
International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 5 – Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page185

Supporting Search-As-You-Type Using SQL
in Databases

C. Bhagya Laxmi1, Bhaludra Raveendranadh Singh 2, Moligi Sangeetha3
1pursuing M.Tech (CSE), 2Principal, 3Associate Professor & HOD (CSE)

1,2,3Visvesvaraya College of Engineering and Technology (VCET), M.P Patelguda, Ibrahimpatnam (M), Ranga Reddy (D)-
501510, India

ABSTRACT : A search-as-you-type system determines
answers while a user types a keyword query character by
character. We study the search-as-you-type on data which is
residing in a relational DBMS. We focus on native database
language, SQL as how to support this type of search. A main
challenge is how to make full use of existing database
functionalities to meet the high-performance to achieve an
interactive speed. Further we study how to use auxiliary indexes
stored in the tables to increase the search performance. We
present solutions for both multi keyword queries and single-
keyword queries, and develop novel techniques for the fuzzy
search using SQL by allowing the mismatches between query
keywords and answers. Since the volume of data increases day to
day the real world, the searching process has become unvaried.
The good search technique must be render the requested data in
a stipulated time based on the user requested query. Using the
native query language, i.e SQL to implement search-as-you-type
reduces programming effort. Here we are providing user
requested result based on the user previous search.

Keywords: databases, Search-as-you-type , fuzzy search, SQL

I. INTRODUCTION

Data mining broaches the extraction of knowledge from the
large amounts of data. By performing interesting
knowledge,data mining, regularities, high-level information
could be extracted from the databases and browsed or viewed
from different angles. Conventional information systems
return answers after the user submits a entire query. Users
often feel that “left in the dark” when they have limited
knowledge about underlying data, and have to use the try-and-
see approach for finding the information. Currently many
information systems improving user search experiences by
providing the instant feedback as users formulate the search
queries. Most of the search engines and online search forms
support the auto completion, which showing suggested queries
or even answers also “on the fly” as the user types in query
search box character by character. By this feature of instant
feedback user could understand the data in addition to
formulating query Most of the information systems nowadays
improving the user search experiences by providing feedback
as users formulate search queries. Search engines and online
search forms support the auto completion, which suggests
queries or even answers “on the fly” as the user types in a
search box character by character. For instance, consider Web
search interface at Netflix, which allows the user to search for

movie information. If a user types in a half of the query
“mad,” the system gives movies with a title matching with this
keyword as a prefix, such as Mad Men: Season 1 and
“Madagascar” . The instant feedback helps the user in
formulating the query, and in understanding the underlying
data. This type of search is called as search-as-you-type or
type-ahead search. As many search systems store their
information in the backend relational DBMS, and many
companies storing their info in RDBMS here the question
arises naturally: is how to support search-as-you-type on data
which is residing in a DBMS? Some databases such as SQL
and Oracle server already support prefix search, and we could
use this feature to do the search-as-you-type. Nevertheless, not
all databases provide this feature. To overcome this, we study
new methods that could be used in all databases. One
approach is developing a separate application layer on
database to construct indexes, and implement algorithms for
answering the queries. With this approach has the advantage
of getting a high performance, but its main drawback is
duplicating indexes and data, which results in additional
hardware costs. Another approach for search-as-you-type is
to use database extenders, such as Informix DataBlades ,DB2
Extenders, Oracle Cartridges and Microsoft SQL Server
Common Language Runtime (CLR) integration, which allow
developers to implement new functionalities to the DBMS.
This approach is not feasible for databases that do not provide
such an extender interface, such as MySQL. As it needs to
utilize proprietary interfaces provided by the database
vendors, a solution for one database might not be portable to
others. In addition to, an extender-based solution is, especially
those which are implemented in C/C++, could cause serious
security and reliability problems to database engines. In this
article we study how to support search-as-you-type on
relational DBMS systems using the native query language i.e
SQL. In other words, we want to use the SQL to find answers
to the search query as a user types in keywords character by
character. Our objective is to utilize the built-in query engine
of database system as much as possible. By this way, we can
reduce the programming efforts to support the search-as-you-
type. Furtherly, the solution developed on one database using
standard SQL technique is portable to other databases which
supports the same standard. Similar observation are also made
by the Gravano and Jestes which use SQL to support
similarity join in databases.

LEARNING to rank is a kind of the learning based
information retrieval techniques, specialized in learning the
ranking model with some documents labeled with their

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 5 – Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page186

relevancies to some of the queries, where the model is
hopefully capable of ranking the documents returned to the
arbitrary new query automatically. Based on the various
machine learning methods, ex., Ranking SVM RankBoost ,
ListNet , RankNet, LambdaRank etc., the learning to rank
algorithms have already shown their challenging
performances in the information retrieval,especially Web
search.

A main question when adopting this attractive idea is: Is it
feasible and scalable? In a particular scenario, can SQL meet
the high performance requirement to implement interactive
search interface? Studies have shown that ,such an interface
requires each query to be answered within 100 milliseconds.
Relational DBMS systems are not specially designed for the
keyword queries, making it more challenging to the support
search-as-you-type.

