
International Journal of Computer Trends and Technology (IJCTT) – Volume 35 Number 2- May 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 60

Implementation of Multiagent Learning

Algorithms for Improved Decision Making
Deepak A. Vidhate

#1
, Dr. Parag Kulkarni

*2

#
Research Scholar, Department of Computer Engineering, College of Engineering, Pune, Maharashtra, India

*
Director, EKLaT Research, Shivajinagar, Pune, Maharashtra, India

Abstract — The output of the system is a sequence of

actions in some applications. There is no such

measure as the best action in any in-between state;

an action is excellent if it is part of a good policy. A

single action is not important; the policy is

important that is the sequence of correct actions to

reach the goal. In such a case, machine learning

program should be able to assess the goodness of

policies and learn from past good action sequences

to be able to generate a policy. A multi-agent

environment is one in which there is more than one

agent, where they interact with one another, and

further, where there are restrictions on that

environment such that agents may not at any given

time know everything about the world that other

agents know. Two features of multi-agent learning

which establish its study as a separate field from

ordinary machine learning. Parallelism, scalability,

simpler construction and cost effectiveness are main

characteristics of multi-agent systems. Multiagent

learning model is given in this paper. Two

multiagent learning algorithms i. e. Strategy Sharing

& Joint Rewards algorithm are implemented. In

Strategy Sharing algorithm simple averaging of Q

tables is taken. Each Q-learning agent learns from

all of its teammates by taking the average of Q-

tables. Joint reward learning algorithm combines

the Q learning with the idea of joint rewards. Paper

shows result and performance comparison of the two

multiagent learning algorithms.

Keywords — Joint Rewards, Multiagent,

Q-Learning, Reinforcement Learning, Strategy

Sharing

I. INTRODUCTION

Consider the example market chain that has

hundreds of stores all over a country selling

thousands of goods to millions of customers. The

point of sale terminals record the details of each

transaction i.e. date, customer identification code,

goods bought and their amount, total money spent

and so forth. This typically generates gigabytes of

data every day. What the mark et chain wants is to

be able to predict who are the likely customers for a

product. Again, the algorithm for this is not evident;

it changes over time and by geographic location. If

stored data is analyzed and turned into information

then it becomes useful so that we can make use of an

example to make predictions. We do not know

exactly which people are likely to buy this product,

or another product. We would not need any analysis

of the data if we know it already. But because we do

not know, we can only collect data and hope to

extract the answers to questions from data.

We do believe that there is a process that

explains the data we observe. Though we do not

know the details of the process underlying the

generation of data – for example, customer behavior

- we know that it is not completely random. People

do not go to markets and buy things at random.

When they buy beer, they buy chips; they buy ice

cream in summer and spices for Wine in winter.

There are certain patterns in the data. We may not be

able to recognize the process completely, but still we

can construct a good and useful approximation. That

approximation may not explain everything, but may

still be able to account for some part of the data.

Though identifying the complete process may not be

possible, but still patterns or regularities can be

detected.

Such patterns may help us to understand the

process, or make predictions. Assuming that the near

future will not be much different from the past and

future predictions can also be expected to be right.

There are many real world problems that involve

more than one entity for maximization of an

outcome. For example, consider a scenario of retail

shops in which shop A sales clothes, shop B sales

jewelry, shop C sales footwear and wedding house

D. In order to build a single system to automate

(certain aspects of) the marketing process, the

internals of all shops A, B, C, and D can be

modeled. The only feasible solution is to allow the

various stores to create their own policies that

accurately represent their goals and interests. They

must then be combined into the system with the aid

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 35 Number 2- May 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 61

of some of the techniques. The goal of each shop is

to maximize the profit by an increase in sale i.e.

yield maximization. Different parameters need to be

considered in this: variation in seasons, the

dependency of items, special schemes, discount,

market conditions etc. Different shops can cooperate

with each other for yield maximization in different

situations. Several independent tasks that can be

handled by separate agents could benefit from

cooperative nature of agents.

Another example of a domain that requires

cooperative learning is hospital scheduling. It

requires different agents to represent the regard of

different people within the hospital. Hospital

employees have a different outlook. X-ray operators

may want to maximize the throughput on their

machines. Nurses in the hospital may want to

minimize the patient‟s time in the hospital. Since

different people examine candidate with different

criteria, they must be represented by cooperative

agents. The output of the system is a sequence of

actions in some applications. There is no such

measure as the best action in any in-between state;

an action is excellent if it is part of a good policy. A

single action is not important; the policy is important

that is the sequence of correct actions to reach the

goal. To be able to generate a policy the machine

learning programs should able to assess the quality

of policies and learn from past good action

sequences.

