
International Journal of Computer Trends and Technology- volume2Issue2- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 147

Code Clone Detection with Refactoring support
Through Textual analysis

G. Anil kumar1 Dr. C.R.K.Reddy2 Dr. A. Govardhan3 Gousiya Begum4

1,4MGIT, Dept. of Computer science Hyderabad, India
2CBIT, Dept. of Computer science,Hyderabad, India

3SIT, JNTUH Dept. of Computer science, Hyderabad, India
Abstract
Copying code fragments and then reuse by pasting with or without minor modifications or adaptations are common activities in
software development. This type of reuse approach of existing code is called code cloning and the pasted code fragment without is
called a clone of the original. One of the major shortcomings of such duplicated fragments is that if a bug is detected in a code
fragment; all the other fragments similar to it should be investigated to check the possible existence of the same bug in the similar
fragments. In this paper, we compare different clone detection techniques and tools. First part of this paper explains the
classification of clone detection techniques and the later work done in this area and proposed method.

Key words: Software clone, Clone Detection, clone cluster, clone pair

1. INTRODUCTION

Copying code fragments and then reuse by pasting
with or without minor modifications or adaptations are
common activities in software development. This type of
reuse approach of existing code is called code cloning and
the pasted code fragment (with or without modifications) is
called a clone of the original [1]. The area of clone detection
(i.e., searching for duplicate fragments of source code) has
received wide interest recently as indicated by numerous
efforts in clone detection tool development [2]. A clone
detector must try to find pieces of code of high similarity in
a system’s source text. The main problem is that it is not
known beforehand which code fragments may be repeated.
Thus the detector really should compare every possible
fragment with every other possible fragment. Such a
comparison is prohibitively expensive from a computational
point of view and thus, several measures are used to reduce
the domain of comparison before performing the actual
comparisons. Even after identifying potentially cloned
fragments, further analysis and tool support may be required
to identify the actual clones [3].

The act of copying indicates the programmer’s intent to
reuse the implementation of some abstraction. The act of
pasting is breaking the software engineering principle of
encapsulation. While cloning may be unstructured, it is
commonplace and unlikely to disappear via fiat. A clone is a
program fragment that identical to another fragment. A near
miss clone is a fragment, which is nearly identical to another
[4]. There are different forms of redundancy in software.
Software comprises both programs and data. Sometimes
redundant is used also in the sense of superfluous in the
software engineering literature. Redundant code is also
often misleadingly called cloned code although that implies

that one piece of code is derived from the other one in the
original sense of this word. Although cloning leads to
redundant code, not every redundant code is a clone.
There may be cases in which two code segments that are no
copy of each other just happen to be similar or even
identical by accident. Also, there may be redundant code
that is semantically equivalent but has a completely
different implementation [5].

Clones in general are classified under 4 categories. The
Clones in general are classified under 4 categories. The first
two may be detected through the similarities found in the
program text that has been copied. They may be defined as:
• Type 1 is an exact copy without modifications (except for
whitespace and comments).
• Type 2 is a syntactically identical copy; only variable,
type, or function identifiers vary.
The results of the code clone detection are usually given as
clone pairs/clone clusters along with their
location/occurrence.
• Type 3 is copy with further modifications, (a new
statement can be added, or some statements can be
removed)
• Type 4 clones are the results of semantic similarity
between two or more code fragments.

Clone detection techniques attempt at finding duplicated
code, which may have undergone minor changes afterward.
The typical motivation for clone detection is to factor out
copy-paste-adapt code, and replace it by a single procedure
[6]. Clone detection finds code in large software systems
that has been replicated and modified by hand. Remarkably,
clone detection works because people copy conceptually
identifiable blocks of code, and make only a few changes,

International Journal of Computer Trends and Technology- volume2Issue2- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 148

which means the same syntax is detectably repeated. Each
identified clone thus indicates the presence of a useful
problem domain concept, and simultaneously provides an
example implementation. Differences between the copies
identify parameters or points of variation. Clones can thus
enhance a product line development in a number of ways:
removal of redundant code, lowering maintenance costs,
identification of domain concepts for use in the present
system or the next, and identification of parameterized
reusable implementations [7]. Detecting code clones is
useful for software development and maintenance tasks
including identifying refactoring candidates, finding
potential bugs, and understanding software evolution. Most
clone detectors are based on textual similarity [8].

