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Abstract — The output of the system is a sequence of 

actions in some applications. There is no such 

measure as the best action in any in-between state; 

an action is excellent if it is part of a good policy. A 

single action is not important; the policy is 

important that is the sequence of correct actions to 

reach the goal. In such a case, machine learning 

program should be able to assess the goodness of 

policies and learn from past good action sequences 

to be able to generate a policy. A multi-agent 

environment is one in which there is more than one 

agent, where they interact with one another, and 

further, where there are restrictions on that 

environment such that agents may not at any given 

time know everything about the world that other 

agents know. Two features of multi-agent learning 

which establish its study as a separate field from 

ordinary machine learning. Parallelism, scalability, 

simpler construction and cost effectiveness are main 

characteristics of multi-agent systems. Multiagent 

learning model is given in this paper. Two 

multiagent learning algorithms i. e. Strategy Sharing 

& Joint Rewards algorithm are implemented. In 

Strategy Sharing algorithm simple averaging of Q 

tables is taken. Each Q-learning agent learns from 

all of its teammates by taking the average of Q-

tables. Joint reward learning algorithm combines 

the Q learning with the idea of joint rewards.  Paper 

shows result and performance comparison of the two 

multiagent learning algorithms.  
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I. INTRODUCTION  

Consider the example market chain that has 

hundreds of stores all over a country selling 

thousands of goods to millions of customers. The 

point of sale terminals record the details of each 

transaction i.e. date, customer identification code, 

goods bought and their amount, total money spent 

and so forth. This typically generates gigabytes of 

data every day. What the mark et chain wants is to 

be able to predict who are the likely customers for a 

product. Again, the algorithm for this is not evident; 

it changes over time and by geographic location. If 

stored data is analyzed and turned into information 

then it becomes useful so that we can make use of an 

example to make predictions. We do not know 

exactly which people are likely to buy this product, 

or another product. We would not need any analysis 

of the data if we know it already. But because we do 

not know, we can only collect data and hope to 

extract the answers to questions from data.  

We do believe that there is a process that 

explains the data we observe. Though we do not 

know the details of the process underlying the 

generation of data – for example, customer behavior 

- we know that it is not completely random. People 

do not go to markets and buy things at random. 

When they buy beer, they buy chips; they buy ice 

cream in summer and spices for Wine in winter. 

There are certain patterns in the data. We may not be 

able to recognize the process completely, but still we 

can construct a good and useful approximation. That 

approximation may not explain everything, but may 

still be able to account for some part of the data. 

Though identifying the complete process may not be 

possible, but still patterns or regularities can be 

detected.  

Such patterns may help us to understand the 

process, or make predictions. Assuming that the near 

future will not be much different from the past and 

future predictions can also be expected to be right.  

There are many real world problems that involve 

more than one entity for maximization of an 

outcome.  For example, consider a scenario of retail 

shops in which shop A sales clothes, shop B sales 

jewelry, shop C sales footwear and wedding house 

D. In order to build a single system to automate 

(certain aspects of) the marketing process, the 

internals of all shops A, B, C, and D can be 

modeled. The only feasible solution is to allow the 

various stores to create their own policies that 

accurately represent their goals and interests. They 

must then be combined into the system with the aid 
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of some of the techniques. The goal of each shop is 

to maximize the profit by an increase in sale i.e. 

yield maximization. Different parameters need to be 

considered in this: variation in seasons, the 

dependency of items, special schemes, discount, 

market conditions etc. Different shops can cooperate 

with each other for yield maximization in different 

situations. Several independent tasks that can be 

handled by separate agents could benefit from 

cooperative nature of agents. 

Another example of a domain that requires 

cooperative learning is hospital scheduling. It 

requires different agents to represent the regard of 

different people within the hospital. Hospital 

employees have a different outlook. X-ray operators 

may want to maximize the throughput on their 

machines. Nurses in the hospital may want to 

minimize the patient‟s time in the hospital.  Since 

different people examine candidate with different 

criteria, they must be represented by cooperative 

agents. The output of the system is a sequence of 

actions in some applications. There is no such 

measure as the best action in any in-between state; 

an action is excellent if it is part of a good policy. A 

single action is not important; the policy is important 

that is the sequence of correct actions to reach the 

goal.  To be able to generate a policy the machine 

learning programs should able to assess the quality 

of policies and learn from past good action 

sequences.   