This paper is organized as: Section II gives the

concept of multiagent agent learning, Section III

describes multiagent model. Strategy sharing

algorithm is given in Section IV and Joint Rewards

algorithm is given in section V. Section VI gives

experimental setup and Section VII put up the result

comparisons of all both algorithms with final

concluding remark and future scope.

II. MULTI AGENT LEARNING

An agent is a computational mechanism that

reveals a high degree of autonomy. Based on

information received from the environment, the

agent performs actions in its environment. A multi-

agent environment is one in which there is more than

one agent, where they interact with one another, and

further, where there are restrictions on that

environment such that agents may not at any given

time know everything about the world that other

agents know[1]. Two features of multi-agent

learning which establish its study as a separate field

from ordinary machine learning. First, because

multi-agent learning addresses the problem domains

involving multiple agents. The search space

considered is extraordinarily huge. Small changes in

learned behaviours can often result in random

changes in the resultant macro-level properties of the

multi-agent group as a whole due to the

communication of those agents. Second, multi-agent

learning involves multiple learners, each learning

and adapting in the context of others; this introduces

complex issues to the learning process which are not

yet fully understood[2].

Parallelism, scalability, simpler construction and

cost effectiveness are main characteristics of multi-

agent systems. Having these qualities, multiagent

systems are used to resolve complex problems,

search in large domains, execute sophisticated tasks,

and make more fault-tolerant and reliable systems.

In most of the existing systems, agents‟ behaviour

and coordination schemes are designed and fixed by

the designer. But, an agent with incomplete and

fixed knowledge and behaviour cannot be

adequately efficient in a dynamic, complex or

changing environment. Therefore, to have all

benefits of applying a multi-agent system, agent

team must learn to manage the fresh, hidden and

dynamic situations[3].

In approximately all of the present multi-agent

teams, agents learn independently. Agents are not

required to learn all things from their own

experiences. Each agent observes the others and

learns from their situation and behaviour. Also,

agents can check with more expert agents or get

guidance from them. Agents can also share their

information and learn from this information, i.e. the

agent can cooperate in learning.

In the single-agent system, only one agent

interacts with the environment. Multiagent system

(MAS) consists of multiple agents. These agents all

carry out actions and control their environment.

Each agent selects actions individually, but it is the

resulting joint action which manipulates the

environment and generates the reward for the agents.

This leads to severe consequences on the

characteristics and the complexity of the problem.

Work focused on cooperative MASs in which the

agents have to optimize a shared performance

measure[4].

III. MULTI-AGENT MODEL

Parameters for Multiagent Model

General model parameters for MAS are

described. Most model parameters extend the

parameters from single-agent systems[5]. A

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 35 Number 2- May 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 62

Multiagent System can be described using the

following model parameters:

 A discrete time step t = 0, 1, 2, 3,

 A group of n agents A = { A1, A2, . . . ,An }.

 A finite set of environment states S. A state s
t
 є

S describes the state of the system at time step t.

 A finite set of actions Ai for every agent i. The

action selected by agent i, Ai at time step t is

denoted by a
t
 є A. The joint action a ∈ A = A1 ×

. . . × An is the vector of all individual actions.

 A reward function R : S × A → R which

provides the agent i with a reward r
t+1 ∈ R(s

t
, a

t
)

based on the joint action a
t
 taken in state s

t
.

 A state transition function T: S×A×S → [0, 1]

which gives the transition probability

p(s
t
|a

t−1
, s

t−1
) that the system moves to state s

t

when the joint action a
t−1

is performed in state

s
t−1

.

These parameters are very similar to the ones in

the single-agent case. However, difficulties arise due

to the decentralized nature of the problem. Each

agent selects actions independently, but it is the

resulting joint action that manipulates the

environment and produces the reward.

Stochastic games (SGs)

Stochastic games are a very natural extension of

MDPs to multiple agents.

Definition 1: A stochastic game is a tuple (n, S,

A1…n ,T, R1…n),where n is the number of agents, S

is a set of states, Ai is the set of actions available to

agent i with A being the joint action space

A1×…×An, T is a transition function S×A×S→[0,1],

and Ri is a reward function for the i
th

 agent S×A→R.

SGs are a very natural extension of MDPs to

multiple agents[6].

