
International Journal of Computer Trends and Technology- volume2Issue2- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 134

An Authenticated Policy-Compliant Routing

Tatarao Dagani, JNTU University, Kakinada.

Tatarao Dagani
Godavari Institute of Engineering & technology

N.H 5 Chaitanya Nagar
Velugu Banda (V)
Rajanagaram (M)

Rajahmundry, East Godavari (D)
Andhra Pradesh, India Pin :533294

 Abstract—In today’s Internet, inter-domain
route control remains elusive; nevertheless, such
control could improve the performance,
reliability, and utility of the network for end users
and ISPs alike. While researchers have proposed
a number of source routing techniques to combat
this limitation, there has thus far been no way for
independent ASes to ensure that such traffic does
not circumvent local traffic policies, nor to
accurately determine the correct party to charge
for forwarding the traffic.
 We present Platypus, an authenticated source
routing system built around the concept of
network capabilities, which allow for accountable,
fine-grained path selection by cryptographically
attesting to policy compliance at each hop along a
source route. Capabilities can be composed to
construct routes through multiple ASes and can
be delegated to third parties. Platypus caters to
the needs of both end users and ISPs: users gain
the ability to pool their resources and select routes
other than the default, while ISPs maintain
control over where, when, and whose packets
traverse their networks. We describe the design
and implementation of an extensive Platypus
policy framework that can be used to address
several issues in wide-area routing at both the
edge and the core, and evaluate its performance
and security. Our results show that incremental
deployment of Platypus can achieve immediate
gains.
Index Terms—Authentication, capabilities,
overlay networks, source routing.

I. INTRODUCTION

 The main objective of this paper is used to avoid the
default and take the alternative path, at the time to check
the traffic of each path. Network operators and academic
researchers alike recognize that today’s wide-area Internet
routing does not realize the full potential of the existing
network infrastructure in terms of performance, reliability
or flexibility, while a number of techniques for intelligent,
source-controlled path selection have been proposed to
improve end-to-end performance, reliability, and flexibility.
We present the design and evaluation of Platypus, a source
routing system that, like many source-routing protocols
before it, can be used to implement efficient overlay
forwarding, select among multiple ingress/egress routers,
provide virtual AS multi-homing, and address many other
common routing deficiencies. The key advantage of
Platypus is its ability to ensure policy compliance during
packet forwarding. Platypus enables packets to be stamped
at the source as being policy compliant, reducing policy
enforcement to stamp verification. Hence, Platypus allows
for management of routing policy independent of route
export and path selection. Our approach to reducing this
complexity is to separate the issues of connectivity
discovery and path selection. Removing policy constraints
from route discovery presents an opportunity for end users
and edge networks. The key challenge becomes
determining whether a particular source route is
appropriate. ASes have no incentive to forward arbitrary
traffic; currently they only wish to forward traffic for their
customers or peers. We argue, however, that this is simply
a poor approximation of the real goal: ASes want to
forward traffic only if they are compensated for it.
Henceforth, we will consider traffic policy compliant at a
particular point in the network if the AS can identify the
appropriate party to bill, and that party has been authorized
by the AS to use the portion of the network in question. It is
well known that multiple paths often exist between any two
points in today’s Internet. The central tenet of any source
routing scheme is that no single route will be best for all
parties. Instead, sources should be empowered to select

International Journal of Computer Trends and Technology- volume2Issue2- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 135

their own routes according to whatever criteria they
determine. Protocols for efficient wide-area route discovery
and selection, however, are beyond the scope of this paper.

