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 ABSTRACT : Recently, a great number of 
chaos-based image encryption algorithms have 
been proposed. But most of them are either 
deficient in security or complicated. In this paper, 
we propose a permutation-substitution image 
encryption scheme based on generalized Arnold 
map.  Only one round of permutation and one 
round of substitution are performed to get the 
desirable results. The generalized chaotic Arnold 
maps are applied to generate the pseudo-random 
sequences for the permutation and substitution. The 
permutation and substitution are both performed 
row-by-row/column-by-column instead of pixel-by-
pixel to increase the speed of encryption. The 
security and performance of the proposed scheme 
have been analyzed, including statistical analysis, 
key sensitivity analysis, key space analysis, 
differential analysis, encryption rate analysis etc.  
All the experimental results suggest that the 
proposed image encryption scheme is efficient and 
highly secure.  

Keywords -Arnold map, chaotic dynamical 
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I. INTRODUCTION 
With the rapid development of network 

technology and multimedia processing techniques, 
multimedia data, including images, sounds and 
videos, are increasing shared over the internet or 
stored in hard disk in digital form. Often, 
multimedia data contain private or confidential 
information or are associated with financial 
interests. So the security problems have attracted 
researchers as well as general public’s attentions. 
Encryption is a classical and efficient way to solve 
these problems. Visual data are mainly 
characterized by the high redundancy and high 
correlation among pixels. According to Shannon 
[1], confusion and diffusion are two basic 
techniques to obscure such high redundancies and 
strong correlation. And the easiest and effective 
way is to combine the two basic techniques with 
chaotic systems. Chaotic system possesses several 
perfect features, such as determinacy, high 

sensitivity to initial conditions and control 
parameters, orbit inscrutability, ergodicity,  
pseudo-randomness, etc. These good chaotic 
natures agree with the fundamental requirements 
like confusion and diffusion in cryptography. These 
properties make chaotic system a potential 
candidate for constructing cryptosystems [2-6].   

Since Fridrich firstly proposed the 
fundamental permutation-diffusion mechanism of 
chaos-based image encryption in 1998 [2],  a great 
number of chaos-based image encryption 
algorithms have been studied and designed. All the 
chaos-based image encryption schemes have shown 
their superior performance. Fridrich’s proposed 
image encryption mechanism is usually composed 
of two processes: image shuffling of pixel positions 
by permutation process and image diffusion of 
pixel gray values by diffusion process. The 
shuffling process permutes the plain-image pixel 
positions governed by certain chaotic map, while 
the diffusion process changes the pixel gray values 
sequentially so that a tiny change for any one pixel 
can spread out to almost all pixels in the whole  
image. The Fridrich’s mechinism has become the 
most popular structure adopted in many chaos-
based image encryption algorithms subsequently 
proposed [2-12].  A good permutation process 
should show good shuffling effect and a good 
diffusion process should cause great modification 
over the cipher-image even if only a minor change 
for one pixel in the plain-image. However Wang et 
al. pointed out in [13] that such a kind of 
permutation-diffusion architecture with fixed 
parameters has one big drawback, that is, the two 
processes will become independent if the plain-
image is a homogeneous one with identical pixel 
gray value. Therefore, such a kind of encryption 
algorithms can be attacked by the following steps: 
(i) a homogeneous image with identical pixel gray 
values is adopted to eliminate the confusion effect; 
(ii) the key-stream of the diffusion process  is 
obtained via known-plaintext or chosen plaintext 
attacks; (iii) the remaining cipher-image can be 
regarded as the output of a kind of permutation-
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only cipher, which has been shown insecure and 
can be cryptanalyzed by known-plaintext or chosen 
plaintext attacks [14,15]. To overcome the fatal 
flaw existing in the image encryption schemes with 
permutation-diffusion architecture 
abovementioned. Patidar et al. [16] proposed a 
permutation-substitution based image encryption 
scheme consisting three processes: preliminary 
permutation, substitution and main permutation. 
The proposed image encryption scheme 
demonstrates strong robustness and great security. 
All the three processes are done row-by row and 
column-by-column instead of pixel-by-pixel to 
improve the speed of encryption. To yield excellent 
key sensitivity and plaintext sensitivity, both 
preliminary permutation and main permutation are 
designed to be dependent on the plain-image and 
controlled through the pseudo-random number 
sequences (PRNS) generated from the chaotic 
standard map. The substitution process is initialized 
with the initial vectors generated via the cipher 
keys and chaotic standard map, and then the pixel 
gray values of row and column pixels of input 2D 
matrix are bitxored with the PRNS generated from 
the standard map. Although the proposed 
substitution process is operated row-by row and 
column-by-column, which is different from 
conventional diffusion functions acting on the input 
image pixels subsequently one by one, the 
diffusion effect is also obtained, showing good 
resistance against differential analysis.  