Cloning is known to hamper productivity of software
maintenance in classical code-based development
environments. This is due to the fact that changes to cloned
code are error-prone as they need to be carried out multiple
times for all (potentially unknown) instances of a clone.
Hence, the software engineering community developed a
multitude of approaches and powerful tools for the detection
of code clones [9]. Code clones are sections of code that
occur in multiple locations in a program. Clone detection
tools aim to automatically search for clones and report any
detected clones back to the user. A textual representation of
the result consists of clones being listed together, along with
the source file names and line locations (i.e., starting and
ending line location) of each clone instance. A scatter plot is
a popular graphical representation of clone detection results
where duplicate sections of code are identified as a sequence
of connected dots in a graph [10]. Fast algorithms typically
fail to identify some Type-2 and most Type-3 clones, but
scale to large systems, while those that target Type-3 clones
using dependence-based algorithms may find Type-3 clones,
but at a high computational cost. Thus, the current state of
the art presents the software engineer with a classic ‘speed-
quality’ trade off [11].

Code clones are required to be tracked, managed, and
possibly should be removed through refactoring wherever
feasible. And support for such activities should be integrated
with the IDEs for blending clone management with actual
development effort. However, most clone detectors are
developed as separate tools. Those few tools that are
integrated with IDEs are mostly focussed in detecting Type-
1 and Type-2 clones, and are yet to offer sufficient support
for flexible clone management and refactoring [12]. Clone
detection techniques are promising in this respect, due to
two likely causes of code cloning occurring within scattered
crosscutting concern implementations. First, by definition,
scattered code is not well modularized. Several reasons can
be identified for this lack of modularity, including missing
features of the implementation language (exception
handling or aspects, for instance), or the way the system was
designed. In both cases, developers are unable to reuse

concern implementations through the language module
mechanism. Therefore, they are forced to write the same
code over and over again, typically resulting in a practice of
copying existing code and adapting it slightly to their needs
[13]. An important application of clone detection is the
improvement of source code quality by refactoring
duplicated code fragments [14].

2. MOTIVATIONS OF THE RESEARCH

Clone detection techniques aim at finding duplicated code,
which may have been adapted slightly from the original
[15]. Token based approach is applied for the detection of
simple clones. It provides a suitable level of flexibility for
the task by limiting the language dependence, being resilient
to the differences in code layout, while providing a good
mechanism for detecting parameterized simple clones.
Having transformed a source program into a string of
tokens, we compute the maximal repeats in the string with a
suffix array based algorithm [16]. These maximal repeats,
with some heuristic based pruning, form clone classes.
Although our detection of simple clones is much similar to
the previously published approach, the novel contribution is
in the introduction of a simple and flexible tokenization
technique, and the selection of efficient data structures and
algorithms for token string manipulation [17].

Software projects contain much similar code (i.e., code
clones), which may be introduced by many commonly
adopted software development practices, such as reusing a
generic framework, following a specific programming
pattern, and directly copying and pasting code. These
practices can improve the productivity of software
development by quickly replicating similar functionalities.
However, such practices, especially copying and pasting,
can also reduce program maintainability and introduce
subtle programming errors. For example, when
enhancements or bug fixes are done on a piece of duplicated
code, it is often necessary to make similar modifications to
the other instances of the code [18].

Copying code fragments and then re-use by pasting with or
without minor modifications or adaptations are common
activities in software development. This type of re-use
approach of existing code is called code cloning and the
pasted code fragment is called a ‘clone’ of the original. The
cloned fragments have also been classified under four
categories based on the extent of their similarity. Code
cloning is not only assumed to inflate maintenance costs but
also considered defect-prone as inconsistent changes to code
duplicates can lead to unexpected behavior. Such cloned
code is considered harmful for two reasons: (1) multiple,
possibly unnecessary, duplicates of code increase
maintenance costs and, (2) inconsistent changes to cloned
code can create faults and, hence, lead to incorrect program
behavior. It is important to understand, that clones do not

International Journal of Computer Trends and Technology- volume2Issue2- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 149

directly cause faults but inconsistent changes to clones can
lead to unexpected program behavior. Clone detectors have
been applied to a large variety of tasks in both research and
practice, including quality assessment, software
maintenance and reengineering, identification of
crosscutting concerns, plagiarism detection and
investigation of copyright infringement.

2.1 RELATED WORKS
A handful of clone detection schemes, which employ textual
and metric techniques for improved performance, have been
presented in the literature. In addition to the above, some
researchers have made use of code detection techniques for
detecting 2 or more clones in a software code. Recently,
incorporating textural and metric schemes for detecting the
clones to improve its performance and effectiveness has
received a great deal of attention among researchers in
software engineering community. A brief review of some
recent researches is presented here.

Fabio Calefato et al [19] described how a semi automated
approach could be used to identify cloned functions within
scripting code of web applications. The approach was based
on the automatic selection of potential function clones and
the visual inspection of selected script functions. The results
obtained from the clone analysis of four web applications
showed that the semi automated approach was both
effective and efficient at identifying function clones in web
applications, and could be applied to prevent clone from
spreading or to remove redundant scripting code.