Model of Multiagent Q-learning

Model of multiagent Q-learning with ε-greedy

exploration is presented here. Effect of ε -greedy

mechanism and the presence of other agents on

learning the process of one agent are studied to

develop the model. The derivation of a continuous

time equation for the Q-learning rule is firstly

demonstrated. Then the limits of this equation for

the case of a single learner are analysed. It indicates

how they change dynamically when multiple

learners are considered. Finally, it is proved that the

ε-greedy mechanism affects the shape of the

modeled function[7].

Consider the situation composed of 2 agents

with 2 actions each and a single state. The reward

functions of the agents, in this case can be described

using tables of the form:

 A= B=

where A describes the rewards, for the first agent

and B the rewards for the second agent. Q-learning

update rule can be simplified for only one state as:

Qai := Qai + α(rai − Qai)………………..........……..(1)

where

Qai Q-value of agent a for action i

rai  reward that agent a receives for executing

action i.

 a  agent and i  action

Analysis

The update rule for the first agent can be

rewritten as:

Qai (k + 1) − Qai (k) = α(rai (k + 1) − Qai(k))…........(2)

This difference equation explains the absolute

growth in Qai between times k and k + 1. To obtain

its continuous time version, consider Δt [0, 1] to

be a small amount of time.

Qai (k + Δt) − Qai (k) Δt × α(rai(k+Δt) − Qai (k))..(3)

to be the approximate growth in Qai during Δt.

if Δt = 0 then the equation becomes identity.

If Δt = 1 then it becomes Qai (k + 1) − Qai (k) = α(rai

(k + 1) − Qai(k)) i.e. equation 5.

If Δt = {0,1} then it becomes linear approximation.

Divide both sides of the equation by Δt

 α(rai(k+Δt) − Qai (k))………...(4)

taking limits Δt→0 on both sides

lim Δt→0 lim Δt→0 α (rai (k + Δt)

− Qai (k))

lim Δt→0 α (rai (k) − Qai (k))

 α (rai (k) − Qai (k))……….. ………....…(5)

It is an approximation for the continuous time

version of Equation 2.

Solution to this equation found by integration as

Qai(k)=C + rai…………...………………......(6)

where C is the constant of integration.

As is a monotonic function and limx→ =0,

it is easy to observe that the limit of Equation 3

when t→ is rai:

ai(K) = C + rai = rai…...……..(7)

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 35 Number 2- May 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 63

It is considered that only the first agent is

learning and that the second agent is using a pure

strategy then it will always generate the same reward

for the first agent. In this case, the derivation above

is sufficient to prove that Qai will monotonically

increase or decrease towards rai, for any initial value

of Qai. More particularly, the function is

monotonically increasing if Qai (0) < rai and

monotonically decreasing if Qai (0) > rai. The model

build here will be used to determine how one

learning strategy affects the action selection of

another learning agent.

IV. STRATEGY SHARING ALGORITHM

One way for knowledge sharing in multi-agents

is knowledge averaging. We can divide averaging in

two general categories, simple averaging and

weighted averaging. In simple averaging, which is

called strategy sharing, each Q-learning agent learns

from all of its teammates by taking the average of Q-

tables[8].

 = ……………………………(8)

The SS treats all agents similarly, ignoring their

level of knowledge. This method does not consider

agents‟ different expertise levels. SS algorithm is

described as:

Algorithm 1 : Strategy Sharing Algorithm

1. initialize

2. while not EndOfLearning do

3. begin

4. if InIndividualLearning Mode then

5. begin {Individual Learning}

6. xi := FindCurrentState()

7. ai := SelectAction()

8. DoAction(ai)

9. ri := GetReward()

10. yi := GoToNextState()

11. v(yi) := Maxb actionsQ(yi,b)

12. Qi
new

 (xi,ai) := (1 - βi)Qi
Old

(xi,ai)+

βi(ri +γiV(yi))

13. end

14. else {Multiagent Learning}

15. begin

16. for j := 1 to n do

17. Qi
new

 := 0

18. for j := 1 to n do

19. begin

20. Qi
new

 := Qi
new

 + 1/n ∑ Qj
old

// strategy sharing by simple

averaging of Q tables

21. end

V. JOINT REWARDS ALGORITHM

To extend Q-learning into a multi-agent system, two

main challenges exist. One is how to deal with the

huge Q-table with the increment of dimension in a

multi-agent system. The other challenge is how to

utilize the cooperative behaviour among agents to

obtain more efficient learning results. Joint rewards

ensure agents to learn in a multiagent environment.

The experiment results show the efficiency and well

convergence of the algorithm. It is not enough for

each agent to proceed selfishly in order to reach a

globally optimal strategy in a multi-agent

environment. It is not possible to accomplish with

only one agent to accomplish a task.

