
International Journal of Computer Trends and Technology (IJCTT) – volume 25 Number 2 – July 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 62

An Efficient Guilt Detection Approach for Identifying

Data Leakages

Anand Kiran
Assistant Professor, Department Of Computer Science & Engineering, Government Women’s Polytechnic

Muzaffarpur, Bihar, INDIA

Abstract — In this paper we develop a model for

assessing the “guilt” of agents. We also present algorithms

for distributing objects to agents, in a way that improves our

chances of identifying a leaker. Finally, we also consider the

option of adding “fake” objects to the distributed set. Such

objects do not correspond to real entities but appear

realistic to the agents. In a sense, the fake objects acts as a

type of watermark for the entire set, without modifying any

individual members. If it turns out an agent was given one

or more fake objects that were leaked, then the distributor

can be more confident that agent was guilty.

A distributor owns a set T = {t1, t2, . . . , tm} of

valuable data objects. The distributor wants to share some

of the objects with a set of agents U1, U2,… Un, but does

not wish the objects be leaked to other third parties. The

objects in T could be of any type and size, e.g., they could be

tuples in a relation, or relations in a database. An agent Ui

receives a subset of objects Ri ⊆ T, determined either by a

sample request or an explicit request:

• Sample request Ri = SAMPLE(T,mi): Any subset

of mi records from T can be given to Ui.

• Explicit request Ri = EXPLICIT(T, condi): Agent

Ui receives all the T objects that satisfy condi.

A data distributor has given sensitive data to a set of

supposedly trusted agents (third parties). Some of the

data is leaked and found in an unauthorized place (e.g.,

on the web or somebody’s laptop). The distributor must

assess the likelihood that the leaked data came from one

or more agents, as opposed to having been

independently gathered by other means.

Keywords — Fake Object, Guilty Agent, Data Object,

Third Party, Watermark, Data Warehousing.

I. INTRODUCTION

In this paper we develop a model for

assessing the “guilt” of agents. We also present

algorithms for distributing objects to agents, in a

way that improves our chances of identifying a

leaker. Finally, we also consider the option of

adding “fake” objects to the distributed set. Such

objects do not correspond to real entities but appear

realistic to the agents. In a sense, the fake objects

acts as a type of watermark for the entire set,

without modifying any individual members. If it

turns out an agent was given one or more fake

objects that were leaked, then the distributor can be

more confident that agent was guilty.

A distributor owns a set T = {t1, t2, . . . , tm} of

valuable data objects. The distributor wants to share

some of the objects with a set of agents U1, U2,…

Un, but does not wish the objects be leaked to other

third parties. The objects in T could be of any type

and size, e.g., they could be tuples in a relation, or

relations in a database.

II. SYSTEM ANALYSIS

A. Existing Systemt

Traditionally, leakage detection is handled by

watermarking, e.g., a unique code is embedded in each

distributed copy. If that copy is later discovered in the

hands of an unauthorized party, the leaker can be

identified. Watermarks can be very useful in some

cases, but gain, involve some modification of the

original data. Furthermore, watermarks can sometimes

be destroyed if the data recipient is malicious.

As far as the data allocation strategies are

concerned, our work is mostly relevant to

watermarking that is used as a means of establishing

original ownership of distributed objects. Watermarks

were initially used in images, video and audio data

whose digital representation includes considerable

redundancy. Our approach and watermarking are

similar in the sense of providing agents with some

kind of receiver-identifying information. However, by

its very nature, a watermark modifies the item being

watermarked. If the object to be watermarked cannot

be modified then a watermark cannot be inserted. In

such cases methods that attach watermarks to the

distributed data are not applicable.

B. Proposed Systemt

We propose data allocation strategies (across

the agents) that improve the probability of

identifying leakages. The two types of requests we

handle were defined to sample and explicit. Fake

objects are objects generated by the distributor that

are not in set T. The objects are designed to look

like real objects, and are distributed to agents

together with the T objects, in order to increase the

chances of detecting agents that leak data.

We have shown it is possible to assess the

likelihood that an agent is responsible for a leak,

based on the overlap of his data with the leaked

data and the data of other agents, and based on the

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 25 Number 2 – July 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 63

probability that objects can be “guessed” by other

means.

III. LTERATURE SURVEY

we enunciate the need for watermarking

database relations to deter their piracy, identify

the unique characteristics of relational data which

pose new challenges for watermarking, and

provide desirable properties of a watermarking

system for relational data. A watermark can be

applied to any database relation having attributes

which are such that changes in a few of their

values do not affect the applications. We then

present an effective watermarking technique

geared for relational data. This technique ensures

that some bit positions of some of the attributes of

some of the tuples contain specific values. The

tuples, attributes within a tuple, bit positions in an

attribute, and specific bit values are all

algorithmically determined under the control of a

private key known only to the owner of the data.

This bit pattern constitutes the watermark. Only if

one has access to the private key can the

watermark be detected with high probability.