Benefited from the idea of permutation-
substitution structure, we design a novel 
cryptosystem to avoid the drawback of the 
conventional Fridrich’s architecture. We make two 
improvements over the algorithm proposed in [16]. 
One is the use of 2D chaotic Arnold map instead of 
the use of standard map. The other improvement is 
that our image encryption scheme is only 
comprised of two stages: one permutation and one 
substitution. The 2D generalized Arnold map 
shows excellent chaotic features, such as 
ergodicity, pseudo-randomness, and sensitivity to 
initial conditions and control parameters [6].  It has 
already been well-tested and proved to be a good 
pseudo-random number generator. The application 
of 2D generalized Arnold map will own higher 
computational efficiency than 2D standard map 
because sine function exists in the latter map. In 
more details, there are three multiplication 
operations, two division operations and two mod 
operations for one pseudo-random gray value 

between 0 and 255 in case of standard map, while 
there are three multiplication operations and two 
mod operations in case of 2D generalized Arnold 
map. Furthermore, there exists one sine function 
operation in standard map.  Therefore it is more 
efficient to generate one pseudo-random gray value 
via 2D generalized Arnold map, especially for 
large images. In our encryption scheme, only one 
permutation stage and one substitution stage are 
applied, however, two permutation stages and one 
substitution stage are applied in [16]. Therefore it is 
obvious to see that our proposed image encryption 
scheme demonstrates more efficient regarding the 
speed of encryption. Experiments also verify such a 
conclusion. The security and performance analysis 
of the proposed image encryption are carried out 
using the histograms, correlation coefficients, 
information entropy, key sensitivity analysis, 
differential analysis, key space analysis, encryption 
rate analysis etc. All the experimental results show 
that the proposed image encryption scheme is 
highly secure and excellent performance, which 
makes it suitable for practical application. 

The rest of the paper is organized as 
follows. In Section 2, we briefly introduce the 2D 
generalized Arnold map and discuss its chaotic 
natures. Section 3 devotes to designing the image 
encryption scheme. One permutation stage and one 
substitution stage are presented to encrypt color 
images. In Section 4, we present the results of 
security and performance analysis of the proposed 
image encryption scheme using the histograms, 
correlation coefficients, information entropy, key 
sensitivity analysis, differential analysis, key space 
analysis, encryption rate analysis etc. Section 5 
draws some conclusions of the paper. 

 
II. THE GENERALIZED ARNOLD MAP 

Arnold map is also called cat map. It is a 
two-dimensional invertible chaotic map introduced 
by Arnold and Avez [17]. The classical Arnold 
map is described by  

  +1

+1

1 1
=

1 2
n n

n n

x x
y y

    
    

    
mod  1                (1) 

where “  mod  1x ” means the fractional part of a 
real number x  by adding or subtracting an 
appropriate integer. Therefore  ,n nx y  is confined 

in the unit square 2[0,1) . The map is area preserving 
since the determinant of its linear transformation 
matrix is 1. As shown in Fig.1, the  unit square is 
first stretch by the linear transform matrix and then 
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folded back to the unit square by the modulo 
operation. The classical cat map (1) can be 
generalized to the following form by introducing 
two positive real control parameters >0a  and >0b
, 

+1

+1

1
=

1+
n n

n n

x xa
y yb ab

    
    

    
 mod1 .         (2) 

The generalized Arnold map (2) has one Lyapunov 
characteristic exponent  

2 2

1
1+ + +4=1+ >1

2
ab a b ab

 ,   

so the map is always chaotic for >0a , 0b  . The 
extension of ,a b  from positive integer numbers to 
positive real numbers is an essential generalization 
of the control parameters in conventional 
generalized Arnold maps,  which enlarges the key 
space significantly. Fig. 2 (a) shows an orbit of  
   0 0, = 0.5231,0.7412x y  with length 1500 derived 

by the generalized Arnold map (2)  with 

=5.324, =18.2a b , the x-coordinate and the y-
coordinate sequences of the orbit are plotted in Fig. 
2 (b) and Fig. 2(c) respectively. Some other good 
dynamical features in the generalized Arnold map, 
such as desirable auto-correlation and cross-
correlation features are demonstrated in Figs. 2(d)-
(f).  The good chaotic nature makes it can provide 
excellent random sequence, which is suitable for 
designing cryptosystem. 
 