This paper is organized as: Section II gives the 

concept of multiagent agent learning, Section III 

describes multiagent model. Strategy sharing 

algorithm is given   in Section IV and Joint Rewards 

algorithm is given in section V.  Section VI gives 

experimental setup and Section VII put up the result 

comparisons of all both algorithms with final 

concluding remark and future scope.  

 

II. MULTI AGENT LEARNING 

An agent is a computational mechanism that 

reveals a high degree of autonomy. Based on 

information received from the environment, the 

agent performs actions in its environment. A multi-

agent environment is one in which there is more than 

one agent, where they interact with one another, and 

further, where there are restrictions on that 

environment such that agents may not at any given 

time know everything about the world that other 

agents know[1]. Two features of multi-agent 

learning which establish its study as a separate field 

from ordinary machine learning. First, because 

multi-agent learning addresses the problem domains 

involving multiple agents. The search space 

considered is extraordinarily huge. Small changes in 

learned behaviours can often result in random 

changes in the resultant macro-level properties of the 

multi-agent group as a whole due to the 

communication of those agents. Second, multi-agent 

learning involves multiple learners, each learning 

and adapting in the context of others; this introduces 

complex issues to the learning process which are not 

yet fully understood[2]. 

Parallelism, scalability, simpler construction and 

cost effectiveness are main characteristics of multi-

agent systems. Having these qualities, multiagent 

systems are used to resolve complex problems, 

search in large domains, execute sophisticated tasks, 

and make more fault-tolerant and reliable systems. 

In most of the existing systems, agents‟ behaviour 

and coordination schemes are designed and fixed by 

the designer. But, an agent with incomplete and 

fixed knowledge and behaviour cannot be 

adequately efficient in a dynamic, complex or 

changing environment. Therefore, to have all 

benefits of applying a multi-agent system, agent 

team must learn to manage the fresh, hidden and 

dynamic situations[3]. 

In approximately all of the present multi-agent 

teams, agents learn independently. Agents are not 

required to learn all things from their own 

experiences. Each agent observes the others and 

learns from their situation and behaviour. Also, 

agents can check with more expert agents or get 

guidance from them. Agents can also share their 

information and learn from this information, i.e. the 

agent can cooperate in learning.   

In the single-agent system, only one agent 

interacts with the environment. Multiagent system 

(MAS) consists of multiple agents. These agents all 

carry out actions and control their environment. 

Each agent selects actions individually, but it is the 

resulting joint action which manipulates the 

environment and generates the reward for the agents. 

This leads to severe consequences on the 

characteristics and the complexity of the problem. 

Work focused on cooperative MASs in which the 

agents have to optimize a shared performance 

measure[4]. 

 

III. MULTI-AGENT MODEL 

Parameters for Multiagent Model 

General model parameters for MAS are 

described. Most model parameters extend the 

parameters from single-agent systems[5]. A 
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Multiagent System can be described using the 

following model parameters: 

 A discrete time step t = 0, 1, 2, 3, . . . . 

 A group of n agents A = { A1, A2, . . . ,An }. 

 A finite set of environment states S. A state s
t
 є 

S describes the state of the system at time step t. 

 A finite set of actions Ai for every agent i. The 

action selected by agent i, Ai at time step t is 

denoted by a
t
 є A. The joint action a ∈ A = A1 × 

. . . × An is the vector of all individual actions. 

 A reward function R : S × A → R which 

provides the agent i with a reward r
t+1 ∈ R(s

t
, a

t
) 

based on the joint action a
t
 taken in state s

t
.   

 A state transition function T: S×A×S → [0, 1] 

which gives the transition probability       

p(s
t
|a

t−1
, s

t−1
) that the system moves to state s

t
 

when the joint action a
t−1 

is performed in state 

s
t−1

.     

These parameters are very similar to the ones in 

the single-agent case. However, difficulties arise due 

to the decentralized nature of the problem. Each 

agent selects actions independently, but it is the 

resulting joint action that manipulates the 

environment and produces the reward.   

 

Stochastic games (SGs)   

Stochastic games are a very natural extension of 

MDPs to multiple agents.  