II. OVERVIEW

 It is well known that multiple paths often exist between
any two points in today’s Internet. The central tenet of any
source routing scheme is that no single route will be best
for all parties. Instead, sources should be empowered to
select their own routes according to whatever criteria they
determine. Protocols for efficient wide-area route
discovery and selection, however, are beyond the scope of
this paper. We assume that the network is configured
(using BGP, for example) with a set of default routes and
that certain motivated parties become aware of alternative
paths, either through active probing, or route discovery
services . Platypus builds on this basic infrastructure,
allowing entities to select paths other than the default.
Packets may specify a set of waypoints to be traversed on
the way to a destination, but are not required to specify
each router along the path. A source-routed packet is
forwarded using default paths between the specified
waypoints; an end-to-end path is therefore a concatenation
of default paths provided by the existing routing system.
 Platypus is designed to be deployed selectively by ASes
at choice locations in their networks. To support
incremental deployment, Platypus waypoints are specified
using routable IP addresses. When source routing a packet,
the routing entity, which may be an end host or a device
inside the network, encapsulates the payload and replaces
the original destination IP address of the packet with the
address of the first waypoint. The original destination IP
address is stored in the packet for replacement at the last
waypoint. When a Platypus packet arrives at a waypoint,
the router updates the Platypus headers and forwards the
packet on to the next waypoint.

III. NETWORK CAPABILITIES

 Network capability is made up of two fields: a waypoint
and a resource principal identifier.
The waypoint specifies a topological network location
through which the packet should be routed and the
resource principal specifies the entity willing to be
charged for the routing request. Using intra-AS routing
mechanisms, an AS can route packets for a given
waypoint to different Platypus routers, thus giving it more
control over the effects of source-routed traffic on an
ISP’s traffic engineering. For now, we will consider
waypoints to correspond to a specific router within an AS.

 Fig. 1. Platypus header format with a single capability and
binding attached.

 In Platypus, packets are stamped with a source-routing
request by inserting a Platypus header immediately after
the IP header of each packet and including some number
of capabilities, encapsulating the existing payload. Fig. 2
shows the Platypus header format with one capability
attached. The header contains fields for the protocol
version (currently 0), a set of bit flags a length field
(specified in terms of 32-bit words), a pointer to the
current capability (also in terms of 32-bit words), and an
encapsulated protocol field to facilitate de-encapsulation.
Capabilities are appended immediately after the Platypus
header. The Platypus header and capabilities may be
added by in-network stampers while the packet is in
transit.
 Since anyone can use a capability to forward packets
through the specified waypoint and bill the indicated
resource principal, Platypus must ensure that
eavesdroppers watching packets in the network cannot use
capabilities they observe in flight for their own packets.

A. MAC-Based Authentication

 Platypus prevents forgery of capabilities or their
bindings with the cascade construction of Bellare et al.
[7], which is provably secure given an underlying MAC
that is a pseudorandom function (PRF), as most modern
MACs are believed to be. We define a secret temporal
key, s=MACk(c),generated from the capability, c using a
message authentication code (MAC) such as HMAC [24].
The MAC is keyed with k, the key of the specified
waypoint. This value is securely transferred to the
resource principal. In order to use a capability, an
individual packet must be stamped with the capability and
a binding b=MACs(MASk(P)) where MASk(P) is the
invariant contents of the packet (not including Platypus

4 Bytes

Version Flags Capability
List Length

Capability
List Pointer

Encapsulated
Protocol

Original Source Address

Final Destination Address

Waypoint Address

Resource Principal Key ID Flags

Binding, b

International Journal of Computer Trends and Technology- volume2Issue2- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 136

headers) with the end-to-end source and destination
addresses substituted and the packet length field omitted.
Both and are included in the packet, as shown in Fig. 2. In
this way, the binding is dependent upon both the secret
key and the packet’s contents, and thus cannot be reused
for other packets. Similarly, any changes to the capability
would render bindings computed with the secret temporal
key invalid.