                      
Fig.1.  The Arnold map 

 

 
(a) The orbit of (0.5231, 0.7412) 

 
(b) Sequence { , 0, ,1500}kx k    

 
(c) Sequence  { 0, ,1500}ky k  ,  

 
(d) Auto-correlation of { , 0, ,1500}kx k    

 
(e) Auto-correlation of { , 0, ,1500}ky k    
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     (f) Cross-correlation of kx and ky sequences 
Fig.2. Orbit derived from the generalized Arnold 
map with a=5.324, b=18.2. 

 

III. THE PROPOSED IMAGE CIPHER 
In this section, we discuss the details of 

the proposed image cipher. The proposed image 
encryption scheme is composed of two stages, one 
permutation stage and one substitution stage. The 
plain colour image to be encrypted is expressed as 
a 3D matrix  defined by  

( , , ),1 ,  1 ,  1 3PI i j k i H j W k      .  
The values of the 3D matrix are integers between 0 
and 255. H  is the height of the color image, and  
W  is the width of the image. The colour channels 
are denoted by the value 1, 2,3k   standing for the 
red, green and blue channel respectively. The 
cipher keys consist of the initial values 0 0,x y , the 

control parameters ,a b  of the generalized Arnold 
map and one integer number N  used to eliminate 
the transient effect. We calculate the height NH
and width NW of one new 2D matrix by  

min ( ),
. .

= 3,
.

NW NH
s t
NH NW H W
NW NH




   
 

                         (3) 

A 2D matrix with height NH and width NW
calculated by (3) makes its height and width as 
approximately equal as possible. The best case is 
NH NW ; if it is not possible, then we get a 
rectangular matrix with the lowest possible 
difference in the number of rows and columns. The 
motive of such a calculation is to reduce the 
workload of the encryption. The whole image 
encryption scheme is outlined as follows.  

Step 1. Two initial pseudo-random gray 
value vectors ,IVR IVC  used for the permutation 
are generated by the the generalized Arnold map. 

With the initial conditions 0 0,x y , system control 
parameters ,a b and N given in the cipher keys, we 
iterate the generalized Arnold map (2) for N  times 
and reject the first N  orbit points 
{( , ) : 0,1, , 1}k kx y k N  . The values of 

( , )N Nx y  are stored and iterate (2) with initial 

values ( , )N Nx y to yield the initial pseudo-random 
gray value vectors ,IVR IVC  for row and column 
substitutions respectively.  For the sake of 
convenience,  we  rewrite ( , )N Nx y as 0 0( , )x y . 

   
   

1

1

1
  mod 1,

1+

1,*

,   1,

256

.*256 ,

i i

i i

i

i

IVR i floor

I

x xa
y yb ab

x
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







    
    
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

 

       

(4) 
where  ( )floor x returns the largest integer not 
larger than x . Now consider only the first NH
elements of IVC and reject the remainder, and then 
transpose IVC to get one column vector

( )IVC transpose IVC . We finally generate a row 
vector IVR having NW  elements and a column 
vector IVC  having NH elements.  

Step 2. For the sake of simplicity, we still 
rewrite ( , )NW NWx y as 0 0( , )x y  after the generation 
of row vector IVR  via (4). Another two pseudo-
random gray value vectors ,SVR SVC for the 
substitution are yielded by   

   
   

1

1

1
  mod 1,

1+

,

,

*256

* 25 ,6   1, .

i i

i i

i

i

SVR i floor

VC i flo

x xa
y yb ab

x

S o Wr y i N





    
   





 
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 

       (5) 

Step 3.  The 3D matrix PI  of  size 
3H W   is converted to one 2D matrix of size 

NH NW . Then we perform the permutation 
stage. Calculate the number of iterations to skip 
before starting the permutation by 

     
       

1 1,1 1, 2 1,

2,1 ,    256.  

N P P P NW

P P NH NW mod

  

 
 

Starting with the initial conditions ( , )N Nx y  

generated in Step 1 and the parameter ,a b  given in 
the cipher keys,  one iterates the 2D generalized 
Arnold map for 1N  times and then save the new 
values 1 1( , )N Nx y as ( , )x y . The following loop is 
applied to perform the permutation. For 1i   to 
NW , do  
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H
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

  

The vectors 1, 1, 2, 2PPR PPC PPR PPC  are then  
used to perform the permutation of the matrix P  
row-by-row and column-by-column by the 
following loop.  