Stephane Ducasse et al [20] investigated a number of simple
variants of string-based clone detection that normalize
differences due to common editing operations, and assessed
the quality of clone detection for very different case studies.
Their results confirmed that the inexpensive clone detection
technique generally achieved high recall and acceptable
precision. Overzealous normalization of the code before
comparison, however, could result in an unacceptable
numbers of false positives.

C. Kapser et al [21] presented an in-depth case study of
cloning in a large software system that is in wide use, the
Apache web server; they provided insights into cloning as it
exists in this system, and they demonstrated techniques to
manage and make effective use of the large result sets of
clone detection tools. In their case study, they found several
interesting types of cloning occurrences, such as “cloning
hotspots”, where a single subsystem comprising only 17%
of the system code contained 38.8% of the clones. They also
founded several examples of cloning behavior that were
beneficial to the development of the system, in particular
cloning as a way to add experimental functionality.

Chanchal K. Roy et al [22] provided a qualitative
comparison and evaluation of the current state-of-the-art in

clone detection techniques and tools, and organized the
large amount of information into a coherent conceptual
framework. They began with background concepts, a
generic clone detection process and an overall taxonomy of
current techniques and tools. They then classified, compared
and evaluated the techniques and tools in two different
dimensions. Finally, they provided examples of how one
might use the results of that study to choose the most
appropriate clone detection tool or technique in the context
of a particular set of goals and constraints.

Robert Tibshirani et al [23] applied the fused lasso method
to the “hot-spot” detection problem in comparative genomic
hybridization (CGH) data. The CGH signal was
approximated by a piecewise function that has relatively
sparse areas with nonzero values. Hence, the method was
useful for determining which areas of the signal were likely
to be nonzero.

Mohammed Abdul Bari et al [24] discussed the concept of
code cloning, presented overcall taxonomy of current
techniques and tools, and classified evolution tools in two
different format as static code clone and dynamic code
cloning, that together presented with program analysis,
secondly as a solution the static code was divided into four
parts as T1, T2, T3, T4, to finally develop a process to
detect and remove code cloning.

3. PROPOSED METHODOLOGY
The area of Clone Detection has considerably evolved over
the last decade, leading to approaches with better results, but
at the same time with increasing complexity using elaborate
algorithms and tool chains. Some of the existing techniques
for clone detection are textual comparison, token
comparison, comparison of Abstract Syntax trees, Suffix
trees, Program Dependency Graphs, etc. The existing
scalable and semantics-based approaches are limited to
finding program fragments which are similar only in their
syntax or semantically equivalent control structures. The
other techniques listed above require more complex parsing
techniques while the Precision and recall of the techniques
on the average remain more or less equal. Also most of the
Clone Detection techniques are confined only to a certain
type of clone. No clone detection tool has been proposed
for the detection of all four types of clones.

This is a proposal for a new technique for code clone
detection, which helps us to detect all the four types of
clones as given in literature. It is a lightweight method for
the detection of clones. It also provides refactoring support
for further solutions with the detected clones. Our proposal
is the hybrid combination of metric-based approach
combined with the textual comparison of the source code for
the detection of functional Clones in source code. Various
metrics had been formulated and their values were utilized
during the detection process. Compared to the other

International Journal of Computer Trends and Technology- volume2Issue2- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 150

approaches, this method is considered to be the least
complex and is to provide a more accurate and efficient way
of Clone Detection. It has to be implemented as a tool using
Java.

