well as the
reception and the transmission of the serial data.

D. The design of the Master Read type of DMA controller

with the interface of Avalon-MM Master
The Master Read type DMA controller with the Avalon-

MM Master interface designed in this passage is the peripheral
with the Avalon-MM Master main ports. It finishes the basic
reading transport through the switching fabric between
Avalon- MM Master main ports and the AVALON, so that it
can read the specified length of data from the memory whose
starting address is specified and send it out one by one to
the USART send controller. Functional simulation is carried
through in this passage using the QUSARTus II
software. The simulation waveform is shown in figure 5.
As can been seen from figure 5, the reading transfer of the
main port starts at the first rising edge of clk. In the first clock
cycle, the primary port makes the address and the read_n
effective. If the wait request signal is invalid, valid data
which is read will appear in the read data signal line in the
second clock cycle. The primary port only captures read data
in the second rising edge of the clock cycle to complete a
basic reading transmission.

Figure 5. The waveform of the basic reading transfer of the Avalon-MM
Master interface

E. The design of the Master Write type of DMA controller with
the interface of Avalon-MM Master

The Master Write type DMA controller with the Avalon-
MM Master interface designed in this passage is the peripheral
with the Avalon-MM Master main ports. It finishes the basic
writing transport through the switching fabric between Avalon-
MM Master main ports and the AVALON, so that it can
continuously store the specified length of data received
from the USART receiving controller in the memory whose
starting address is specified. Functional simulation is carried
through in this passage using the QUSARTus II software.
The simulation as can been from figure 5, the writing transfer
of the main port starts at the first rising edge of clk. In the first
clock cycle, the primary port makes the address, writedata and
the write_n effective. If the waitrequest signal is invalid, the
valid writing data writedata, will be captured in the second
rising edge of the clock cycle to complete a basic writing
transmission.

IV. THE HARDWARE TEST
A top-level file named dma USART ip is created in verilog

HDL language in this design. It completes the design of the
USART IP soft core in the DMA mode eventually through the
instantiation and interconnection of the above 5 sub-modules
including USART sending controller, USART receiver
controller, the register file with Avalon-MM Slave interface,
the Master Read type of DMA controller with the Avalon-
MM Master interface, the Master Write type of DMA
controller with the Avalon-MM Master interface. The RTL
generated after synthesizing is shown in figure 6.

TABLE I. THE SPECIFIC STRUCTURE AND FUNCTION OF EACH
REGISTER

 Property

Register

offset Access
 properties

The number
of effective
bits

Function

START
DMA
start register

0 Write-
only

2 start
DMA
controller

BAUD serial
port baud rate
register

1 Read&
write

16 set the
baud rate
of the
serial
port

Register of
BASE base
address

2 Read&
write

32 set base
address
of DMA

LENGTH data
length register

3 Read&
write

32 set data
length

The FPGA chips used in this design is Altera’s Cyclone II

EP2C35F672C8 as the hardware verification platform.After the
compilation, adaptation and integration of the QUSARTusII

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3584

software as well as the analysis to the compile report, the IP
core uses 465 LE (logic gates), which account for 1.4% of the
total LE, 352 registers, 256 bytes of memory (2048 memory
bits) which account for 0.4% of the total on-chip memory,
what’s more, the highest frequency goes up to 118.314Mhz.

As the DMA mode USART IP soft core is AVALON bus-

based IP core, a simple system NIOSII system is built to
the test validation. In this paper, a top-level application
test program is made based on NIOSII processor in C++
language to test the time of the NIOSII CPU occupied by
the DMA mode USART IP soft core when transmitting
different sizes of data blocks, comparing with query mode
USART IP soft core and interrupt mode USART IP soft
core. The results are shown in table 2.

TABLE II.

COMPARISON OF CPU TIME CONSUMED˄CLOCK CYCLES˅

As can been seen from table 2, in the process of data

transmission, the time of CPU consumed by DMA mode
USART IP soft core is shorter than that consumed by
query mode USART IP soft core or interrupt mode USART IP
soft core. What’s more, with the increase of the size of the data
block which need to be transmitted, the advantages of the
shorter occupied CPU time becomes increasingly evident. In
this way, it improves the performance of the NIOSII processor
greatly.

Figure 6 . Design of USART IP soft core based on DMA mode

Advantages and Applications

1. CPU will be free from data transmission process
2. GPRS,GPS and other communication devices

Conclusion

1. IP sot-core of USART is a better choice for faster

communication devices
2. As the design uses less logic system performance will be

improved greatly

REFERENCES

[1] Altera Corp, Avalon-MM Slave reference manual.
[2] Altera corp, USART Core User’s Guide.
[3] Sicong Wu, Weiwe Zhao Yanhong CHhen, ̌Application
research of Hilbert transform in reactive energy
measurement”,Hunan normal university polytechnic college,
Changsha 410081, China
[4] Hua Liu,”Reactive Power Mearsurement and Multi-
function Meter Data Management”, Henan University.
[6] Zhou ligong. SOPC-based Embedded System Tutorial

[M]. Beijing: Beijing University of Aeronautics 2006
[7]
[8] Lingge Jiang,”Theories and Methods For Reactive Energy

Measurement”,Zhangjiajie Power Bureau, Zhangjiajie.
[9] Wei Wang, Xiaoru Wang, Xiaoqing Huang, Da-peng

Xie 㧘 ̌ The research on Hilbert digital filter of reactive
power measurement ̍㧘 Southwest Jiaotong University,
Chengdu 610031, China

[10] Yang fuguang. Efficient UART communication and its
applications based on DMA in ARM.Chinese Academic
Journal Web Publishing General Library 2008. [5] Altera
Corp, Avalon-MM Maste reference manual.

CPU Data 64 512 4096
Time-consumed Block Bytes Bytes Bytes

IP Core

USART IP core in poll mode 277761 2222063 17776676

USART IP core in interrupt mode 11312 90624 725024

USART IP core in DMA Mode 177 177 177

