
International Journal of Computer Trends and Technology (IJCTT) – Volume 18 Number 6 – Dec 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 272

Extended SQL Aggregation for Database Transformation
Archana A. Chaudhari#1, Harmeet Kaur Khanuja #2

#Department of Computer Engineering, MMCOE, Pune, India

Abstract— To prepare a normalized data set from relational
database for analysis requires significant efforts and it is time
consuming task. The main reason is that, in general the database
grows with many tables and views that must be joined,
aggregated and transformed in order to build the required data
set. As result, most of the SQL queries are written independently
multiple times and in disorganize manner, which create
problems in database evolution and software maintenance. To
address this issue, we propose simple methods to generate SQL
code to return aggregated columns in a horizontal tabular layout,
where every row corresponds to an observation, instance or point
(possibly varying over time) and every column is associated to a
one variable or dimension. This new class of functions is called
horizontal aggregations. Horizontal aggregations build data sets
with a horizontal denormalized layout (e.g. point-dimension,
observation variable, instance-feature) which is the standard
layout required by most data mining algorithms. By providing
these standard normalized data-set as an input to the Decision
tree generation algorithm for generating Decision tree, similarly
we can generate extended ER model.

Keywords— Data mining, Transformation, Aggregation, Data
preparation, Pivoting.

I. INTRODUCTION
The databases used by enterprises cannot be directly used for
data mining process. It does mean that Data sets are to be
prepared from real world database to make them suitable for
particular data mining operations. However, preparing a
normalized data set [7] from relational database for analysis
requires significant efforts and it is time consuming task,
because database has a collection of normalized tables that
must be joined, aggregated and transformed in order to build
the required unique data set. Existing SQL aggregations
having some limitations to prepare normalized data sets
because they return only one column per aggregated group.
The summary of business data can be given for data mining
purposes instead of giving the whole business data, this is the
idea behind preparing normalized data set for data mining. As
the most of the data mining algorithms require, input the data
set with a horizontal layout, where every row corresponds to
an observation, instance or point (possibly varying over time)
and every column is associated to a one variable or dimension.
Each research discipline having different terminology to
describe the data set such as in data mining the common terms
are point-dimension, statistics literature uses observation-
variable, machine learning research uses instance feature.

 The main issue is that relational queries in a data
mining project create many temporary tables (static) or views
(dynamic), which are not represented as entities in an existing
ER model, such collection of transformation tables and
disconnected queries complicate database management,

software development and software maintenance [1]. This
approach is related to an extract-load-transform (ELT) process,
in which tables are cleaned and transformed after they are
loaded into the database, as compare to traditional Extract-
Transform-Load (ETL) tools most data transformation
happens outside the DBMS, before loading data [1]. In
general, tools that perform data reverse engineering do not
give an abstract, well defined representation of database
transformations computed with relational queries, nor do they
have a data set with variables (in a statistical sense) as the
target of such transformations.

A. Motivation

To prepare a suitable data set for data mining requires
writing long SQL statements or customizing SQL code if it is
automatically generated by some tool. There are two main
ingredients in such SQL code: joins and aggregations.

 Outer joins are essential for the construction of data sets.
However, full outer joins are not useful because, the rows of
referencing table must be preserved, whereas right outer joins
is equivalent as left outer joins. In this approach left outer join
is consider as prominent operator to merge tables to build the
desired data set. The most widely commonly known
aggregation are sum (), count (), min (), max () etc. returns a
column over groups of rows. Unfortunately each aggregation
functions and operators in SQL have some limitations to build
data sets for data mining purposes. The first limitation is data
sets that are stored in a relational database (or a data
warehouse) come from Online Transaction Processing (OLTP)
systems where database schema are highly normalized. But
data mining, statistical or machine learning algorithms
generally require data in the form of denormalized with
aggregation. Based on current available functions and clauses
in SQL, a significant effort is required to compute
aggregations when they are desired in a cross-tabular
(horizontal) form, which are suitable for data mining
algorithm. Second, Standard aggregations are hard to interpret
when there are many result rows, especially when grouping
attributes have high cardinalities. Third, OLAP tools uses
SQL code to generate transpose of results (sometimes called
PIVOT). Transposition can be more efficient if there are
mechanisms combining aggregation and transposition together.
With such limitations in mind, in this approach a new class of
aggregate functions that aggregate numeric expressions and
transpose results to produce a data set with a horizontal layout.
Functions belonging to this class are called horizontal
aggregations [2]. Horizontal aggregations represent an
extended form of traditional SQL aggregations, which return a
set of values in a horizontal layout.

This paper is organized as follows: Literature Survey is
discussed in Section 2, Section 3 introduces Scheme

International Journal of Computer Trends and Technology (IJCTT) – Volume 18 Number 6 – Dec 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 273

Description, in this approach three methods to evaluate
horizontal aggregations using existing SQL constructs.
Section 4 given conclusions and directions for future work.