 

Definition 1: A stochastic game is a tuple (n, S, 

A1…n ,T, R1…n ),where n is the number of agents, S 

is a set of states, Ai is the set of actions available to 

agent i with A being the joint action space 

A1×…×An, T is a transition function S×A×S→[0,1], 

and Ri is a reward function for the i
th

 agent S×A→R. 

SGs are a very natural extension of MDPs to 

multiple agents[6]. 

 

Model of Multiagent Q-learning   

Model of multiagent Q-learning with ε-greedy 

exploration is presented here. Effect of ε -greedy 

mechanism and the presence of other agents on 

learning the process of one agent are studied to 

develop the model.  The derivation of a continuous 

time equation for the Q-learning rule is firstly 

demonstrated. Then the limits of this equation for 

the case of a single learner are analysed. It indicates 

how they change dynamically when multiple 

learners are considered. Finally, it is proved that the 

ε-greedy mechanism affects the shape of the 

modeled function[7].  

Consider the situation composed of 2 agents 

with 2 actions each and a single state. The reward 

functions of the agents, in this case can be described 

using tables of the form: 

       A=         B=  
 

where A describes the rewards, for the first  agent 

and B the rewards for the second agent.  Q-learning 

update rule can be simplified for only one state as:  

Qai := Qai + α(rai − Qai )………………..........……..(1) 

 

where  

Qai Q-value of agent a for action i  

rai  reward that agent a receives for executing 

action i. 

 a   agent         and      i    action  

 

Analysis 

The update rule for the first agent can be 

rewritten as: 

Qai (k + 1) − Qai (k) = α(rai (k + 1) − Qai(k))…........(2) 

 

This difference equation explains the absolute 

growth in Qai between times k and k + 1. To obtain 

its continuous time version, consider Δt [0, 1] to 

be a small amount of time. 

Qai (k + Δt) − Qai (k) Δt × α(rai(k+Δt) − Qai (k))..(3) 

to be the approximate growth in Qai during Δt.  

if  Δt = 0 then the equation becomes identity. 

If  Δt = 1 then it becomes Qai (k + 1) − Qai (k) = α(rai 

(k + 1) − Qai(k)) i.e. equation 5. 

If  Δt = {0,1} then it becomes linear approximation.  

 

Divide both sides of the equation by Δt  

  α(rai(k+Δt) − Qai (k))………...(4) 

taking limits Δt→0 on both sides  

lim Δt→0   lim Δt→0 α ( rai ( k + Δt ) 

− Qai (k)) 

lim Δt→0   α ( rai (k) − Qai (k)) 

 α ( rai (k) − Qai (k))……….. ………....…(5) 

It is an approximation for the continuous time 

version of Equation 2. 

 

Solution to this equation found by integration as 

Qai(k)=C   + rai…………...………………......(6) 

where C is the constant of integration.  

As  is a monotonic function and limx→ =0, 

it is easy to observe that the limit of Equation 3 

when t→  is rai: 

ai(K) = C +  rai = rai…...……..(7) 
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It is considered that only the first agent is 

learning and that the second agent is using a pure 

strategy then it will always generate the same reward 

for the first agent. In this case, the derivation above 

is sufficient to prove that Qai will monotonically 

increase or decrease towards rai, for any initial value 

of Qai. More particularly, the function is 

monotonically increasing if Qai (0) < rai and 

monotonically decreasing if Qai (0) > rai. The model 

build here will be used to determine how one 

learning strategy affects the action selection of 

another learning agent.   

 

IV. STRATEGY SHARING ALGORITHM 

One way for knowledge sharing in multi-agents 

is knowledge averaging. We can divide averaging in 

two general categories, simple averaging and 

weighted averaging. In simple averaging, which is 

called strategy sharing, each Q-learning agent learns 

from all of its teammates by taking the average of Q-

tables[8].  