REFERENCES
[1] Chanchal Kumar Roy and James R Cordy, “A Survey on
Software Clone Detection Research”, Computer and
Information Science, Vol. 115, No. 541, pp. 115, 2007
[2] Robert Tairas, “Clone detection and refactoring”,
Proceeding of OOPSLA '06 Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pp. 780-781, New
York, USA, 2006
[3] Chanchal K. Roy, James R. Cordya and Rainer
Koschkeb, “Comparison and Evaluation of Code Clone
Detection Techniques and Tools: A Qualitative Approach”,
Journal Science of Computer Programming, Vol. 74, No.7,
pp. 470-495, May 2009
[4] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo
Sant Anna and Lorraine Bier, “Clone Detection Using
Abstract Syntax Trees”, Proceedings of the International
Conference on Software Maintenance, pp. 368, Washington
DC, USA 1998
[5] Kodhai.E, Perumal.A, and Kanmani.S, "Clone Detection
using Textual and Metric Analysis to figure out all Types of
Clones", Proceedings of the International Joint Journal
Conference on Engineering and Technology, pp. 99-103,
2010
[6] Magiel Bruntink, Arie van Deursen,Tom Tourwe and
Remco van Engele, "An Evaluation of Clone Detection
Techniques for Identifying Crosscutting Concerns",
Proceedings of the 20th IEEE International Conference on
Software Maintenance, pp. 200- 209,Washington DC, USA
2004
[7] Ira D. Baxter and Dale Churchett, "Using Clone
Detection to Manage a Product Line", Clone detection using
abstract syntax trees, pp. 1-3,1998
[8] Heejung Kimy, Yungbum Jungy, Sunghun Kimx and
Kwangkeun Yi, "MeCC: Memory Comparison-based Clone
Detector", 33rd international conference on software
engineering, Waikiki,Honolulu, Hawaii, May 21-28,2011
[9] Florian Deissenboeck, Benjamin Hummel, Elmar
Jurgens, Bernhard Schatz, Stefan Wagner, Jean-François
Girard and Stefan Teucher, "Clone detection in automotive
model-based development", Proceedings of the 30th
international conference on Software engineering, pp. 613-
622,New York, NY, USA,2008
[10] Robert Tairas, Jeff Gray and Ira Baxter, "Visualization
of clone detection results",Proceedings of the 2006
OOPSLA workshop on eclipse technology exchange ACM,
pp 50-54, New York,USA,2006
[11] Yue Jia, David Binkley, Mark Harman, Jens Krinke
and Makoto Matsushita, "KClone: A Proposed Approach to
Fast Precise Code Clone Detection", Computer and
Information Science, pp. 12-16, 2009

[12] Minhaz F. Zibran and Chanchal K. Roy, "Towards
Flexible Code Clone Detection, Management, and
Refactoring in IDE", Fifth International Workshop on
Software Clones,Waikiki, Hawaii, USA,May 23,2011
[13] M. Kim, L. Bergman, T.A. Lau, and D. Notkin, “An
Ethnographic Study of Copy and Paste Programming
Practices in OOPL,” Proc. Int’l Symp. Empirical Software
Eng. (ISESE ’04), pp. 83-92, Aug. 2004
[14] M. Rieger, S. Ducasse, and G. Golomingi, “Tool
Support for Refactoring Duplicated OO Code,” Proc.
European Conf. Object- Oriented Programming (ECOOP
’99), pp. 177-178, June 1999.
[15] Magiel Bruntink, Arie van Deursen,Remco van
Engelen, and Tom Tourwe, "On the Use of Clone Detection
for Identifying Crosscutting Concern Code", Ieee
Transactions On Software Engineering, Vol. 31, No. 10,pp.
804-818, October 2005
[16] Abouelhoda M.I., Kurtz S.and Ohlebusch E, "The
enhanced suffix array and its applications to genome
analysis", In Proc. Workshop on Algorithms in
Bioinformatics, vol. 2452,pp. 449–463, Berlin, 2002
[17] Hamid Abdul Basit and Stan Jarzabek, "Detecting
Higher-level Similarity Patterns in Programs", European
Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pp
1-10 Lisbon, Sept. 2005 [18] Lingxiao Jiang, Zhendong Su
and Edwin Chiu, “Context-based detection of clone-related
bugs”, Proceedings of the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pp.
55 – 64, New York, USA, 2007.
[19] Fabio Calefato, Filippo Lanubile, Teresa Mallardo,
"Function Clone Detection in Web Applications: A
Semiautomated Approach", Journal of Web Engineering,
Vol. 3, No.1, pp.003-021, 2004.
[20] Stephane Ducasse, Oscar Nierstrasz and Matthias
Rieger, "On the effectiveness of clone detection by string
matching", Journal of Software Maintenance and Evolution,
Vol.18, pp.37–58, 2006.
[21] C. Kapser and M. W. Godfrey. Supporting the Analysis
of Clones in Software Systems: A Case Study. J. Softw.
Maint. Evol., Vol.18, No.2, pp.61–82, 2006.
[22] Chanchal K. Roy, James R. Cordya and Rainer
Koschkeb, “Comparison and Evaluation of Code Clone
Detection Techniques and Tools: A Qualitative Approach”,
Journal Science of Computer Programming, Vol. 74, No.7,
May 2009.
[23] Robert Tibshirani, Pei Wang, "Spatial smoothing and
hot spot detection for CGH data using the fused lasso",
Biostatistics, pp.1-7, 2007.
 [24] Mohammed Abdul Bari, Dr. Shahanawaj Ahamad,
"Code Cloning: The Analysis, Detection and Removal",
International Journal of Computer Applications (0975 –
8887) Vol. 20, No.7, April 2011.