R: Revocation set, ID: Current key ID
PRO C E S S(P : Packet)
c ← ∗(P.phdr.ptr)
if |c.id−ID| > 1 or c ∈ R then
 ICMPERROR(P)
s ← MACk(c.way||c.rp||GETTIME(c.id))
b’ ← MACs(MA S K(P))
if c.b = b’then
 AC C O U N T(c.rp, P)
if P.phdr.src = 0 then
 P.phdr.src ← P.src
P.phdr.ptr ← P.phdr.ptr + |c|
if P.phdr.ptr ≥ P.phdr.len then
 P.dst ← P.phdr.dst
else
 c ← ∗(P.phdr.ptr)
 P.dst ← c.way
 FORWARD(P)
else
 ICMPERROR(P)

Fig. 2. Pseudocode for Platypus forwarding. P is a packet,
P.src is the packet’s source IP address, and P.phdr is the
Platypus header in which src(dst) is the source
(destination) address, ptr is the pointer to the current
capability and len is the length of the capability list. c is a
capability, c.way is its waypoint field, c.rp is its resource
principal field, c.id is its key ID, and c.b is the binding
accompanying c. | denotes concatenation.

 Fig. 2 presents pseudocode for Platypus packet
verification and forwarding. To verify a packet’s binding
(and, therefore, capability), a Platypus router only needs
the local waypoint key, k, since
b’=MACMACk(c)(MASK(P))=MACs(MASK(P)).if b=/b’
, either the capability or the binding (or both) has been
forged and the packet should be discarded. An advantage
of this construction is that the router needs to maintain
only a constant amount of state irrespective of the number
of resource principals. In addition, rejected packets elicit
ICMP responses to the sender to quell further invalid
transmissions (subject to standard ICMP rate limiting).

B. Security

 Security in Platypus is provided by the fact that not all
parties have the information needed to bind known
capabilities to new packets or create new, usable
capabilities. Binding a capability to a packet requires only
the temporal secret key, s, which is generated based upon
and the current time. Knowledge of one capability’s
temporal secret key, however, does not allow a party to
generate temporal secrets for others. Resource principals
wishing to transfer their full rights for a particular
waypoint to a trusted third party can pass both the
capability and corresponding temporal secret key. While
the capability can be passed in the clear, the temporal
secret key must be communicated privately, ensuring that
only the chosen third parties are able to receive it. These
third parties can then use to generate bindings to stamp
their own packets. Others, including those sniffing packets
on the network, can see capabilities and their bindings, but
lack the secrets required to generate valid bindings.
Periodic key expiration ensures that third parties cannot
use temporal secrets indefinitely. In addition, any temporal
secret key may be revoked by the resource principal
through communication with the key server.

IV. CAPABILITY MANAGEMENT

 Platypus gains significant flexibility from the ability to
transfer capabilities. Entities can collect capabilities from
multiple resource principals and construct source routes to
which no single entity would otherwise have rights. We
describe capability management in several steps: First, we
detail how capabilities are generated both in general and in
special cases. Second, we describe how resource
principals obtain temporal secrets for their own
capabilities and capabilities delegated to them by others.
Third, we present a policy framework for applying
capabilities to IP packets.

A. Capability Generation

 While capabilities are generally minted by an ISP, there
are two important cases when individuals may wish to
create new capabilities based on those provided to them by
their ISPs.

1) Reply Capabilities: Protocols such as TCP have been
shown to work best when forward and reverse path
characteristics are similar [6]. In order to use Platypus
source routes, however, both ends of a flow must have
their own capabilities and perform their own routing.
Platypus allows for resource principals to include a reply
capability and its corresponding temporal secret as part of
a packet stream for the recipient to use in response.

2) General Delegation: In general, a resource principal
may want to specify a particular IP address prefix to which
a third party may send packets using the principal’s

International Journal of Computer Trends and Technology- volume2Issue2- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 137

capability. Furthermore, the third party should be able to
sub-delegate (specify a subnet of the previously delegated
prefix) the capability without needing to contact the
resource principal or key server. Platypus therefore allows
the minting of delegated capabilities, which are derived
from normal (or previously delegated) capabilities, but
limited in their scope.

B. Capability Distribution

 There are three main aspects to wide-area capability
distribution: bootstrapping, lookup, and revocation.

1) Bootstrapping: To bootstrap the capability distribution
process, we expect that each AS provides an interface
(likely a Web server) through which resource principals
establish their accounts.

