
International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 59

Implementation of Viewing and Networking Systems in a

Military 3-Dimensional Environment
Firas Abdullah Thweny Al-Saedi

1
, Fadi Khalid Ibrahim

2

 1,2 Computer Engineering Department, Al-Nahrain University, Baghdad, Iraq

Abstract — This paper discusses the viewing system for a

3-Dimensional (3D) military training environment. The

viewing system is used to view the 3D environment from

different aspects to make the user able to decide what action

to take in the simulation according to the environment

parameters. Also, the networking system for the environment

is discussed, that is, another user can use another computer

connected with a network to the first one to monitor the first

user's performance. Also, the second user can choose a

soldier from the user’s soldiers team and participate in

action along with the first user.

Keywords — 3D, 3D camera, object follow camera,

networking, multiplayer.

I. INTRODUCTION

Before moving into the subject, the reader must

know what is the Virtual Reality (VR), VR is a

computer-simulated environment, whether that

environment is a simulation of the real world or an

imaginary world. Most current VR environments are

primarily visual experiences, displayed either on a

computer screen or through special or stereoscopic

displays, but some simulations include additional

sensory information, such as sound through speakers

or headphones. Some advanced, haptic systems now

include tactile information, generally known as force

feedback, in medical and gaming applications. Users

can interact with a virtual environment or a Virtual

Artifact (VA) either through the use of standard input

devices such as a keyboard and mouse, or through

multimodal devices such as a wired glove, the

Polhemus boom arm, and omni-directional treadmill.

The simulated environment can be similar to the real

world, for example, simulations for pilot or combat

training, or it can differ significantly from reality, as in

VR games. In practice, it is currently very difficult to

create a high-fidelity virtual reality experience, due

largely to technical limitations on processing power,

image resolution and communication bandwidth.

However, those limitations are expected to eventually

be overcome as processor, imaging and data

communication technologies become more powerful

and cost-effective over time [1].

In this paper and to be cost-effective, Microsoft

Visual C# 2008 [2] along with the new XNA 3.0

[3][4][5] graphics technology released by Microsoft

are used. Actually, the graphics technology used is

games-quality, this technology is used to generate a

VR environment that is used individually or through

network of two computers (this can be expanded

easily). Also, the input device used is either the

standard keyboard and mouse or using the new

Nintendo Wii Remote (Wiimote) [6][7].

Another work on networking in VR environments

can be found in [8], it reviews the techniques

developed for improving networking in distributed

interactive real-time applications. Also, techniques in

online gaming can be found in [9].

In the next sections, the camera system along with

the networking system will be discussed.

II. CAMERA

The camera is necessary in any 3D application,

everything the user sees in the screen represents what

the camera is seeing. Because of the scientific nature

of the application discussed in this paper, a camera

system is needed. The camera system is a system that

controls how the camera will be positioned in the 3D

environment, also, how the camera can avoid

obstacles. Figure 1 illustrates how the camera is

represented in the 3D environment.

Fig. 1 The 3D camera field of view

Each of camera position and camera target position

can be represented as a 3D coordinate (X,Y,Z). The

Field Of View (FOV) angle can be represented in

degrees or radians and its purpose is as what its name

implies. For the scientific purpose of the environment,

different camera views are needed. In the next

subsections, each type of the camera view is discussed.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 60

A. Free Camera

Because of the scientific nature of the environment,

the user must be able to see every part of the

environment and see the environment from any

desired angle or height. For this purpose, the free

camera is used. As what its name implies, it is a free

camera that can be moved by the user to any part of

environment. Figure 2 and Figure 3 show two

different view of the environment taken using the free

camera.

Fig. 2 A view taken using free camera

Fig. 3 A view (the user soldiers appear in action)

The free camera can be used by the user to check if

there is a danger (enemy soldiers presence) in a place

that he/she intends to send the team of soldiers to. For

the camera system to be flexible, three actions are

needed:

1. The camera must have the ability to turn left or

right.

2. The camera must have the ability to look up and

down.

3. The camera must have the ability to move

towards the direction its now facing.

Figure 4 illustrates turn left/right and looking

up/down actions.

Fig. 4 The two basic actions of the free camera

The user will use the standard keyboard keys and

mouse to move the camera in the environment. When

the user presses the right/left key (or moving mouse

left or right) the YAW angle will be updated

(increases or decreases). Also, when pressing up/down

keys (or moving mouse up or down) the PITCH angle

will be updated (increased of decreased). After

updating both angles, the new camera target position

is calculated depending on the updated angles and the

target moves to the new location. Also, when user

presses a move forward key ('W' key on the

simulation), the camera origin and target will move in

the direction they are facing. Also, when pressing

move backward key ('S' key on the simulation), the

camera origin and target will move backward (i.e. in

the opposite direction of the camera direction). Figure

5 illustrates the control system used to control the free

camera movement.