The section presents a joint reward learning

algorithm which combined the Q-learning with the

idea of joint rewards to meet above two challenges

partly. In a multi-agent system, every agent needs to

maintain a Q table which contains the information

about its and others agent‟ states and actions, i.e. the

situation of the whole environment. In order to

encourage cooperative behaviour among agents to

get global optimal rewards, it should take account of

the other agents‟ actions. Here, we use a simplified

of vicarious rewards for feasible to realize. We call

„joint reward‟[9],

jri = b.pri + (1 - b). ………………….(9)

where pr is the personal reward of agent i,

and the sum of rewards of other agents

except i and 0 < b ≤ 1 is the personal weight,

denoting how much importance is given to agent‟s

personal reward compared to that of other agents.

The improved update rule of Q-learning values of

agent i can be formulated as

Qi
new

 (xi, ai) := (1 - α) Qi
Old

(xi, ai) + α (jri + β maxa

Q(s, a))..(10)

Algorithm 2 : Multiagent learning using Joint

Reward Algorithm

1. For each agent i (0 < i < m) the learning

procedure as

2. for all a A and s

S initialize Q(s,a) = 0

3. let t = 0, = 0

4. Loop:

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 35 Number 2- May 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 64

5. select action a
i
 which has max Q value

6. execute action a
i

7. receive an immediate reward

8. observe the new state s

9. calculate joint rewards as

10. jri = b.pri + (1 - b). //

 sum of rewards of other

agents except i

11. update Q learning values of agent i as

Qi
new

 (xi, ai) := (1 - α) Qi
Old

(xi, ai)

+ α (jri + β maxa Q(s, a))

12. end

VI. EXPERIMENTAL SETUP

Model design:

Maximize the sale of products that depends on

price of product, customer age and period of sale.

These are the information available to each agent i.e.

shop. So it becomes the state of environment. Final

result is to maximize profit by increasing total sale

of products[10].

Input Data set:

We define the action set as the sale of possible

product. i.e. A={p1,p2,p3…….p10}

Hence action a A. State of the system is queue of

customer in the particular month for the given shop

agent. So state can be described as

X(t) = { x1(t), x2(t),m }

where

x1  customer queue with age ==> { Y, M, O } i.e.

young, middle and Old age customer

x2  price of product queue ==> { H, M, L } i.e.

High, Medium, Low

m  month of product sale ==> { 1,2,3,4……..12 }

In the system minimum, 108 states and actions

are possible. The number of state-action increases as

the number of transactions increases. For simplicity,

it is assumed that single state for each transaction

else the state space becomes infinitely large. Shop

agent observes the queue and decides product i.e.

action for each customer/state. After every sale

reward is given to the agent. The table shows the

snapshot of the dataset generated for single shop

agent.

Table 1: Snapshot of Dataset used

In a particular season, the sale of one shop

increases. With the help of cooperative learning,

other shops learn about an increase in the sale &

they can take necessary actions for their profit

maximization[11]. At time 0, the process X(t) is

observed and classified into one of the states in the

possible set of states (denoted by S). After

identification of state, the agent chooses a product

action from A. If the process is in state i and agent

chooses a A, then

i. The process transition into state j S with

probability Pij(a)

ii. Conditional on the event that the next state is j.

The time until next transition is a random

variable with probability distribution Fij(./a)

After the transition occurs, product sale action is

chosen again by the agent and (i) and (ii) are

repeated.

VII. RESULTS

The simulation results show the efficiency of

the learning algorithm. In multiagent learning

algorithms are applied to shop dataset of cloth,

jewellery & footwear shop and the result analysis is

done for a year, the specific number of products is

purchased by particular customer age group. Shop

agent will understand that in a year number of

products is to be sold to the customers having

different age group. Fig. 1 shows the results of

Strategy Sharing Algorithm for Products Vs

Customer Age count and Fig. 2 gives the results of

Joint Reward Algorithm for Products Vs Customer

Age count.