2) Ordinary Capability Lookup: To look up the current
temporal secret associated with a capability, a resource
principal generates a request by encoding the capability
and a special request opcode as a string and prepends it
to the key-lookup subdomain (specified during the
bootstrap process) in a DNS TXT lookup request, which
is routed by DNS to an appropriate key server.

3) Delegated Capability Lookup: Lookup of delegated
capabilities is fundamentally different from ordinary
capability Platypus gains significant flexibility from the
ability to transfer capabilities. Entities can collect
capabilities from multiple resource principals and
construct source routes to which no single entity would
otherwise have rights.

C. Policy

 So far we have discussed the mechanisms for stamping
and delegation, deferring questions such as (a) how a
stamper decides to stamp a particular packet and with
which capabilities, (b) how a resource principal decides to
delegate a capability to a peer, and (c) how its peer decides
to accept a delegated capability. We now present a per-AS
policy framework designed to address these questions.

V. IMPLEMENTATION

 We have built prototype software components for
UNIX that provide Platypus stamping, key distribution of
delegated capabilities, policy specification, and
forwarding services. Fig 3 depicts key components in our
prototype. Each is described in turn below.

Fig.3. Overview of implemented components.

A. Forwarding and Stamping

 We have implemented Platypus forwarding and
stamping functionality as user-space daemons, (prd and
psd), which runs in Linux and on Planetlab, and as Linux
kernel modules, (prkm and pskm). While prd
implements our full policy framework, user-level packet
capture and forwarding requires multiple user/kernel
context switches, resulting in poor forwarding
performance. Thus, we use prkm to better the potential
forwarding performance of an in-kernel implementation.
Prkm processes Platypus packets entirely inside the
kernel. Upon a packet arrival, in the kernel soft-IRQ
context, prkm verifies the packet; if the binding is valid,
the packet is updated and forwarded. By binding interrupt
handling for different network interfaces to different CPUs
on a machine, prkm can provide good scaling across
multiple processors.

B. Distribution of Delegated Capabilities

 We implemented DNS-based distribution of delegated
capabilities (Section IV-B.3) using the Poslib DNS library.
We leverage deployed DNS infrastructure by deferring
DNS lookup work to existing DNS resolvers and servers,
only performing transformations on DNS messages. For
example, when a Platypus DNS server receives a TXT
query, it transforms the query into the corresponding A
query and lets a local conventional DNS server handle the
query. On receiving the A response from the DNS server,
the Platypus DNS server transforms the response into a
TXT response, includes delegated capabilities as needed,
and replies to the query.

C. Policy

 The policy engine is implemented as a user-level
process that communicates with other components in the
Platypus router using an XDR-based [41] policy protocol.
The policy protocol allows the engine to give instructions
to the stamper and DNS server (Steps 0 and 5 in Fig. 4)

International Journal of Computer Trends and Technology- volume2Issue2- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 138

and receive delegated capabilities from a DNS resolver
(Step 4). The engine’s instructions currently resemble the
rule set of a firewall. (In reality these would be derived
from high-level objectives created by an AS
administrator.) The policy specification supports prefix-
based matching of traffic, allowing traffic to be sent to and
received from specific remote ASes through specified
waypoints, and load-sharing, allowing some proportion of
traffic to be forwarded through specified waypoints.

D. Protocol Interactions

 We have attempted to design around possible negative
interactions between Platypus and existing protocols. In
particular, proper ICMP delivery is complicated by source
routing. Since ICMP responses can occur for many
reasons, the appropriate recipient of such messages can be
ambiguous. For example, should an ICMP time expired
message be sent to the last Platypus waypoint in the source
route, the stamper, or the original source? The cause of
such expiration may be due to in-network stamping or
other problems such as routing loops. Further
complicating the matter, non-Platypus routers may
generate ICMP responses for source-routed packets and
send them to the last waypoint in the source route. In both
of the two primary cases—end-host stamping and in-
network stamping—the end-host perceives its Platypus-
enabled connectivity to be the same as ordinary network
connectivity, thus we send all ICMP packets back to the
original source address. The first 64 bits of the Platypus
header contain the original source address, enabling RFC-
compliant routers to include the original source address in
ICMP error response packets; Platypus routers forward
such ICMP packets along to the source, subject to standard
ICMP rate limiting.