The units used in the 3D environments are called

the generic units. For the military simulation system,

the environment is designed in a way that represents

each meter by a 3.92 generic units.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 61

Start

Initialize YAW and PITCH

angles

YAW = 0o

PITCH = 0o

Initialize moving step of the

camera (camera move speed)

MoveStep = 1 unit

Initialize the movement vector

ShiftingValue = 0

Which represents the camera

movement step when facing

any direction

Set the distance from the camera

target to the camera origin

TargetDistance = 1 unit

Read input devices

Is „turn left‟ or

„turn right‟

pressed?

Update “YAW” angle
Camera target position.X = Camera position.X + TargetDistance * Sin(YAW)

Camera target position.Z = Camera position.Z + TargetDistance * Cos(YAW)

ShiftingValue.X = MoveStep * Sin(YAW)

ShiftingValue.Z = MoveStep * Cos(YAW)

Is „look up‟ or

„look down‟

pressed?

Update “PITCH” angle
Camera target position.Y = Camera position.Y + TargetDistance * Sin(PITCH)

ShiftingValue.Y = MoveStep * Sin(PITCH)

Is move forward/

backward pressed?

Camera position.X = Camera position.X + ShiftingValue.X

Camera position.Y = Camera position.Y + ShiftingValue.Y

Camera position.Z = Camera position.Z + ShiftingValue.Z

Camera target position.X = Camera target position.X + ShiftingValue.X

Camera target position.Y = Camera target position.Y + ShiftingValue.Y

Camera target position.Z = Camera target position.Z + ShiftingValue.Z

YES

NO

YES

NO

YES

NO

Fig. 5 Control system of the free camera

B. Follow Camera
This camera is used when the user wants to control

the soldier in action and use the shooting system.

Shooting system for a user controlled soldier can be

controlled from this camera mode. The reason beyond

this is that the user will use the keyboard or the

Wiimote to control soldier movement and use the

mouse to control where to aim. Figure 6 is an

illustration of this type of camera.

The camera origin will be in a point beyond the

soldier always and its height will be in an appropriate

height determined by testing what is the best height to

make a clear view to the user. Figure 7 illustrates the

follow camera mode in different views.

Fig. 6 Illustration of follow camera mode

Fig. 7 Follow Camera mode in different views

As noticed, the follow camera origin is beyond the

soldier and its height from the ground must equal the

soldier's height plus a specific value that must be

tested to see if the whole view is clear as shown in

Figure 6; the soldier and the view in front of it are

clear. The follow camera target must be at the soldier's

X,Z position but its height must be modulated to get a

clear view. Figure 8 illustrates the calculations done to

make the camera always beyond the soldier.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 62

Start

Read user input

Update soldier‟s

facing angle and

position

Set the distance that is to be kept

always between the soldier and the

camera origin

camera position.X = soldier‟s position.X – Distance * Sin(soldier‟s facing angle)

camera position.Z = soldier‟s position.Z – Distance * Cos(soldier‟s facing angle)

camera position.Y = soldier‟s position.Y + soldier‟s height + offset

camera target position.X = soldier‟s position.X

camera target position.Z = soldier‟s position.Z

camera target position.Y = soldier‟s position.Y + soldier‟s height

Fig. 8 Follow camera system

C. Camera Collision Avoidance System

In some situations, in follow camera mode, the

soldier may stand in a position that there is an obstacle

beyond it. In this case, the camera origin will be inside

that obstacle and its view will not show the soldier's

back, instead of that, it will show what is inside the

obstacle. Figure 9 shows the problem.

Fig. 9 Camera's origin inside an obstacle

To solve this problem, it is needed to reduce the

distance between the camera origin and the soldier

when the camera collides, then, getting back the

original distance when no collision occurs. The

camera movement during the position correction

stated formerly must be very smooth (moving in a

very small generic units like 0.02 unit) to keep the

camera origin moving during the correction in a very

smooth way. To know if the camera origin is colliding

with any object, the camera origin must be bound with

a bounding volume and continuously check its

collision with other bounding volumes in the

environment [10]. Figure 10 shows the system used to

avoid the camera collision. It is important to note that

this system is used only with the follow camera mode.

Start

Initialize a variable to hold the

required maximum distance

between the camera and the

soldier

ConstMaxDist = 8 units

Invoke the camera follow system

and use the distance saved in the

variable “Distance” (see Figure 8)

Is the camera origin

colliding with an obstacle?