TID Age Price Month

Action

Selected

(Product)

1 Y L 1 P1,P2,P4

2 Y M 1 P2,P3

3 Y H 1 P3,P4

4 M L 1 P1,P2

5 M M 1 P1,P2,P3

6 M H 1 P4,P2

7 O L 1 P1,P3

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 35 Number 2- May 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 65

Fig. 1: Strategy Sharing Algorithm Products Vs Customer

Age Count

Fig. 2: Joint Reward Algorithm Products Vs Customer Age Count

Fig. 3: Comparison of SS & JRA Algorithms for MID

customer age group for Products Vs Quantity

Fig. 4: Comparison of SS & JRA Algorithms for OLD

customer age group for Products Vs Quantity

Fig. 5: Comparison of SS & JRA Algorithms for YOUNG

customer age group for Products Vs Quantity

 Fig 3 gives the results of comparison of SS &

JRA Algorithms for MID customer age group for

Products Vs Quantity. Fig. 4 shows the results of

comparison of SS & JRA Algorithms for OLD

customer age group for Products Vs Quantity and

Fig.5 gives the results of comparison of SS & JRA

Algorithms for YOUNG customer age group for

Products Vs Quantity
Joint Reward Learning algorithm gives precise

results than Strategy Sharing learning algorithm and

gives good predictions of the products. It gives the

pattern of product sale with customer age group for a

period. The Q function values are tabulated for

obtaining some insights. Q tables show the best

action (that is optimal the product) for different

individual states. By knowing the Q function, the

shop agent can compute best possible product for a

given state that gives maximum profit to it. Single

agent learning, multi-agent learning, cooperative

learning and improved cooperative learning

algorithms are implemented and results are

compared.

It has shown how a shop agent can effectively

use reinforcement learning in setting products

dynamically so as to maximize its profit matrix. It is

believed that this is a promising approach for profit

maximization in retail market environments with

limited information.

In multiagent learning the result analysis is done

for a year, the specific number of products is

purchased by particular customer age group. Shop

agent will understand that in a year number of

products is to be sold to the customers having the

different age group. Joint Reward Learning

algorithm gives precise results than Strategy Sharing

learning algorithm and gives good predictions of the

products. These products are combined together for

the increase in sale.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 35 Number 2- May 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 66

VIII. CONCLUSION

Learning algorithms are best suitable for

decision making. Multiagent learning has more

knowledge and information available. In this

method, sharing of information and policy is

possible. Multiagent learning always performs better

compared to single agent learning. However,

multiagent learning is still lacking in proper

communication between agents. Sharing of more

knowledge and information is possible and all

agents‟ knowledge is used equally, jointly solves the

problem cooperatively is the future scope of this

paper.

REFERENCES

[1] Adnan M. Al-Khatib “Cooperative Machine Learning

Method” World of Computer Science and Information

Technology Journal (WCSIT) ISSN: 2221-0741 Vol.1,

No.9, 380-383, 2011.

[2] Babak Nadjar Araabi, Sahar Mastoureshgh, and Majid Nili

Ahmadabadi “A Study on Expertise of Agents and Its

Effects on Cooperative Q-Learning” IEEE Transactions on

Evolutionary Computation, vol:14, pp:23-57, 2010

[3] Dr. Hamid R. Berenji David Vengerov “Learning,

Cooperation, and Coordination in Multi-Agent Systems”,

in Proceedings of 9th IEEE International Conference on

Fuzzy Systems, 2000.

[4] Ethem Alpaydin “Introduction to Machine Learning”

Second Edition, MIT Press by PHI.

[5] Jun-Yuan Tao, De-Sheng Li “Cooperative Strategy

Learning In Multi-Agent Environment With Continuous

State Space”, IEEE International Conference on Machine

Learning and Cybernetics, pp.2107 – 2111, 2006.

[6] La-mei GAO, Jun ZENG, Jie WU, Min LI “Cooperative

Reinforcement Learning Algorithm to Distributed Power

System based on Multi-Agent” 2009 3rd International

Conference on Power Electronics Systems and

Applications Digital Reference: K210509035

[7] Liviu Panait Sean Luke “Cooperative Multi-Agent

Learning: The State of the Art”, published in Journal of

Autonomous Agents and Multi-Agent Systems Volume 11

Issue 3, pp. 387 – 434, 05.

[8] M.V. Nagendra Prasad & Victor R. Lesser “Learning

Situation-Specific Coordination in Cooperative Multi-

agent Systems” in Journal of Autonomous Agents and

Multi-Agent Systems, Volume 2 Issue 2, pp. 173 – 207,

1999.

[9] Michael Kinney & Costas Tsatsoulis “Learning

Communication Strategies in Multiagent Systems”, in

Journal of Applied Intelligence, Volume 9 Issue 1, pp 71-

91, 1998.

[10] Ronen Brafman & Moshe Tennenholtz “Learning to

Coordinate Efficiently: A Model-based Approach”, in

Journal of Artificial Intelligence Research, Volume 19

Issue 1, pp. 11-23, 2003.

[11] Tom Mitchell “Machine Learning” McGraw Hill

International Edition.

http://www.ijcttjournal.org/