VI. DISCUSSION

During the design of Platypus, we have considered issues
of performance, security, accounting, the effect of source-
routed traffic upon the network, and alternative means of
capability delegation. In this section we discuss these
considerations.

A. Distributed Accounting

 In Platypus, however, a customer may authorize third
parties to inject packets into its ISP as part of a source
route. Any accounting scheme that only charges customers
for packets that traverse their access link clearly will not
properly account for the customer’s additional use. A
straightforward approach would maintain counters for
each resource principal at all Platypus routers within an
AS, and bill for the total consumption.

B. Replay Attacks

 For rate-based accounting, we can constrain resource
principals to a fixed, aggregate bandwidth. However,
while packet bindings cannot be forged (modulo standard
cryptographic hardness assumptions), they may be
replayed by an adversary, who may wish to waste a
resource principal’s limited bandwidth for a given
capability. Since capabilities expire periodically, a natural
countermeasure to replay attacks is to track packets that
traverse a router within some time window and only count
each distinct packet once. A Bloom filter allows for
tracking of packets in such a way, but may fill up over
time, resulting in false positives. This issue can be
addressed by maintaining a small circular array of Bloom
filters which are cleared as they fill up [2], [38]. While an
adversary may be able to log all packets and replay them
after the corresponding Bloom filter is emptied, if the
filters are emptied only at key expiration intervals, stored
packets cannot be replayed.

C. Scalability

 A Platypus router does not need to keep track of
permissions for end hosts, potentially providing for greater
scalability. In particular, by using capabilities, Platypus is
able to implement capability delegation without involving
Platypus routers or key servers. The down side ,of course,
of capabilities is communication overhead (28 bytes per-
packet in our prototype).

D. Traffic Engineering

 Conventional wisdom holds that widespread source
routing deployment would complicate traffic-engineering
efforts. While there admittedly is cause for concern, we
have reasons for optimism. Recent simulations by Qiu et
al. show that while sourcerouted traffic can have
deleterious interactions with intra-AS traffic engineering
mechanisms in extreme cases, certain techniques may be
able to mitigate these effects [34]. In their studies,
however, source-routed traffic was capable of completely
specifying intra-AS paths. Our design for Platypus is
meant to allow ISPs to specify any globally routable IP
address within their IP space as a Platypus waypoint and
dynamically adjust the actual (set of) internal router(s) to
which the IP corresponds in response to traffic load. By
dilating waypoints in this way, an ISP can meet its traffic
engineering goals while delivering improved service to
end hosts; we discuss this in greater detail in an earlier
version of this work [35]. In addition, an ISP has the
option of pricing capabilities in a way that attracts traffic
to lightly loaded links or that compensates for the use of
links that have little spare capacity.

E. Alternatives for Capability Distribution

International Journal of Computer Trends and Technology- volume2Issue2- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 139

The use of DNS for distribution of delegated capabilities
is suited to a usage model in which a server is interested in
delegating a capability to a large number of clients. While
this design choice entails modifications to DNS servers
and resolvers, we have found that the required changes can
be made in a modular fashion, i.e., without making DNS
implementations more complex. By using interposition as
described in Section V-B, we maintain the separation of
concerns between domain administration and capability
management.
 Alternatively, the server can opt to use in-band
distribution, which is designed for transmitting delegated
capabilities from receivers to senders of particular flows
and does not distinguish between client and server roles.
Consider a Platypus-aware traffic receiver R with IP
address dst —we show how R transmits a delegated
capability to a Platypus-aware traffic sender S with IP
address src . The mechanism is based on inserting
“Platypus signaling packets” within the flow. A Platypus
signaling packet is an IP packet that has the same source
and destination addresses as the flow but uses a Platypus
transport protocol. Thus, the signaling packet follows the
same forwarding path as the flow. periodically inserts a
delegation listen packet, which contains a randomly
generated key ks, into the flow, advertising that it is
capable of receiving delegated capabilities also stores the
time at which it generated ks. In response, R inserts a
delegation packet containing the delegated capability
c,t,dst and Hr = MACks(c). Upon receiving the delegation
packet, S verifies and Hr checks that the corresponding
key ks is recent. This process ensures that only parties on a
recent default forwarding path from the S to R can have
created the delegated capability, and thus prevents
unauthorised diversion of packets.