Initialize a variable to hold the

actual distance between the

camera and the soldier

Distance = ConstMaxDist

Distance = Distance – 0.02 units

Is Distance >

ConstMinDist?

Is Distance <

ConstMaxDist?

Initialize a variable to hold the

required minimum distance

between the camera and the

soldier

ConstMinDist = 8 units

Distance = Distance + 0.02 units

YES

NO

YES

NO

NOYES

Fig. 10 Camera collision avoidance system

D. Eagle's Eye Camera

In order to be able to see a wider view of the

environment, the user needs a top-view camera that

can zoom to any part of the environment. For this the

eagle's eye camera is used. It is view is similar to what

a user gets from a satellite. Figure 11 illustrates the

eagle's eye camera.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 63

Fig. 11 Eagle's eye camera

This camera is designed to move left/right and

up/down and zoom in and out to any part of the

environment. For right/left move, the X-coordinate of

the camera origin and target is changed while for the

up/down move the Z-coordinate of the camera origin

and target is changed. For zooming in and out the Y-

coordinate of the camera origin only is changed as

shown in Figure 11. Figure 12 and Figure 13 show

two views taken using the eagle's eye camera from

inside one of the simulation environments.

Fig. 12 eagle's eye view

Fig. 13 eagle's eye view (zooming in)

III. NETWORKING SYSTEM

As stated in the abstract that this paper is a part

of a project that utilizes the 3D technology to create

a 3D military environment that can be used for

training. Two copies of the project have been

designed: the first one, the server, can be used

alone without the second one, the client, the user

(trainee) can train by leading the team of two

soldiers. The client version is used by connecting to

the server and its purpose is to be used by the

instructor to watch the performance of the trainee.

Two computers must be connected using UTP cable

and the server copy must be started first, then, the

client copy is started. The server copy do all the

calculations of collision, terrain height checking, path

finding and AI, then, all the soldier's positions and

states and other info are sent to the client, the client

only draw the environment, set the soldiers in their

received positions and states. The client does not do a

lot of calculations, it only checks the input devices

(keyboard and mouse) to change the camera view to

let the instructor see what the trainee is doing from

any desired view. The result is that the instructor can

see what the trainee is doing in totally different

perspective that the trainee is using, so the trainee

might be using the follow camera, while the instructor

is using the free camera and moving freely in the

environment to evaluate the trainee performance in

military tactics and squad strategies. Also, the

instructor can participate in the action, and choose any

of the two soldiers available in the user team at any

time and even the instructor can go to the original

mode of just monitoring and let the server computer

AI control the other soldier that is not controlled by

the trainee. In the next two subsections both network

modes discussed above will be discussed in more

detailed way.

A. Network Mode 0: Instructor Just Monitoring

In this mode, as discussed in Section (III), all the

calculations are done by the server. The info needed

by the client to draw a similar copy of the server's

environment are sent via a UTP cable. The

information needed to be sent can be classified into

blocks and they are shown in Figure 14.

User Soldier Status Info:

-Position (X,Y,Z)

-Angle (YAW, PITCH)

-Soldier State (run, walk, dead)

-Life Gauge

-Is Alive (flag)

-Is InDoor (flag)

-FireAtWill (flag)

-FollowLeader(flag)

Enemy Soldier Status Info:

-Position (X,Y,Z)

-Angle (YAW, PITCH)

-Soldier State (run, walk, dead)

-Life Gauge

-Is Alive (flag)

-Is InDoor (flag)

Environment Status Info:

Elevator Y coordinate

Fig. 14 Sent info classified into blocks

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 64

Figure 15 illustrates the server program methodology.

Start

Initialize all variables and

load all resources (models and

files) into memory

Get input from user and

change the soldier‟s

parameters according to input

Use the AI to control the

other user soldier and control

the enemy soldiers according

to user soldiers interaction

with the environment

Send the info (soldier status

info, enemy status info,

environment status info) to

the client.

Draw the environment using

the camera view chosen by

the user

Fig. 15 Server program methodology (mode 0)

Figure 15 is a very simplified version of the server

program and it is used just to take a top view of all the

components of the project. The information about

soldiers is sent in sequence, first the user soldiers info,

then the environmental status info, then the enemy

soldiers status info. Figure 16 shows the client

program methodology.

It is noticed that in this network mode, the server only

sends info and the client receives. In the next

subsection, there will be a bidirectional info transfer.

Start

Initialize all variables and

load all resources (models and

files) into memory

Get input from user to change

network modes or to change

camera view

Receive info from the server

and update the soldiers

positions, states etc...