II RELATED WORK

In this related work we are going to discuss different possible
methods that are supports our approach support search-as-
you-type and give their limitations and advantages. Using a
separate application layer is the first method which can get
very high performance as it can use various complex data
structures and programming languages. Nevertheless, it is
isolated from the RDBMS systems. Database extenders is the
second method. Nevertheless, this extension-based method is
“not safe” for the query engine, which could cause security
and reliability problems to the database engine. This method
depends on the API of a specific DBMS being used, and the
different DBMS systems have different APIs. Furthermore,
this method does not work if a DBMS system has no extender
feature, ex., MySQL.Using SQL is the third method. The
SQL-based method is more compatible as it is using the
standard SQL. Even if DBMS systems do not provide search-
as-you-type extension feature (indeed no Database
Management Systems provide such an extension) the SQL-
based method can also used in this particular case. So, the
SQL-based method is more portable to the different platform
than the first two methods.
A simple way to support search-as-you-type is to issue a SQL
query that scans every record and verifies whether record is an
answer to the query or not. There are 2 ways to do the
checking: one is Calling User-Defined Functions i.e UDFs.
We could add functions into the databases to verify whether a
record contains query keyword; and second is: Using LIKE
predicate. Databases provide the LIKE predicate to enable
users to perform string matching. We can use LIKE predicate
to check if a record contains the query keyword or not. This
method might introduce false positives, example, keyword
“publication” contains the query the string “ic,” but the
keyword does not have query string “ic” as a prefix. We can
remove these false positives by calling the UDFs. The two no-
index methods needs no additional space, but they may not
scale as they need to scan all the records in the table.In this
section, we propose to keep auxiliary tables as index

structures to facilitate the prefix search. Some databases such
as SQL server and Oracle have already support prefix search,
and we can use this feature to do the prefix search.
Nevertheless, not all the databases provide this feature. For
this particular reason, we are developing a new method that
could be used in all databases. Furthermore, we are maintaing
inverted table that contains each keyword with specific unique
id. Based on this specific keyword we can give the result to
the user who is giving the request on-the-fly.

On the other hand ranking adaptation is closely related to the
classifier adaptation, which has shown its efficiency for many
learning .Nevertheless, to the best of our knowledge, there are
no prior works on adaptation for the ranking problem.
Furthermore the general difficulties faced by classifier
adaptation, such as the covariate shift (or namely sample
selection bias) and the concept drifting, ranking adaptation is
relatively more challenging. Unlike the classifier adaptation,
which mainly deals with the binary targets,and ranking
adaptation desires to adapt model which is used to predict
rankings for a collection of documents. Though documents are
normally labeled with the several relevance levels, which
seems to be handled by multi-class regression or
classification,it is still difficult to directly use the classifier
adaption for ranking. The reason lies in two-fold: one: in
ranking, the mainly concentration is about the preference of
the two documents or ranking of a collection of documents,
which is a difficult to be modeled by the regression or
classification; two : the relevance levels in between different
domains are sometimes varied and need to be aligned. In this
paper, we are also focusing on the adaptation of ranking
models, instead of utilizing labeled data from the auxiliary
domains directly, which might be inaccessible due to the
privacy issue and data missing. Furthermore, Model
adaptation is more advisable than data adaptation, because
,learning complexity is now only correlated to size of the
target domain training set, which should be more smaller than
size of auxiliary dataset.

III RESULTS

Search-as-you-type for single keyword:
Exact Search: As a user types keyword w in the search box
character by character, the system we are developing search-
as-you-type on-the-fly finds bunch of records that contain
keywords with a prefix w. We call this search paradigm as
prefix search. Without loss of generality, every tokenized
keyword in data set and queries is assumed to use the lower
case characters. For example, consider the data in Table 1, A1
≈ title, A2 ≈ authors, A3 ≈ book title, and A4 ≈ year. In this
exact search the keyword entered by the user is undergone to
the DBMS engine and finds appropriate query with which it is
started. If it found any matching then it will gives the query as
suggestion to the user. By seeing this suggested result user
could do the search more easily. In a particular situation user
might not have proper idea about the query. In that situation

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 5 – Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page187

our system helps more. It reduces the user burden by giving
on-the-fly suggestion.

Search-as-You-Type for Multi keyword Queries:

Take a multi keyword query Q with m number of
keywords they are w1; w2; . . . ; wm, as user is completing
the last keyword that is wm, we treat wm as the partial
keyword and the other keywords as complete keywords. As a
user types in query Q letter by letter, our system search-as-
you-type on-the-fly finds records that contain the complete
keywords and the keyword with a prefix wm. For an example
scenario, if a user types in a query “privacysig,” the system
search-as-you-type returns records as r3,r6, and r9. In a
particular, r3 contains the complete keyword “privacy” and
another keyword “sigmod” with a prefix “sig .”As user types
the word it searches in DBMS with same matching pattern. If
found correct query related to the user wish then it comes in
suggestion box. If user type any one of the similar word and
types other word which is not related to the actual query in
that case it won’t give any suggestion. As each query is
divided into some number of keywords. So unrelated word
never found in the DBMS system so the system search-as-you
type will not give any suggestion to the user.