For 1j   to NH , exchange row 1( )PPR j  

with row 2( )PPR j ;  

For 1j   to NW , exchange column 1( )PPC j  

with column 2( )PPC j .  
Step 4.  Substitute the 2D matrix row-by-

row and column-by-column. The substitution of the  
elements of first row is performed by bitxoring 
them with the elements of row initialization vector 
IVR and the first element of row substitution 
vector, (1)SVR , yielded in Step 1 and Step 2 

respectively. The substitution of the thi row is 
performed by bitxoring  the thi row with the 
previous row and the corresponding element 

( )SVR i of row substitution vector. After finishing 
the row substitution of all rows, the column 
substitution is similarly processed. The substitution 
of elements of first column is realized by bitxoring 
them with the elements of column initialization 
vector IVC and the first element of column 
substitution vector (1)SVC . The substitution of 
remaining columns is performed sequentially by 
bitxoring them with the previous column and the 
corresponding element of column substitution 
vector. The execution for the substitution is 
outlined as follows. 

(1,:) (1,:) (1);
( ,:) ( ,:) ( 1,:) ( ),  2, , ,

P P IVR SVR
P i P i P i SVR i i NH

  
     

  

(:,1) ( (:,1) ) (1);
(:, ) ( (:, ) (:, 1)) ( ), 2, ,

P P IVC SVC
P j P j P j SVC j j NW

  
      ，

 

where “ ” represents the bitwise XOR operation, 
and ( ,:), (:, )P i P j denote the i th row and j th 
column of matrix P .     

Step 5. Convert the resulted 2D matrix P
back into 3D color cipher image matrix. Create one 
initialized 3D zero matrix CI  with size 3H W   
and then read the data of resultant 2D matrix P   
column-by-column and place them in the 3D 
matrix CI  column-by-column.  The 3D matrix 

( , , )CI i j k (1 ,  1i H j W    ,1 3k  ) 
is thus formed and finally converted to a color 
image, which is the final encrypted image. 

 
IV. SECURITY AND PERFORMANCE 

ANALYSIS  
According to the basic principle of 

cryptology [18], an ideal encryption scheme 
requires desired sensitivity to cipher keys, i.e., the 
cipher-text should have strong correlation with 
cipher keys. An ideal encryption scheme should 
have also a large key space to make brute-force 
attack infeasible; it should also well resist various 
kinds of attacks like statistical analysis attack, 
differential attack, chosen plaintext attack and 
known plaintext attack, etc. In this section, the 
security and performance analyses have been 
carried out with details for the proposed image 
encryption scheme, including statistical anaylysis 
(histograms, correlation coefficients, information 
entropy), key sensitivity analysis, key space 
analysis, differential analysis, encryption rate 
analysis etc. Experimental results suggest that the 
proposed image encryption technique is highly 
secure and can be used for the secure image and 
video communication applications. 
 
4.1. The histogram analysis 

An image histogram is a graph showing 
the number of pixels in an image at each different 
intensity value found in that image. The histogram 
of a cipher-image should have uniform distribution 
and is completely different from that of the plain-
image. For a 24-bit color image, three histograms 
can be drawn for each 8-bit red, green and blue 
channel. The histograms of the color plain-image 
and the cipher-image are plotted in Fig. 3. The 
histograms of cipher-image are fairly uniform and 
significantly different from those of the plain-
image. They imply that there is no useful statistical 
information in the cipher-image for an attacker to 
launch any statistic attacks to the cryptosystem. 
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(a) Plain-image Lena                                              (b) cipher-image 

          
(c) Histograms of R/G/B channel of plain-image    (d) Histograms of R/G/B channel of cipher-image 

Fig. 3. Histograms of plain-image Lena and its cipher-image using the proposed encryption scheme with the 
secret key（0.286295319532476，0.56538639123458，22，33，108）. 
4.2. Correlation coefficient analysis 

It is well-known that for a meaningful 
image having definite visual content, the adjacent 
pixels’ intensity values vary gradually and 
therefore each pixel is highly correlated with its 
adjacent pixels either in horizontal, vertical or 
diagonal direction. An ideal encryption technique 
should produce cipher-images with less correlation 
in the adjacent pixels. To measure and compare the 
horizontal, vertical and diagonal correlations of 
adjacent pixels in the plain and cipher images, we 
calculate the correlation coefficients for all the 
pairs of horizontally, vertically and diagonally 
adjacent pixels respectively.  First, we select 5000 
pairs of two adjacent pixels randomly from an 
image and then calculate the correlation coefficient 
of the selected pairs using the following formulae  

Cr 
( )

( ) ( )
cov x y

D x D y


, 

 

( )cov x y  1

1

( ( ))( ( ))
T

i iT
i

x E x y E y


    

( )E x  21 1

1 1
( ) ( ( ))

