
International Journal of Computer Trends and Technology (IJCTT) – volume 15 number 3 – Sep 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page92

Real Time Apps Using SignalR

Anurag Choudhry
Solution Architect,Banking Technology Group,Tata Consultancy Services,New Delhi, India

Anshu Premchand
Lead, Presales & Solutions,Banking Technology Group,Tata Consultancy Services,Chennai, India

Abstract— Real-time applications can be defined as applications
that respond within a defined timeframe that can be considered
by user as immediate or current. Real-time software applications
are different from other real-time systems. Real-time
applications deliver information instantly, and increase
interaction & engagement between system and users. We have
been using real-time technologies for more than a decade, but in
the last couple of years, we have seen them in applications that
we use frequently. Real-time technologies have matured and
users are demanding more of such applications that provide
excellent user experience and can engage users for a long
duration as well. Therefore, real time technologies and
applications have become the integral part of the organizations
IT eco system across industry verticals.

In this paper, we shall strive to discuss real-time technologies, use
cases, challenges with the existing real-time communication
mechanism, how SignalR can be used to resolve these issues and
in the last section we will look at SignalR security, design
considerations and performance improvement as well.

Keywords— Real-time applications, Real-time technologies,
SignalR.

I. INTRODUCTION
In real-time applications data is delivered to the subscriber

as soon as it is published by the publisher/author. Real-time
applications are used across several industry domains such as
Banking (Fraud detection, transactions management, trading
etc.), transport (Air traffic control systems), collaborations
(Google docs), social networking (Facebook, twitter,
Google+). We have been using various technologies such as
HTTP long pooling, Forever Frame, Server Sent Events, and
WebSockets etc. for developing real-time applications. All
these technologies have some limitations. Microsoft
introduced SignalR, which is part of ASP.NET libraries. It
uses existing transport techniques to provide real-time
communication and resolves the issues with existing real-time
technologies.

II. USE CASES OF REAL TIME APPS
With technology gaining importance in all aspects of our

existence around the world, real-time technology on mobile
and web is one the fastest emerging areas of computing. Real-
time web will be the foundation of next web (say Web 3.0).
There is various use cases of real-time apps, key ones are as
follows:

A. Banking and Financial Services (BFS)
In BFS industry, real-time technologies are used in various

areas mainly in capital markets where several push-based
messaging patterns are used. For instance, clients subscribe to
services that publish stock prices, broadcast messages &real-
time charts etc.

B. E-Commerce
This is an emerging area where real-time technologies are

being used to engage and interact with customers. Real-time
technologies allow retailers to watch as customer shop on
their sites and accordingly offer discounts and customer
support to convert web visits into sales. Showing the related
products or pushing online hot deals to all connected
customers is the real-time apps features for e-commerce
segment.

C. Real-time Analytics
Nowadays many organizations are working on real-time

analytics, the biggest push is coming from the technology
giant Google. With real-time technologies we have the option
to capture interactive user data such as mouse over, mouse
click and other user interactions.

D. Publishing
Key goal of online publishers is to keep customers engaged.

Real-time data can be used to generate visuals of complex
data which helps users in analysis.

E. Online Games
Multiplayer online games depend on low latency

communication between players and this is one of the key use
cases for real-time technology.

F. Collaboration
Large organizations are increasingly emphasizing on

collaboration between teams as this impacts productivity of
team members positively and can cut cost significantly. There
are various tools in the market that are used for collaboration
such as on-line meetings, web-based trainings, in-browser
IDE and so on.

G. Chat
Chat is the de-facto example of real-time technology as it

requires bi-directional real-time communication between chat
users. With the evolution of real-time technologies, there are
various opportunities to the modernize chat applications.

International Journal of Computer Trends and Technology (IJCTT) – volume 15 number 3 – Sep 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page93

H. Monitoring Services
Organizations use central monitoring services where

remote devices and servers are connected to the central
monitoring services. This service helps to watch endpoints
without logging into the remote machines and allows sending
alerts. Bi-directional real-time communication is used for this
kind of monitoring services.

I. Social Networking Apps
Gigantic social applications such as Facebook, Twitter and

Google+ use real-time web technologies for instant messaging
and interactive experience.

Hence, it’s clear from the above use cases that real-time

technologies are generating huge opportunities for the IT
industry. Real time technologies & apps are going to be the
key driver of all our web interaction in near future; they are
already driving most of our online footprint.

III. TECHNOLOGIES TO DEVELOP REAL-TIME
APPS

In order to build real-time apps there needs to be a bi-
directional communication between client and server. Using
persistent connection between client and server, information
can be delivered instantly. Real-time communication is easy
in thick client applications where queuing infrastructure or
message oriented middleware is used and client is connected
over TCP. Real-time communication in web based
applications is harder to implement. Traditionally, HTTP is
used for the communication between client (browser) and
server which is uni-directional in nature and built on
request/response model. Real-time communication can be
achieved by using various techniques. Key ones are as follows:

A. Java Applets
In earlier days, bi-directional communication was achieved

by using Java applets. Applets can make persistent connection
to server and communicate with JavaScript in the page. But
this concept could not be accepted widely due to dependency
on browsers plugins.