 = ……………………………(8) 

The SS treats all agents similarly, ignoring their 

level of knowledge. This method does not consider 

agents‟ different expertise levels. SS algorithm is 

described as:  

 

Algorithm 1 : Strategy Sharing Algorithm  

1. initialize  

2. while not EndOfLearning do 

3. begin 

4. if InIndividualLearning Mode then 

5. begin {Individual Learning} 

6. xi := FindCurrentState() 

7. ai := SelectAction() 

8. DoAction(ai) 

9. ri := GetReward() 

10. yi := GoToNextState() 

11. v(yi) := Maxb actionsQ(yi,b) 

12. Qi
new

 (xi,ai) := (1 - βi)Qi
Old

(xi,ai)+ 

βi(ri +γiV(yi) ) 

13. end 

14. else {Multiagent Learning} 

15. begin 

16. for j := 1 to n do 

17. Qi
new

 := 0 

18. for j := 1 to  n do 

19. begin 

20. Qi
new

 := Qi
new 

 +  1/n ∑ Qj
old 

                   

// strategy sharing by simple 

averaging of Q tables 

21. end 

V. JOINT REWARDS ALGORITHM 

To extend Q-learning into a multi-agent system, two 

main challenges exist. One is how to deal with the 

huge Q-table with the increment of dimension in a 

multi-agent system. The other challenge is how to 

utilize the cooperative behaviour among agents to 

obtain more efficient learning results. Joint rewards 

ensure agents to learn in a multiagent environment. 

The experiment results show the efficiency and well 

convergence of the algorithm. It is not enough for 

each agent to proceed selfishly in order to reach a 

globally optimal strategy in a multi-agent 

environment. It is not possible to accomplish with 

only one agent to accomplish a task.   

The section presents a joint reward learning 

algorithm which combined the Q-learning with the 

idea of joint rewards to meet above two challenges 

partly. In a multi-agent system, every agent needs to 

maintain a Q table which contains the information 

about its and others agent‟ states and actions, i.e. the 

situation of the whole environment. In order to 

encourage cooperative behaviour among agents to 

get global optimal rewards, it should take account of 

the other agents‟ actions. Here, we use a simplified 

of vicarious rewards for feasible to realize. We call 

„joint reward‟[9],  

jri = b.pri + (1 - b). ………………….(9) 

where pr is the personal reward of agent i, 

and the sum of rewards of other agents 

except i and 0 < b ≤ 1 is the personal weight, 

denoting how much importance is given to agent‟s 

personal reward compared to that of other agents. 

The improved update rule of Q-learning values of 

agent i can be formulated as 

Qi
new

 (xi, ai) := (1 - α) Qi
Old

(xi, ai) + α (jri + β maxa 

Q(s, a))..................................................................(10) 

 

Algorithm 2 : Multiagent learning using Joint 

Reward Algorithm  

1. For each agent i (0 < i < m) the learning 

procedure as  

2. for all a   A and s 
 

S  initialize Q(s,a) = 0 

3. let t = 0,  = 0  

4. Loop: 
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5. select action a
i
 which has max Q value  

6. execute action a
i
 

7. receive an immediate reward   

8. observe the new state s 

9. calculate joint rewards  as  

10. jri = b.pri + (1 - b).          //  

 sum of rewards of other 

agents except i  

11. update Q learning values of agent i as  

Qi
new

 (xi, ai) := (1 - α) Qi
Old

(xi, ai) 

+ α (jri + β maxa Q(s, a)) 

12. end 
 

VI. EXPERIMENTAL SETUP 

Model design:  

Maximize the sale of products that depends on 

price of product, customer age and period of sale. 

These are the information available to each agent i.e. 

shop. So it becomes the state of environment. Final 

result is to maximize profit by increasing total sale 

of products[10].  

 

Input Data set:  

We define the action set as the sale of possible 

product. i.e. A={p1,p2,p3…….p10} 

Hence action a A. State of the system is queue of 

customer in the particular month for the given shop 

agent. So state can be described as  

X(t) = { x1(t), x2(t),m } 

where  

x1  customer queue with age ==> { Y, M, O } i.e. 

young, middle and Old age customer 

x2  price of product queue ==> { H, M, L } i.e. 

High, Medium, Low 

m   month of product sale ==> { 1,2,3,4……..12 } 

 

In the system minimum, 108 states and actions 

are possible. The number of state-action increases as 

the number of transactions increases. For simplicity, 

it is assumed that single state for each transaction 

else the state space becomes infinitely large. Shop 

agent observes the queue and decides product i.e. 

action for each customer/state. After every sale 

reward is given to the agent.  The table shows the 

snapshot of the dataset generated for single shop 

agent.  