T T

i iT T
i i

x D x x E x
 

      

where ,i ix y form the ith pair of horizontally, 
vertically or diagonally adjacent pixels and T is the 
total number of pairs of adjacent pixels randomly 
selected.  The correlation coefficients of 
horizontally, vertically, diagonally adjacent pixels 
for plain-image Lena, Burn, and their 
corresponding  cipher-images are given in Table 1.  
It is clear from Table 1 that the proposed image 
encryption technique significantly reduces the 
correlation between the adjacent pixels of the plain 
image. 
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Table 1.  Correlation coefficients between adjacent pixels of plain and cipher image 

 

  Correlation between adjacent pixels 
  red green blue 
horizontal plain-image 0.9805 0.9694 0.9323 
 cipher-image 0.0121 -0.0032 0.0052 
vertical plain- image 0.9897 0.9834 0.9602 
 cipher-image -0.0115 -0.0126 0.0171 
diagonally plain-image 0.9898 0.9837 0.9602 

cipher-image 9.9595e-004 -0.0012 0.0071 

 

horizontal plain- image 0.9959 0.9880 0.9854 

 cipher-image 0.0057 -0.0132 -0.0019 
vertical plain- image 0.9936 0.9845 0.9851 
 cipher-image 0.0219 -0.0162 -0.0136 

diagonally plain- image 0.9941 0.9838 0.9822 

cipher-image -0.0186 0.0371 -0.0047 

We have also analyzed the correlation 
between plain-image and cipher-image by 
computing the two-dimensional correlation 
coefficients between various color channels of 
plain-image and cipher-image. The 2D-correlation 
coefficients are calculated by  

, ,
1 1

2 2
, ,

1 1 1 1

, ,
1 1 1 1

1 ( )( )
,

1 1( ) ( )

1 1 ,   .

H W

i j i j
i j

AB
H W H W

i j i j
i j i j

H W H W

i j i j
i j i j

A A B B
H W

C

A A B B
H W H W

A A B B
H W H W

 

   

   

 



  

      

 
 



 

 

 

where A  represents one of the red, green and blue 
channel of the plain image, B represents one of the 
red, green and blue channel of the cipher image, A  
and B  are the mean values of the elements of 2D 
matrices A  and B  respectively;  H and W are 
respectively the height and width of the 
plain/cipher image. In this way, we have total nine 
different correlation coefficients ( RRC ， RGC ，

RBC ， GRC ， GGC ， GBC ， BRC ， BGC  and BBC ) 
for a pair of plain and cipher images. We have 
computed the correlation coefficients for the pair of 
plain-image Lena and its corresponding cipher-
image. The results are shown in Table 2.  One can 
see from the results that the correlation coefficients 
between various channels of the plain image and 
cipher image are very small (or practically zero), 

hence the cipher-image owns the characteristics of 
a random image.  

 
Table 2. Correction between pairs of plain and 
cipher images 
 plain-image 
Cipher 
image 

Red Green Blue 

 plain-Image ‘ Lena’ 
Red 0.0016 0.0023 0.0030 
Green 0.0042 0.0054 0.0063 
Blue -0.00016 0.00073 0.0013 
 plain-Image ‘burn’ 
Red 0.0025 0.0020 0.0021 
Green -0.0047 -0.0020 -0.0032 
Blue 0.0022 0.0023 0.0028 

 
4.3. Information entropy 

Information entropy, the most important 
feature of randomness, is one of the fundamental 
criteria to measure the strength of a cryptosystem. 
Information entropy is a measure of the uncertainty 
associated with a random variable and can be also a 
measure of disorder and randomness. It quantifies 
the amount of information contained in data, 
usually in bits/symbol. Two extremely cases are: a 
long sequence of repeating characters and a truly 
random sequence. The former has entropy of 0 
since every character is predictable, and the latter 
has maximum entropy since there is no way to 



International Journal of Computer Trends and Technology (IJCTT) – volume 15 number 4 – Sep 2014 

 

ISSN: 2231-2803             www.internationaljournalssrg.org                                  Page 181 

predict the next character in the sequence. 
Regarding image, it can be used to measure the 
uniformity of image histograms; it is one of the 
fundamental criteria to measure the strength of a 
cryptosystem. The entropy ( )H m  of a message 
source m  can be measured by  

1

0

( ) ( ) log( ( )) (bits)
L

i i
i

H m p m p m




  , 

where L  is the total number of symbols m , ( )ip m  
represents the probability of occurrence of symbol 

im  and log denotes the base 2 logarithm so that the 
entropy is expressed in bits. For a random source 
emitting 256 symbols, its entropy is ( ) 8H m   bits. 
For a 24-bit color image, the information entropy 
for each color channel (Red, Green and Blue) is 
given as 

82 1
/ / / /

2 / /
0

1( ) ( ) log   (bits).
( )

R G B R G B
i R G B

i i

H m P RI
P RI






We have calculated the information entropy for 
plain- image Lena and its corresponding cipher 
image. The results are shown in Table 3. 
Comparing the results with those presented in [16], 
one can see that the results obtained here are better 
than those produced in [16].  The value of 
information entropy for the cipher-image produced 
by the proposed image encryption scheme is very-
very close to the expected value of truly random 
image, i.e., 8bits. Hence the proposed encryption 
scheme is extremely robust against entropy attacks.  
 