Detecting the watermark neither requires access to

the original data nor the watermark. The

watermark can be detected even in a small subset

of a watermarked relation as long as the sample

contains some of the marks. Our extensive analysis

shows that the proposedtechnique is robust against

various forms of malicious attacks and updates to

the data. Using an implementation running on

DB2, we also show that the performance of the

algorithms allows for their use in real world

applications.[1]

Data warehousing systems integrate

information from operational data sources into a

central repository to enable analysis and mining of

the integrated information. During the integration

process, source data typically undergoes a series of

transformations, which may vary from simple

algebraic operations or aggregations to complex

“data cleansing” procedures.In a warehousing

environment, the data lineage problem is thatof

tracing warehouse data items back to the original

source items from which they were derived. We

formally define the lineage tracing problem in the

presence of general data warehouse

transformations, and we present algorithms for

lineage tracing in this environment. Our tracing

procedures take advantage of known structure or

properties of transformations when present, but

also work in the absence of such information. Our

results can be used as the basis for a lineage

tracing tool in a general warehousing setting, and

also can guide the design of data warehouses that

enable efficient lineage tracing.[2]

Privacy, preservation and performance (“3

P’s”) are central design objectives for secure

distributed data management systems. However,

these objectives tend to compete with one another.

This paper introduces a model for describing

distributed data management systems, along with a

framework for measuring privacy, preservation

and performance. The framework enables a system

designer to quantitatively explore the tradeoff

between the 3 P’s

IV. SYSTEM DESIGN

A. Module

1) Data distribution

2) Fake objects

3) Sample request

4) Explicit request

5) Identifying the Guilty Agent

B. Module Description

1. Data distribution: Distributor “intelligently”

gives data to agents in order to improve the

chances of detecting a guilty agent. The two

types of requests we handle to distribute the

data are sample and explicit. Fake objects are

objects generated by the distributor that are

not in set T. The algorithms we have presented

implement a variety of data distribution

strategies that can improve the distributor’s

chances of identifying a leaker.

2. Fake objects: The distributor may be able

to add fake objects to the distributed data in

order to improve his effectiveness in detecting

guilty agents. Here, we model the creation of a

fake object for agent Ui as a black-box

function CREATEFAKEOBJECT(Ri, Fi,

condi) that takes as input the set of all objects

Ri the subset of fake objects Fi that Ui has

received so far and condi, and returns a new

fake object. This function needs condi to

produce a valid object that satisfies Ui’s

condition. Set Ri is needed as input so that the

created fake object is not only valid but also

indistinguishable from other real objects.

3. Sample request: Sample request Ri =

SAMPLE(T,mi): Any subset of mi records

from T can be given to Ui With sample data

requests, each agent Ui may receive any T

subset out of different ones. Hence, there are

different object allocations. In every

allocation, the distributor can permute T

objects and keep the same chances of guilty

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 25 Number 2 – July 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 64

4. agent detection. The reason is that the guilt

probability depends only on which agents

have received the leaked objects and not on

the identity of the leaked objects.

5. Explicit request: Explicit request Ri =

EXPLICIT (T, condi): Agent Ui receives all

the T objects that satisfy condi With explicit

data requests, each agent Ui may receive T

subset which satisfies the condition condi.

Hence, there are different object allocations.

In every allocation, the distributor can permute

T objects and keep the same chances of guilty

agent detection. The reason is that the guilt

probability depends only on which agents

have received the leaked objects and not on

the identity of the leaked objects.

6. Identifying the Guilty Agent: Suppose

that after giving objects to agents, the

distributor discovers that a set S ⊆ T has

leaked. This means that some third party

called the target has been caught in possession

of S. Since the agents U1 , . . . , Un have some

of the data, it is reasonable to suspect them

leaking the data.

V. ARCHITECTURAL DIAGRAM

Distributor has records

r1,r2 ,…. ,r n conditions cond1,

cond2…., condn

Agent U1

receives (r1, f1,

cond1)

Agent U2

receives (r2, f2,

cond2)

Agent U3

receives

(r3, f3, cond3)

Selects Agent and distribute

data with fake objects

Unknown Agent has r1,

r2, r6 It may be leaked by

Agents or may be

guessed.

Distributor identifies the

guilty agent by comparing

with the data distributed to

them

Explicit Request

form Agents

Agent U4 receives

 (r4, f4)

Agent U5 receives

 (r5, f5)

Agent U6 receives

 (r6, f6)

Sample Request

from Agents

Stores the

records

which is

distributed

to the

Agents

Selects Agent and

distribute data with

fake objects by

satisfying their

condition

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 25 Number 2 – July 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 65

VI. SYSTEM IMPLEMENTATION

Implementation is the most crucial stage in

achieving a successful system and giving the user’s

confidence that the new system is workable and

effective. Implementation of a modified application to

replace an existing one. This type of conversation is

relatively easy to handle, provide there are no major

changes in the system.

Each program is tested individually at the

time of development using the data and has verified

that this program linked together in the way specified

in the programs specification, the computer system

and its environment is tested to the satisfaction of the

user. The system that has been developed is accepted

and proved to be satisfactory for the user. And so the

system is going to be implemented very soon. A

simple operating procedure is included so that the user

can understand the different functions clearly and

quickly.