B. Techniques based on HTTP
To remove the dependency of plugins, HTTP Polling,

HTTP Long Polling and HTTP Streaming are used for real-
time communication between client and server. In all three
techniques polling, long polling and streaming, client sends
request to server for data and server send the information to
client but main difference amongst these three techniques is as
follows.
1) HTTP Polling: In HTTP polling, client makes a request

and waits for the server to send information. If there is no
information available, server sends an empty response.

2) HTTP Long Polling: In HTTP long polling, server hold
the connection until new information is available and
sends the same to client and closes the connection.

3) HTTP Streaming: In HTTP streaming, the connection is
not closed after sending the new information to client.

C. Forever Frame
Forever Frame uses hidden IFrame to push data from server

to client. In this technique, a set of JavaScript commands is
sent to IFrame and scripts are executed as events occur for
real-time communication from server to client. From client to
server communication, new connection opens for the data that
needs to be sent to server. Forever Frame works only in
Internet Explorer.

D. Server-Sent Events
Serer-Sent Events (SSE) is a mechanism for getting data

from server via HTTP connection using a JavaScript API
called EventSource. SSE is uni-directional HTTP streaming
connection for publishing a stream of data. This can be useful
in some cases but when rich interaction is required, bi-
directional communication becomes mandatory.

E. WebSocket
WebSockets allow bi-directional, persistent, full duplex

connection between client and server. EventSource and
WebSockets are part of HTML5 standards. WebSockets have
become the standard solution for real-time interactive
application development and have many advantages over the
above mentioned techniques. WebSockets are natively built
into browsers hence do not depend on browser plugins like
Applet, Flash and Silverlight. Similarly, WebSockets have
advantage over HTTP streaming, extra effort for parsing of
data received is not required while using WebSockets.

In our experience, all HTTP based techniques are

inefficient as client and server resources usage causes
overhead. Also, implementation of these techniques is
different across different browsers. SSE is not supported by
Internet Explorer and WebSockets are only supported by new
browsers and servers that support HTML5. Also, WebSockets
need to be supported by intermediate proxy layers.

So, in order to use these technologies, there are two options,
first is to design the solution which is supported by the
existing infrastructure. The second option is to implement “if-
else” kind of logic to detect the type of client, intermediaries
and server and then choose the right technology. Therefore, in
implementations of these technologies it is difficult to achieve
real-time communication and this is where SignalR comes
into the picture.

IV. SIGNALR

SignalR is a new ASP.NET library, which uses existing
transport technologies based on the infrastructure. SignalR has
the capability of real-time communication with wide range of
clients such as Web Applications, Windows Applications, and
Windows Phone Apps etc. Now, developers don't need to
worry about transport mechanism and do not need to decide
on fallbacks if infrastructure does not support a particular
technology.

International Journal of Computer Trends and Technology (IJCTT) – volume 15 number 3 – Sep 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page94

Below given diagram describes how SignalR decides the
transport mechanism based on the infrastructure available.

If (browser <= IE8)
{
Use Long Polling;
}

Else
{
If (JSONP = Configured)

{
Use Long Polling;
}

Else
{
If (connection is cross-domain)
 {
 If (client supports CORS & Server supports WebSockets & Client supports WebSockets)

{
Use WebSockets;
}

Else
 {
 Use Long Polling;

}
 }
Else
 {
 If (Server supports WebSockets & Client supports WebSockets)
 {
 Use WebSockets;
 }
 Else
 {
 If (Client supports Server Sent Events)
 {
 Use Server Sent Events;
 }
 Else
 {
 If (Browser >= IE9)
 {
 Use ForeverFrame;
 }
 Else
 {
 Use Long Polling;
 }
 }
 }
 }
}

}

Fig. 1 SignalR Transport Sequence

International Journal of Computer Trends and Technology (IJCTT) – volume 15 number 3 – Sep 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page95

A. SignalR Architecture
SignalR provides high level APIs to make Remote

Procedure Calls. Using these APIs, server side code can call
client functions and vice versa. These APIs also provide
functions for connection management such as
connect/disconnect, connection grouping etc. SignalR
architecture is depicted in the following diagram.

Fig. 2 SignalR Architecture

As shown in the diagram above, there are two types of

APIs for communication in SignalR technology i.e., Hubs API
and Persistent API.

Hubs API provides high level of abstraction and can be
used where developer wants SignalR to handle maximum
tasks automatically. A hubs API also provides the
functionality to directly call server and client methods. We
recommend use of Hubs API.

Persistent Connection API is a low level and message
oriented programming interface which provides developer a
lot of control over connection. Next layer in the architecture is
Transport layer which is described in section 3. .NET
application developed using SignalR can communicate with
web client, desktop client and Windows phone client.