Table 3. Information entropy analysis 

 red green blue 
Plain-image 
‘lena’ 

7.2531 7.5952 6.9686 

Cipher-image of 
‘lena’ 

7.9993 7.9992 7.9993 

Cipher-image of 
‘lena’[16] 

7.9957 7.9963 7.9951 

 

4.4. Key sensitivity analysis 
 
An ideal image encryption scheme should be 
extremely sensitive to cipher keys, which is an 
essential feature for any good cryptosystem in the 
sense that it can effectively prevent invaders 
decrypting original data even after they invest large 
amounts of time and resources. The key sensitivity 
of a cryptosystem can be observed in two ways: (i) 
the cipher-image derived from the cryptosystem 
should be extraordinarily sensitive to cipher keys, 
i.e., if we use two slightly different keys to encrypt 
the same plain-image, then two cipher-images 
should possess negligible correlation; (ii) the 
cipher-image cannot be decrypted correctly 
although there is a slight difference between the 
encryption and decryption keys. To evaluate the 
key sensitivity property, the plain-image is 
respectively encrypted with one master cipher key 
MKEY and five other cipher keys SKEY1—
SKEY5 which have only a minor difference in any 
one of five parts of master cipher key. The 
following cipher keys are used to perform the 
simulation and the results are shown in Table 4.  
MKEY: (0.286295319532476, 0.56538639123458, 
22, 33, 108);  
SKEY1: (0.286295319532475, 0.56538639123458,  
22, 33, 108);  
SKEY2: (0.286295319532476, 0.56538639123457, 
22, 33, 108);  
 
SKEY3: (0.286295319532476, 0.56538639123458, 
22, 33, 109);  
SKEY4: (0.286295319532476, 0.56538639123458, 
22+1.0e-14, 33, 108);  
SKEY5: (0.286295319532476, 0.56538639123458, 
22, 33+1.0e-14, 108);  
 

 
 

 
Table 4. Key sensitivity test I.  (a) Key sensitivity analysis of image ‘lena’ 

Correlation coefficients between the encrypted images obtained using MKEY and SkEY1-
SKEY5 

 SKEY1 SKEY2 SKEY3 SKEY4 SKEY5 

RRC  0.0007 0.0023 -0.0023 0.00086 0.0015 

RGC  0.0036 0.0021 0.00023 -0.0036 -0.00093 
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RBC  0.0026 -0.0018 -0.00015 0.00034 0.00095 

GRC  0.0026 -0.0015 -0.00089 0.00013 0.0033 

GGC  -0.0019 0.00027 -0.00059 -0.0023 0.0025 

GBC  -0.00066 -0.0040 -0.00052 -0.00042 0.00093 

BRC  0.0026 0.0026 -0.00036 0.0039 -0.00061 

BGC  0.00075 0.0014 0.0018 0.0013 0.0033 

BBC  0.00095 0.00043 -0.00006 0.0012 -0.0017 

 
(b) Key sensitivity analysis of image ‘burn’ 

Correlation coefficients between the encrypted images obtained using MKEY and SkEY1-
SKEY5 

 SKEY1 SKEY2 SKEY3 SKEY4 SKEY5 

RRC  -0.000731 -0.0021 -0.0032 -0.00078 0.0005 

RGC  0.0021 -0.000287 -0.000756 -0.0028 0.00025 

RBC  -0.000764 0.0011 -0.0028 0.0025 0.0017 

GRC  0.000529 0.000572 0.0016 -0.0019 -0.0021 

GGC  0.0024 -0.0032 0.0027 0.0020 -0.0028 

GBC  0.000998 -0.0014 0.00074 0.00031 0.0019 

BRC  -0.0030 0.0020 -0.0037 -0.00043 -0.0030 

BGC  -0.000063 0.0037 0.0025 0.00076 -0.0004 

BBC  -0.0023 -0.0039 -0.0009 -0.00022 -0.0013 

Table 5. Key sensitivity test II. 
Correlation coefficients between the decrypted images of Lena obtained using MKEY and 