II. LITERATURE SURVEY
There are many proposals that have extended SQL syntax.

Carlos Ordonez et. al proposed framework for programming a
clustering algorithm with SQL queries is explored in , which
shows horizontal layout of the data set enables easier and
simpler SQL queries, their optimization have the purpose of
avoiding joins to express cell formulas, but are not optimized
to perform partial transposition for each group of result rows
[5]. Horizontal aggregations are related to horizontal
percentage aggregations, the differences between both
approaches are that percentage aggregations require
aggregating at two grouping levels, require dividing numbers
and need taking care of numerical issues (e.g. dividing by
zero), horizontal aggregations are more general, have wider
applicability and in fact, they can be used as a primitive
extended operator to compute percentages [4]. The paper is
proposed by Carlos Ordonez, et. al, in which extend an ER
model with new entities to represent database transformations
and introduced an algorithm to automate the process, extended
ER model has two kinds of entities: source entities and
transformation entities, which correspond to normalized tables
and temporary tables created with SQL queries, respectively
[1].

III. PROPOSED SYSTEM

A. SQL code Generation: Extended SQL Syntax
Twe extend standard SQL aggregate functions with

a ’transposing’ BY clause followed by a list of columns (i:e.
R1, . . . ,Rk), to produce a horizontal set of numbers instead of
one number. Our proposed syntax is as follows:

SELECT L1,...,Lj, H(A BY R1,...,Rk)
FROM S
GROUP BY L1,...,Lj;

We believe the subgroup columns (R1, . . . ,Rk) should be a

parameter associated to the aggregation itself. That is why
they appear inside the parenthesis as arguments, but
alternative syntax definitions are feasible. In the context of our
work, H() represents some SQL aggregation (e:g. sum(),
count(), min(), max(), avg()). The function H() must have at
least one argument represented by A, followed by a list of
columns.

B. SQL Code Generation: Query Evaluation
This approach, extending the standard SQL aggregation
function and build a new class of aggregation called
Horizontal aggregation, which produce tables with a
horizontal layout. HA (Horizontal Aggregation) can be
implemented by using three different methods:

 SPJ (Select-Project-Join) method relies on standard
relational operators.

 CASE method relies on the SQL CASE construct.
 PIVOT method uses a built-in operator in a

commercial DBMS that is not widely available.

Figure 1 shows the system control flow of entire system for
getting data-sets.

1) SPJ Method: The Select-project-Join-Aggregation (SPJ)
method is based on relational operators only. The basic idea is
to create one table with a vertical aggregation for each result
column, and then join all those tables to produce SH [2],this
method use the Left Outer Join. The left outer join is
performed in between two tables i.e. left table and Right table,
common fields of both the tables are returned and uncommon
fields of left table is returned. There are two basic sub
strategies to compute SH. The first one directly aggregates
from S. The second one computes the equivalent vertical
aggregation in a temporary table SV grouping by
(L1, . . . ,Lm), (R1, . . . ,Rk), Then horizontal aggregations can
be computed from SV , which is a compressed version of S [2].
We will use first sub strategy to compute SH. Horizontal
aggregation using SPJ method require four input parameters to
generate SQL code:-

(i) The input table S
(ii) The list of GROUP BY columns L1, . . . ,Lm
(iii) The column to aggregate (A) and
(iv) The list of transposing columns R1, . . . ,Rk.

In this approach an additional table S0 is introduce that will be
Outer joined with projected tables to get a complete result set.
Table S0 does not have any nonkey column, but it has
(L1, . . .,Lm) as primary key.

INSERT INTO S0
SELECT DISTINCT L1, . . . ,Lm
FROM (S\SV);

Finally, to get SH we need n+1 tables that will join with n left
outer joins. The optimized SPJ method code is as follows:

INSERT INTO SH
SELECT S0.L1, S0.L2,....,S0.Lm,
S1.A, S2 .A,...,Sn .A
FROM S0
LEFT OUTER JOIN S1

International Journal of Computer Trends and Technology (IJCTT) – Volume 18 Number 6 – Dec 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 274

Fig. 1. Data Flow Diagram for Database Transformation

ON S0. L1= S1. L1 ...S0. Lm= S1. Lm
LEFT OUTER JOIN S2
ON S0. L1= S2. L1 ...S0. Lm= S2. Lm
. . . .
LEFT OUTER JOIN Sn
ON S0. L1= Sn. L1 ...S0. Lm= Sn. Lm

2) CASE Method: In this method, ‘case’ programming
construct available in SQL is used. If boolean expressions is
satisfied then case statement returns a selected value from a
group of values. From a relational database this is equivalent
to doing a simple projection/aggregation query where each
non-key value is given by a function that returns a number
based on some conjunction of conditions [2]. Similar to SPJ
method, there are two basic sub strategies to compute SH. The
first one directly aggregates from S. The second one computes
the vertical aggregation in a temporary table SV and then
horizontal aggregations are indirectly computed from SV. The
optimized case method code is as follows, where V() is a
standard SQL aggregation that has a ‘case’ statement as a
argument.