Fuzzy Search:

In some of the cases the information is inserted into
DBMS by special words. Here the special words means some
of the information is stored with a name which is not related
to that particular information. As a result user will never find
the information as if he/she go normal search. By having this
discussion it is worth full to have fuzzy search. Fuzzy means
anonymous. The information is stored with anonymous name;
For this in our system search-as-you-type we are developing
fuzzy search also. In this type of search admin can upload the
information of files with anonymous names. If user types the
keyword related to the information file he/she won’t get any
kind of suggestions. If user enters the proper anonymous
keyword only the files which reside in the database comes as
suggestion for user.By making this we can provide little
security and only limited persons are allowed to access. So
this fuzzy search helps in giving security when compared to
the normal search.

Inverted table UDF Search:

I this UDF search scenario the query is partitioned by different
words in the correspond query with a specific index for each
word. All these queries are uploaded by the admin into
DBMS. For example a query contains 10 words like

w1,w2,w3…w10 as words. For all these word a specific
number or unique number is generated. And in other hand the
entire query also will have specific or unique number to
identify the query. Now if a user enters a number then it
checks whether the number is available in the keywords list or
not. If it founds in keyword list then it gives the suggestion as
the main query which is connected to the keyword list. By this
the inverted table helps in our system search-as-you-type on
giving the results on-the-fly.

Rank based Suggestions:

Apart from all these search methodologies we are also giving
rank based suggestions to the user. In this aspect we are taking
the user click as feedback and based those feedback we are
giving suggestions to the user. For example a user enter a
query and for that query out system search-as-you-type gives
many suggestions among those suggestion user might
interested in any query. Now we are getting which query is
further processed as feedback. Based on this feedback we are
increasing the rank of that query. If any other user comes do
search with the same keyword which is having higher rank
then it will be visible on the first row. Therefore based on the
ranks of the query our system is going to give response within
fraction of seconds.

IV CONCLUSION

In this article, we studied the problem of using the SQL to
support the system search-as-you-type in data bases. And
implemented various kinds of search techniques. We mainly
concentrated on the challenge of how to make full use of the
existing DBMS functionalities to meet high-performance
requirement to get an interactive speed. To support the prefix
matching, we proposed a solutions that uses the auxiliary
tables as index structures and SQL queries to support the
search-as-you-type. We enhanced the techniques in the case of
fuzzy queries, and proposed various techniques to improve the
query performance. We proposed multi keyword queries
search, and studied how to support first-N queries and the
incremental updates. And we are getting the feedback of the
user requested queries and based on that we are giving rank to
those queries. This is very helpful in the rank based search.

V REFERENCES

[1] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti,
“Scalable Ad-Hoc Entity Extraction from Text Collections,”
Proc. VLDB Endowment, vol. 1, no. 1, pp. 945-957, 2008.
[2] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A
System for Keyword-Based Search over Relational Data
Bases,” Proc. 18th Int’l Conf. Data Eng. (ICDE ’02), pp. 5-16,
2002.

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 5 – Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page188

[3] A. Arasu, V. Ganti, and R. Kaushik, “Efficient Exact Set-
Similarity Joins,” Proc. 32nd Int’l Conf. Very Large Data
Bases (VLDB ’06), pp. 918-929, 2006.
[4] H. Bast, A. Chitea, F.M. Suchanek, and I. Weber,
“ESTER: Efficient Search on Text, Entities, and Relations,”
Proc. 30th Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR ’07), pp. 671-
678, 2007.
[5] H. Bast and I. Weber, “Type Less, Find More: Fast
Autocompletion Search with a Succinct Index,” Proc. 29th
Ann. Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR ’06), pp. 364-371, 2006.
[6] H. Bast and I. Weber, “The Complete Search Engine:
Interactive,Efficient, and Towards IR & DB Integration,”
Proc. Conf. Innovative Data Systems Research (CIDR), pp.
88-95, 2007.

AUTHOR PROFILE

 C.Bhagya Laxmi is currently
pursuing M.Tech in the
Department of Computer
Science & Engineering,
Visvesvaraya College of
Engineering and Technology,
M.P Patelguda, Ibrahimpatnam
(M), Ranga Reddy(D), India.

Sri Dr. Bhaludra
Raveendranadh Singh
working as Associate Professor
& Principal in Visvesvaraya
College of Engineering and
Technology. He obtained
M.Tech, Ph.D(CSE)., is a
young, decent, dynamic
Renowned Educationist and
Eminent Academician, has
overall 20 years of teaching
experience in different
capacities. He is a life member
of CSI, ISTE and also a
member of IEEE (USA).

Ms’s. Sangeetha M working as
Assoc. Professor & HOD
(CSE). She has completed
bachelor of technology from
Swamy Ramananda Theertha
Institute of Science &
Technology and Post-
graduation from Jawaharlal
Nehru Technological
University,Kakinada campus
and is having 12 years of
teaching experience.