Draw the environment using

the camera view chosen by

the user

Fig. 16 Client program methodology (mode 0)

B. Network Mode 1: Instructor and Trainee in

Action

In this mode, the instructor can participate in

action and control any soldier of the user team soldiers.

When the instructor chooses a soldier, the trainee

control will switch to the other soldier. The instructor

has the priority in choosing any soldier. This was done

to make the instructor able to control a soldier and

show the trainee how to do a specific military tactic.

Also, the instructor can switch to network mode 0, in

this case, the trainee will control a soldier, and the

computer AI will control the other. When network

mode 1 is activated, the client sends the instructor

soldier status information along with shooting ray

origin and direction [11].

Those info are sent to the server, in the server, the

instructor soldier status is updated based on the

received status info and the received shooting ray info

are checked whether it collides with an enemy to

simulate the shooting process. Also, the other

activities like terrain height checking and collision of

the trainee soldier are calculated, and then the AI of

the enemy soldiers is activated based on the moves of

the user soldiers.

Then the trainee soldier status info along with

environment status info and enemy soldiers status info

are sent to the client to be able to draw the whole

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 65

environment. Figure 17 shows the client program

methodology in network mode 1.

Start

Initialize all variables and

load all resources (models and

files) into memory

Get input from the user to

change network modes or to

change camera view

Receive info from the server

and update the trainee soldier

and enemy soldiers positions,

states etc…

Also update the environment

status info based on the

received info

Draw the environment using

the camera view chosen by

the user

Get input from the user to

control the instructor selected

soldier

Send info containing selected

soldier number, selected

network mode number,

instructor soldier status info

and instructor soldier shooting

ray info

Perform terrain height

checking and collision

checking then modulate the

instructor soldier position

based on those checks

Fig. 17 Client program methodology (mode 1)

As noticed from Figure 17, the client program in

this case, performs the calculations related to the

soldier selected by the instructor and sends the results

to the server. Figure 18 shows the server program

methodology in mode 1.

Start

Initialize all variables and

load all resources (models and

files) into memory

Receive info from the client

and change the network mode

based on the mode selected by

the instructor. Also switch the

trainee soldier to the other

soldier not selected by the

instructor.

Calculate the height checking

and collision of the trainee

soldier. Also invoke the

shooting system check based

on trainee target aiming and

received shooting ray info.

Control the enemy soldiers

according to user soldiers

interaction with the

environment

Send the info (trainee soldier

status info, enemy status info,

environment status info) to

the client.

Draw the environment using

the camera view chosen by

the user

Get input from user and

change the soldier‟s

parameters according to input

Fig. 18 Server program methodology (mode 1)

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 66

IV. CONCLUSIONS

The subjects discussed in this paper are parts of a

project that simulates a military environment. The

camera system is very important in a military

environment. The user must be able to see any part of

the environment to build decisions based on what

he/she sees. Also, the networking system was

discussed here. Its importance is in military trainings

where the instructor will monitor the behavior of the

trainee from totally different perspective. This can be

thought as having two cameras in the same

environment, one camera used by the trainee, the other

camera used by the instructor.

REFERENCES

[1] en.wikipedia.org/wiki/Virtual_reality.

[2] Rob Miles, "C# Development", Department of Computer
Sciences, University of HULL, October 2008.

[3] Aaron Reed, "Learning XNA 3.0", O'Reilly Media, 2009.

[4] Chad Carter. "Microsoft XNA Unleashed: Graphics and Game
programming for XBOX360 and Windows", SAMS Publishing,

2008.

[5] Reimer Grootjans, "XNA 3.0 Game Programming Recipes: A
Problem-Solution Approach", Apress, March 9, 2009.

[6] en.wikipedia.org/wiki/Wii.

[7] http://blogs.msdn.com/coding4fun/archive/
2007/03/14/1879033.asp.

[8] Jouni Smed, Timo Kaukoranta and Harri Hakonen, "A Review

on Networking and Multiplayer Computer Games", 2002.
[9] Marius Preda, Paulo Villegas, Franciso Morán, Gauthier Lafruit

and Robert-Paul Berretty, "A model for adapting 3D graphics

based on scalable coding, real-time simplification and remote
rendering", 2008.

[10] Firas Abdullah Thweny, Fadi K. Ibrahim, "Implementation of

Terrain Height Detection and Collision Check Systems in 3-
Dimensional Environment", American Journal of Intelligent

Systems, Vol. 4, No.4 , 2014.

[11] Firas Abdullah Thweny, Fadi K. Ibrahim, "Implementation of
Sight and Shooting Systems with Rule-Based Artificial

Intelligence in a Military 3-Dimensional Environment", IJCTT

Journal Vol.29, No.2, 2015.

http://www.ijcttjournal.org/