 
 

 
 

Table 1: Snapshot of Dataset used 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a particular season, the sale of one shop 

increases. With the help of cooperative learning, 

other shops learn about an increase in the sale & 

they can take necessary actions for their profit 

maximization[11].  At time 0, the process X(t) is 

observed and classified into one of the states in the 

possible set of states (denoted by S).  After 

identification of state, the agent chooses a product 

action from A.  If the process is in state i and agent 

chooses a A, then 

i. The process transition into state j S with 

probability Pij(a)  

ii. Conditional on the event that the next state is j. 

The time until next transition is a random 

variable with probability distribution Fij(./a) 

After the transition occurs, product sale action is 

chosen again by the agent and (i) and (ii) are 

repeated. 

VII. RESULTS 

The simulation results show the efficiency of 

the learning algorithm. In multiagent learning 

algorithms are applied to shop dataset of cloth, 

jewellery & footwear shop and the result analysis is 

done for a year, the specific number of products is 

purchased by particular customer age group.  Shop 

agent will understand that in a year number of 

products is to be sold to the customers having 

different age group.  Fig. 1 shows the results of 

Strategy Sharing Algorithm for Products Vs 

Customer Age count and Fig. 2 gives the results of 

Joint Reward Algorithm for Products Vs Customer 

Age count.  

 

TID Age Price Month 

Action 

Selected 

(Product) 

1 Y L 1 P1,P2,P4 

2 Y M 1 P2,P3 

3 Y H 1 P3,P4 

4 M L 1 P1,P2 

5 M M 1 P1,P2,P3 

6 M H 1 P4,P2 

7 O L 1 P1,P3 
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Fig. 1: Strategy Sharing Algorithm Products Vs Customer 

Age Count 

 

Fig. 2: Joint Reward Algorithm Products Vs Customer Age Count 

Fig. 3: Comparison of SS & JRA Algorithms for MID 

customer age group for Products Vs Quantity 

Fig. 4: Comparison of SS & JRA Algorithms for OLD 

customer age group for Products Vs Quantity 

Fig. 5: Comparison of SS & JRA Algorithms for YOUNG 

customer age group for Products Vs Quantity 

 

 

 Fig 3 gives the results of comparison of SS & 

JRA Algorithms for MID customer age group for 

Products Vs Quantity. Fig. 4 shows the results of 

comparison of SS & JRA Algorithms for OLD 

customer age group for Products Vs Quantity and 

Fig.5 gives the results of comparison of SS & JRA 

Algorithms for YOUNG customer age group for 

Products Vs Quantity 
Joint Reward Learning algorithm gives precise 

results than Strategy Sharing learning algorithm and 

gives good predictions of the products. It gives the 

pattern of product sale with customer age group for a 

period.  The Q function values are tabulated for 

obtaining some insights. Q tables show the best 

action (that is optimal the product) for different 

individual states. By knowing the Q function, the 

shop agent can compute best possible product for a 

given state that gives maximum profit to it. Single 

agent learning, multi-agent learning, cooperative 

learning and improved cooperative learning 

algorithms are implemented and results are 

compared.  

It has shown how a shop agent can effectively 

use reinforcement learning in setting products 

dynamically so as to maximize its profit matrix. It is 

believed that this is a promising approach for profit 

maximization in retail market environments with 

limited information.   

In multiagent learning the result analysis is done 

for a year, the specific number of products is 

purchased by particular customer age group. Shop 

agent will understand that in a year number of 

products is to be sold to the customers having the 

different age group. Joint Reward Learning 

algorithm gives precise results than Strategy Sharing 

learning algorithm and gives good predictions of the 

products. These products are combined together for 

the increase in sale.  
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VIII. CONCLUSION 

Learning algorithms are best suitable for 

decision making. Multiagent learning has more 

knowledge and information available. In this 

method, sharing of information and policy is 

possible. Multiagent learning always performs better 

compared to single agent learning. However, 

multiagent learning is still lacking in proper 

communication between agents. Sharing of more 

knowledge and information is possible and all 

agents‟ knowledge is used equally, jointly solves the 

problem cooperatively is the future scope of this 

paper.  
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