SkEY1-SKEY5 
 SKEY1 SKEY2 SKEY3 SKEY4 SKEY5 

RRC  0.0026 0.00031 -0.0015 0.0023 0.0036 

RGC  -0.0011 0.0018 0.0011 -0.0032 -0.0014 

RBC  0.00093 -0.00042 0.0029 0.00085 0.0015 

GRC  0.00092 -0.00028 -0.0028 0.0010 0.0026 

GGC  -0.00076 0.0023 0.0013 -0.0019 -0.0016 

GBC  -0.00066 0.00029 0.00070 -0.0027 0.0026 

BRC  -0.00064 0.00025 -0.0029 -0.00031 0.0022 

BGC  -0.0012 0.0032 0.00093 -0.0011 -0.0018 

BBC  -0.00054 0.00033 -0.0015 -0.0048 0.0036 

 
(i) For the first kind of key sensitivity 

analysis, the plain-image Lena is encrypted using 
MKEY and also using all five slightly different 
keys SKEY1--SKEY5. Then we have computed the 
2D correlation coefficients between the various 

colour layers of the cipher-image yielded using 
MKEY and five other cipher-images produced 
using slightly different keys from SKEY1 to 
SKEY5. The results have been given in Table 4. 
All the correlation coefficients are very small or 
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practically zero indicating that all the cipher-
images are highly different and hence the cipher-
images produced by the proposed image cipher 
possess extreme sensitivity to cipher keys. 

(ii) For the second kind of key sensitivity 
analysis, plain- image Lena is encrypted using 
MKEY, and the encrypted image is decrypted with 
five slightly different keys from SKEY1 to 
SKEY5. Now the 2D correlation coefficients 
between the various colour channels of plain-image 
and five decrypted images with slightly different 
keys from SKEY1 to SKEY5 are calculated. The 
results are given in Table 5. It is clear that all the 
correlation coefficients are very small or practically 
zero, i.e., the images decrypted using slightly 
different keys are highly different. 
 
4.5. Differential attack analysis 

The cryptosystem should be sensitive to a 
specific change in the plain-image, because some 
relationship between the plain-image and the 
cipher-image can be traced by the difference 
caused by a slight modification in the plain-image. 
The differential cryptanalysis of a block cipher is 
the study of how differences in a plaintext can 
affect the resultant differences in the ciphertext 
with the same cipher key. It is usually done by 
implementing the chosen plaintext attack but now 
there are extensions which use known plaintext as 
well as ciphertext attacks also. As for image 
cryptosystems, attackers may generally make a 
slight change (e.g., modify only one pixel) of the 
plain-image, and compare the two cipher-images 
(obtained by applying the same cipher key on two 
plain-images having one pixel difference only) to 
find out some meaningful relationships between the 
plain-image and the cipher-image. If a meaningful 
relationship between plain-image and cipher-image 
can be found in such analysis, which may further 
facilitate the opponents to determine the cipher 
key. If one minor change in the plain-image will 
cause significant, random and unpredictable 
changes in the cipher-image, then the encryption 
scheme will resist differential attack efficiently. To 
test the robustness of image cryptosystems against 
the differential cryptanalysis, two performance 
indices are usually used to test the effect of 1-bit 
change in the plain-image on the corresponding 
cipher-image.  They are NPCR (number of pixel 

change rate) and UACI (unified average changing 
intensity). 

NPCR is used to measure the percentage 
number of pixels in difference of a particular color 
channel in two cipher-images obtained by applying 
the same cipher key on two plain-images having 
one pixel difference only. If / /R G BC and / /R G BC
represent the R, G, B channels for two cipher-
images, then NPCR for each color channel is 
defined as: 

/ /
,

1 1/ /

/ / / /
, ,/ /

, / / / /
, ,

NPCR 100%,

0 ,  C ,

1,    C .

H W
R G B
i j

i jR G B

R G B R G B
i j i jR G B

i j R G B R G B
i j i j

D

W H
if C

D
if C

  


  



 

The NPCR for two random images, which is an 
expected estimate for an ideal image cryptosystem, 
is given by 

/ // / (1 2 ) 100%,
R G BR G B L

ExpectedNPCR     

where / /R G BL is the number of bits used to represent 
the red, green or blue channels of the considered 
image. For a 24-bit true color image (8 bit for each 
color channel) / / =8R G BL , hence 

/ / 99.6094%R G B
ExpectedNPCR  . 