SELECT DISTINCT R1, . . .,Rk
FROM S;

INSERT INTO SH
SELECT L1, . . . ,Lm
,V(CASE WHEN R1 = v11 and . . .Rk = vk1
 THEN A ELSE null END)
...
,V(CASE WHEN R1 = v1d and . . .Rk = vkd
 THEN A ELSE null END)
FROM S
GROUP BY L1, L2, . . . ,Lm;

3) PIVOT Method: The pivot operator is a built-in operator
which transforms row to columns. Since this operator can
perform transposition it can help in evaluating horizontal
aggregation. The optimized set of queries which reduces the
intermediate transposed table is as follows :

SELECT DISTINCT R1
FROM S; /*produces v1,,vd*/

SELECT L1, L2,. . . ,Lm
 , v1,v2, . . .,vd
INTO SH
FROM (
SELECT L1,L2,..,Lm, R1,A
FROM S) T
PIVOT(
 V(A) FOR R1 in (v1,v2,,vd)
) AS P;

C. Extended ER Model Generation
The entity-relationship (ER) model provides diagram notation
and methods to design a database, by defining its structure
before storing information [1]. In data mining project
relational queries create many temporary tables (static) or
views (dynamic), which are not represented as entities in an
existing ER model. So we extend an ER diagram with entities
that represent database transformations used to build data sets.
Algorithm to extend an ER model with transformation
entities:

Input: Source tables(S1, S2,. . .) and Queries(q0, q1, q2,. . .)
Output: ER diagram

Step 1: Initialize extended ER model with original ER model.
Step 2: Create a transformation entity j for every intermediate
table, numbering it according to query qj in the sequence.
Step 3: For each non-key attribute link it to either a
denormalization expression or an aggregation function.

International Journal of Computer Trends and Technology (IJCTT) – Volume 18 Number 6 – Dec 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 275

Step 4: Generate the final data-set ‘X’ which represented as a
entity in Extended ER-model.

D. Generate Decision Tree
On the basis of these Datasets Generated from the three

methods of Horizontal Aggregation we will generate Decision
Tree. This dataset is given as an input to Decision tree
algorithm using WEKA to generate Decision tree. On that
dataset Entropy and Information gain Operation are
performed. Based on that Decision Tree is generated.
Entropy:

Where, pi is the probability of class i.
Information Gain:

Where, Values (A) is the set of all possible values for
attribute A, and s is the subset of S for which the attribute A
has value v.

IV. CONCLUSIONS
In this approach a new class of aggregate functions in SQL

is developed called as horizontal aggregation which is used
for preparing data-sets for the data mining projects. Mainly,
the existing SQL aggregations return results in one column
per aggregated group, but horizontal aggregation returns a set
of numbers instead of a single number for each group. Three
query evaluation methods are discussed: the first method
focuses on the relational operators in SQL, the second method
focuses on the SQL case construct and third method focuses
on the PIVOT built-in operator in a commercial DBMS. As
database grows with many table and view which are not
represent as entity in standard ER diagram, so we extending
the ER model to generate the Extended ER-diagram.
Horizontal aggregation produces tables with fewer rows but
with more columns, so the traditional query optimization
techniques are inappropriate for the new class of aggregations.

In future work we can develop the most appropriate query
optimization technique for the horizontal aggregation to
achieve better results.

ACKNOWLEDGMENT
We take this opportunity to thank Prof. Ram Joshi and all

the staff members of the Department of Computer
Engineering for their valuable guidance and for providing all
the necessary facilities, which were indispensable in the
completion of this paper.

REFERENCES
[1] Carlos Ordonez, Sofian Maabout, David Sergio Matusevich,

Wellington Cabrera, “Extending ER models to capture database
transformations to build data sets for data mining”, Data and
Knowledge Engineering, vol.89, pp. 38 - 54, January 2014.

[2] Carlos Ordonez and Zhibo Chen,“Horizontal Aggregations in SQL to
Prepare Data Sets for Data Mining Analysis”, IEEE Transaction On
Knowledge and Data Engineering, Vol. 24, No. 4, pp. 678-691, April
2012.

[3] Javier Garca-Garcaa, Carlos Ordonez,“Extended aggregations for
databases with referential integrity issues”, Data and Knowledge
Engineering, Vol.69, No.1, pp. 73-95, January 2010.

[4] Carlos Ordonez, “Vertical and Horizontal Percentage Aggregations”,
Proc. ACM SIGMOD Intl Conf. Management of Data (SIGMOD 04),
pp. 866-871, 2004.

[5] Carlos Ordonez, “Integrating K-Means Clustering with a Relational
DBMS Using SQL”, IEEE Trans. Knowledge and Data Eng., Vol.18,
No.2, pp.188-201., Feb. 2006.

[6] C. Ordonez, “Data Set Preprocessing and Transformation in a Database
System”,Intelligent Data Analysis, vol. 15, no. 4, pp. 613-631, 2011.

[7] Carlos Ordonez,“Horizontal Aggregations for Building Tabular Data
Sets”, Proc. Ninth ACM SIGMOD Workshop Data Mining and
Knowledge Discovery (DMKD 04), pp. 35-42, 2004.