B. Connection Security in SignalR

SignalR maintains the connection security by validating
the identity of the requestor. When any client requests server
for a new connection, server generates a connection ID
randomly and associates it with the response along with
authenticated user name. Connection token contains
connection ID and user name. Connection ID is unique for
each connected client and persists for the duration of the
connection. Digital signature and encryption is used by
SignalR to safeguard the connection token. For each
subsequent request, server validates the token data (against the
data that persists in connection token store) to make sure that
the request is coming from the identified user. SignalR
validates the user name and connection ID to prevent the
malicious attacks. If connection token is invalidated then
request terminates. Connection ID of one user should not be

shared with another user and also should not be saved on the
client machine such as in cookies. Following diagram depicts
how connection security works in SignalR.

Fig. 3 Connection Security in SignalR

C. Infrastructure Scalability in SignalR Applications

There are two options when we talk about infrastructure
scaling of any application i.e. scale up and scale out.

Scale up is to replace existing server with a larger server
having more RAM, CPU etc. In scale out, more servers are
added to distribute the load. Scaling up option is not
recommended in most cases as we hit the limit on size of the
server and then need to procure upwards again leading to
severe cost pressure. When we scale out by adding more
servers; load is distributed by the load balancer but in case of
real-time applications clients connected to one server will not
receive messages sent by another server. This issue can be
resolved if we send the messages from all servers to a
component and that component sends the messages to all
other application instances. There is the concept of Backplane
in SignalR which resolves this issue. Below given figure-4
shows how to scale out SignalR application infrastructure
using backplane. When an application instance broadcasts
[step 1 in the following figure] a message, it sends the
message to backplane and backplane forwards it to all
applications instances [step 2] and further applications send
this message to all connected clients [step 3].

Fig. 4 Scaling in SignalR

International Journal of Computer Trends and Technology (IJCTT) – volume 15 number 3 – Sep 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page96

SignalR provides three types of backplanes:
1. Windows Azure Service Bus (WASB) – This is a

messaging based infrastructure which is used to send
the messages.

2. Redis – Redis is an open source advanced key-value
in-memory store which provides pub-sub type of
implementation for sending messages.

3. SQL Server – In this approach, messages are saved in
SQL table by backplane component.

When SignalR solution is hosted on Window Azure then
WASB backplane is recommended to use and if hosting is on
premises then either SQL Server or Redis backplane can be
used.

There are some limitations in using backplane. The
maximum throughput is lower than if client directly talks to
server, because backplane sends every message to all
application instances. But this depends on application type. If
backplane is used for server broadcast type of applications
such as stock ticker, then no throughput difference is observed.
For client-to-client type of applications such as chat apps
sometimes it creates performance issues with the growth in
number of users. Backplane is not recommended to use for
high frequency real-time applications (e.g. games).

D. Performance

SignalR application performance can be improved
significantly by considering the following points while
designing and developing the applications:

1) Reduce Network Traffic: While designing SignalR
applications, the frequency of message delivery should be
considered. In high frequency real-time applications such as
games, not more than a few messages per second are required,
so to reduce the network traffic that each client generates, a
message loop can be implemented where messages queue and
get sent out at a fixed rate.

2) Reduce Message Size: Message size can be reduced
by reducing the size of serialized objects. Also, object
properties which are not required need not be sent.

3) Reduce Default Buffer Size: SignalR keeps 1000

messages by default in memory per hub per connection which
can create memory issues if large messages are used. This can
be resolved by reducing this value in Application_Start event
in ASP.NET application.

4) Increase Max Concurrent Requests in IIS: By

increasing the value of concurrent requests in IIS, more server
resources are available for serving more requests. By default,
the value of concurrent requests is 5000 and this can be set by
using the following command.
cd %windir%\System32\inetsrv\ appcmd.exe set config
/section:system.webserver/serverRuntime
/appConcurrentRequestLimit:10000

5) Increase maximum concurrent requests per CPU: By
increasing the maximum concurrent requests per CPU,
performance can be improved significantly.

V. CONCLUSION
SignalR technology is very promising; it allows

developers to build real-time applications without writing
complex code for pushing data from the server. SignalR
applications take advantage of the best possible
communication mechanism provided by the application
infrastructure. In this paper, we have tried to put forth real-
time technologies, use cases, challenges and SignalR
architecture, communication strategy and design
considerations for SignalR applications. In the next paper, we
shall strive to show how to design and develop Real-Time
Applications using SignalR by taking a real world example.

REFERENCES
[1] Bozdag, E., Mesbah, A., van Deursen, A., A Comparison of Push and

Pull Techniques for AJAX, IEEE, 2007
[2] Wenlan Guo, Hong Liu, The analysis of push technology based on

iphone operating system, ICMIC, 2013
[3] Min Huang, Jingyang Wang, Huiyong Wang, Research for real time

information transfer scheme based on HTTP persistent connection,
ICCET, 2010

[4] Puranik, D.G., Feiock, D.C., Hill, J.H., Real-Time Monitoring using
AJAX and WebSockets, IEEE, 2013

[5] Jason Lengstorf, Phil Leggetter, Realtime Web Apps: With HTML5
WebSocket, PHP, and jQuery, Apress, 2013