Initially as a first step the executable form of

the application is to be created and loaded in the

common server machine which is accessible to the

entire user and the server is to be connected to a

network. The final stage is to document the entire

system which provides components and the operating

procedures of the system.

VII. FUTURE DEVELOPMENT

Every application has its own merits and

demerits. The project has covered almost all the

requirements. Further requirements and improvements

can easily be done since the coding is mainly

structured or modular in nature. Changing the existing

modules or adding new modules can append

improvements. Further enhancements can be made to

the application, so that the web site functions very

attractive and useful manner than the present one.

VIII. METHODOLOGY

A. LOGIN FOR CUSTOMER, AGENT, ADMIN

B. CUSTOMER PRODUCT DETAILS

C. PRODUCT DETAILS OF CUSTOMER

AND ADMIN –AGENT SITE

D. ADMIN PAGE- REGISTER FORM TO

ADD NEW AGENT

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 25 Number 2 – July 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 66

E. AGENT SITE TO ADD NEW CUSTOMER

F. GENT SITE INFORMATION ABOUT

THEIR RESPECTIVE CUSTOMERS

G. ADMIN PADE FOR VEIWING THE

ENTIRE CLIENT DETAILS AND PR

ODUCT TRANSACTIONS

H. ADMIN PAGE TO FIND GUILT AGENT

IX. CONCLUSION

We have shown it is possible to assess the

likelihood that an agent is responsible for a leak, based

on the overlap of his data with the leaked data and the

data of other agents, and based on the probability that

objects can be “guessed” by other means.

 Fake objects are objects generated by the

distributor that are not in set T. The objects are

designed to look like real objects, and are distributed

to agents together with the T objects, in order to

increase the chances of detecting agents that leak data.

Our model is relatively simple; the

algorithms we have presented implement a variety of

data distribution strategies that can improve the

distributor’s chances of identifying a leaker.

X. REFERENCES

[1] R. Agrawal and J. Kiernan,“Watermarking Relational

Databases”Proc 28th Int’l Conf. Very Large Data Bases

(VLDB ’02), VLDB Endowment, pp. 155-166, 2002.
[2] P. Bonatti, S.D.C. di Vimercati, and P. Samarati, “An Algebra

for Composing Access Control Policies,” ACM Trans.

Information and System Security, vol. 5, no. 1, pp. 1-35, 2002.
[3] P. Buneman, S. Khanna, and W.C. Tan, “Why and Where: A

Characterization of Data Provenance,” Proc. Eighth Int’l

Conf.Database Theory (ICDT ’01), J.V. den Bussche and V.
Vianu, eds.,pp. 316-330, Jan. 2001.

[4] P. Buneman and W.-C. Tan, “Provenance in Databases,”

Proc.ACM SIGMOD, pp. 1171-1173, 2007.
[5] Y. Cui and J. Widom, “Lineage Tracing for General Data

Warehouse Transformations,” The VLDB J., vol. 12, pp. 41-

58,2003.
[6] S. Czerwinski, R. Fromm, and T. Hodes, “Digital Music

Distribution and Audio

Watermarking,”http://www.scientificcommons.org/43025658,
2007.

[7] F. Guo, J. Wang, Z. Zhang, X. Ye, and D. Li, “An Improved

Algorithm to Watermark Numeric Relational Data,”
Information Security Applications, pp. 138-149, Springer,

2006.
[8] F. Hartung and B. Girod, “Watermarking of Uncompressed

and Compressed Video,” Signal Processing, vol. 66, no. 3, pp.

283-301,1998.
[9] S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian,

“Flexible Support for Multiple Access Control Policies,”

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 25 Number 2 – July 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 67

ACM Trans. Database Systems, vol. 26, no. 2, pp. 214-260,

2001.

[10] Y. Li, V. Swarup, and S. Jajodia, “Fingerprinting Relational

Databases: Schemes and Specialties,” IEEE Trans.

Dependable and Secure Computing, vol. 2, no. 1, pp. 34-45,
Jan.-Mar. 2005.

[11] B. Mungamuru and H. Garcia-Molina, “Privacy, Preservation

and Performance: The 3 P’s of Distributed Data
Management,”technical report, Stanford Univ., 2008.

[12] V.N. Murty, “Counting the Integer Solutions of a Linear

Equation with Unit Coefficients,” Math. Magazine, vol. 54, no.
2, pp. 79-81,1981.

[13] S.U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R.

Motwani,“Towards Robustness in Query Auditing,” Proc.
32nd Int’l Conf.Very Large Data Bases (VLDB ’06), VLDB

Endowment, pp. 151-162,2006.

[14] P. Papadimitriou and H. Garcia-Molina, “Data Leakage
Detection,”technical report, Stanford Univ., 2008.

[15] P.M. Pardalos and S.A. Vavasis, “Quadratic Programming

with One Negative Eigenvalue Is NP-Hard,” J. Global
Optimization,vol. 1, no. 1, pp. 15-22, 1991.

http://www.ijcttjournal.org/