VII. CONCLUSIONS AND FUTURE WORK

 We argue that capabilities are uniquely well-suited for
use in wide-area Internet routing. The Internet serves an
extremely large number of users with an even larger
number of motivations, all attempting to simultaneously
share widely distributed resources. Most importantly, there
exists no single arbiter (for example, a system
administrator or user logged in at the console) who can
make informed access decisions. Moreover, we believe
that much of the complexity of Internet routing policy
stems from inflexibility of existing routing protocols. We
aim to study how one might implement inter-AS traffic
engineering policies through capability pricing strategies.
For example, an AS with multiple peering routers that
wishes to encourage load balancing may be able to do so
through variable pricing of capabilities for the
corresponding Platypus waypoints. While properly
modeling the self-interested behavior of external entities

may be difficult, we are hopeful that this challenge is
simplified by the direct mapping between Platypus
waypoints and path selection (as compared, for example,
to the intricate interactions of various BGP parameters).

REFERENCES

[1] S. Agarwal, C.-N. Chuah, and R. H. Katz, “OPCA:
Robust interdomain policy routing and traffic control,” in
Proc. IEEE OPENARCH, Apr. 2003, pp. 55–64.
[2] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick,
E. Oertli, D. G. Andersen, M. Burrows, T. Mann, and C.
A. Thekkath, “Block-level security for network-attached
disks,” in Proc. USENIX FAST, Apr. 2003.
[3] D. G. Andersen, “Mayday: Distributed filtering for
Internet services,” in Proc. USITS, Mar. 2003.
[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. T. Morris, “Resilient overlay networks,” in Proc. ACM
SOSP, Oct. 2001.
[5] R. Atkinson, “Security architecture for the Internet
protocol,” in IETF, RFC 1825, Aug. 1995.
[6] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz,
“The effects of asymmetry on TCP performance,” in Proc.
ACM Mobicom, Sep. 1997.
[7] M. Bellare, R. Canetti, and H. Krawczyk,
“Pseudorandom functions revisited: the cascade
construction and its concrete security,” in Proc. IEEE
FOCS, 1996, pp. 514–523.
[8] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P.
Rogaway,“UMAC: Fast and secure message
authentication,” in Advances in Cryptology (CRYPTO’99),
1999, vol. LNCS 1666.
[9] J. Black and P. Rogaway, “A block-cipher mode of
operation for parallelizable message authentication,” in
Advances in Cryptology (EUROCRYPT’ 02), 2002, vol.
LNCS 2332.
[10] M. Caesar and J. Rexford, “BGP policies in ISP
networks,” IEEE Network, vol. 19, no. 6, pp. 5–11, Nov.
2005.
[11] CAIDA Skitter Project. [Online]. Available:
http://www.caida.org/ tools/measurement/skitter/
[12] M. Casado, T. Garfinkel, A. Akella, D. Boneh, N.
McKeown, and S. Shenker, “SANE: A protection
architecture for enterprise networks,” in Proc.
ACM/USENIX NSDI, May 2006.
[13] I. Castiñeyra, N. Chiappa, and M. Steenstrup, “The
Nimrod routing architecture,” in IETF, RFC 1992, Aug.
1996.
[14] D. D. Clark, “Policy routing in Internet protocols,” in
IETF, RFC 1102, May 1989. RAGHAVAN et al.:
SECURE AND POLICY-COMPLIANT SOURCE
ROUTING 777
[15] D. D. Clark, J. Wroclawski, K. R. Sollins, and R.
Braden, “Tussle in cyberspace: Defining tomorrow’s
Internet,” in Proc. ACM SIGCOMM, Aug. 2002.