UACI, the average intensity difference of 
a particular channel between two cipher-images 

/ /R G BC  and / /R G BC , is calculated by 

/ /

/ / / /
, ,/ /

1 1

1UACI 100%.
2 1

R G B

R G B R G BH W
i j i jR G B

L
i j

C C
W H  


 

 
  

The UACI for two random images, which is an 
expected estimate for an ideal image cryptosystem, 
is given by 

     

/ /

/ / / /

2 1

/ / 1
2

( 1)1UACI 100%.
2 2 1

R G BL

R G B R G B
R G B i
Expected L L

i i




  


  

For a 24-bit true color image, 
/ /UACI 33.4635%R G B

Expected  . 

We have performed the differential 
analysis by calculating NPCR and UACI on plain-
image Lena. The analysis has been done by 
randomly choosing 500 pixels (one at a time, 
including the very first and very last pixels) in each 
plain-image and changing their all three color 
values by one unit. The average values of NPCR 
and UACI thus obtained for all three images are 
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given in Table 6. It is clear that the NPCR and 
UACI values are very close to the expected values, 
thus the proposed image encryption technique 
shows extreme sensitivity on the plaintext and 

hence not vulnerable to the differential attacks. The 
results by the proposed scheme [16] are also shown 
in Table 6 for the comparison.  

 
Table 6. Differential analysis 

 Average NPCR (%) Average UACI (%) 
 red green blue red green blue 
Image ‘Lena’ 99.5958 99.6248 99.6155 33.3720 33.5120 33.4218 
Image ‘Lena’[16] 99.6132 99.5984 99.4001 33.4873 33.5203 33.3901 

 
4.6. Resistance to known-plaintext and chosen-
plaintext attacks 

In the permutation process, we used 1N  
to iterate the chaotic Arnold map 1N times with the 
initial conditions to generate chaotic sequences for 
permuting the plain-image. Since 1N depends on 
all the elements of 2D matrix, when different plain-
image are encrypted, the corresponding chaotic 
sequence applied to permute the plain-images will 
be different, resulting in different cipher-image. 
Therefore the attacker cannot find useful 
information by encryption some special images. 
The proposed image scheme can thus resist the 
known-/chosen- plaintext attacks efficiently.  

 
4.7. Encryption speed analysis 

We have also estimated the encryption 
rate of the proposed image encryption scheme. The 
operation system, hardware and software are 
Windows 7 system, Intel(R) Pentium(R) G620 
@2.60GHz  CPU with 2 GB RAM, and  MATLAB 

7.11 respectively. In Table 7, we present the 
average value of encryption rate of the proposed 
encryption technique for “all-zeros” images of five 
different sizes (1.5, 6, 9, 12, 24, 44 and 72 Mb 
(Mega-bits)). Randomly generating 50 cipher keys 
for each image, we encrypt the image and get the 
average encryption time. The results show that the 
proposed image encryption scheme has an average 
encryption rate of 18.4737Mbps or so in case of 
encrypting one round. We have also estimated the 
encryption rate of the proposed scheme in [16] for 
a comparison using the same computing 
environment. The average encryption rate of 
16.1025Mbps is obtained for the proposed scheme 
in [16]. All the results indicate that our proposed 
scheme is more efficient than the proposed one in 
[16] Anyway, at the case of large image data, our 
image encryption scheme shows great potential. 
From the point of view of key space capacity, we 
note that the proposed scheme here owns actually 
competitive advantage than that one in [16] as well. 

 
 
Table 7. Comparison between the encryption rates of the proposed scheme here and one recent chaos-based 
permutation-substitution image encryption scheme [16]. The encryption time is measured in second and the 
encryption rate is measured in Mbps. 

Image size 
Time by the proposed 
scheme here (s) 

Rate by the proposed  
scheme here (Mbps) 

Time by 
the scheme [16] 

Rate by 
the scheme [16] 

1.5Mb 0.0751 20.0179 0.0771 19.4770 
6Mb 0.3231 18.5727 0.3700 16.2171 
9Mb 0.4897 18.3783 0.5671 15.8710 
12Mb 0.6518 18.4118 0.7613 15.7620 
24Mb 1.3014 18.4415 1.5449 15.5351 
44Mb 2.4240 18.1517 2.8957 15.1953 
72Mb 4.1519 17.3419 4.9114 14.6598 

 
V. CONCLUSION 

In this paper we proposed an efficient 
image encryption scheme based on generalized 
Arnold map and permutation-substitution 
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mechanism. The encryption process makes the 
resulted cipher-image dependent on the plaintext as 
well as the initial cipher keys, and therefore the 
cipher-image strongly resists known-plaintext and 
chosen-plaintext attacks. All the experimental 
results suggest that the proposed image encryption 
scheme is robust and secure and can be used for 
secure image and video communication 
applications.   
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