
International Journal of Computer Trends and Technology (IJCTT) – volume 14 number 1 – Aug  2014 

ISSN: 2231-2803                      http://www.ijcttjournal.org               Page36 
 

 

Run Time Bubble Sort – An Enhancement of 
Bubble Sort 

 
Harish Rohil #1, Manisha #2 

#1 Assistant Professor, Department of Computer Science and Applications, Chaudhary Devi Lal University, 
Sirsa-125055, Haryana, India 

#2 M. Tech. Scholar, Department of Computer Science and Applications, Chaudhary Devi Lal University, Sirsa-
125055, Haryana, India 

Abstract- In many real applications, sorting plays an important 
role as it makes easy to handle the data by arranging it in 
ascending or descending order, according to requirements. Bubble 
sort is most common sorting algorithm, but not efficient for many 
applications. There are number of other sorting algorithms and 
still, research is going for new sorting algorithms to improve the 
complexities of existing algorithms whether it is space complexity 
or it is time complexity. This paper introduces a new algorithm 
named RTBS (Run Time Bubble Sort). This sorting technique is 
very simple to implement. It is helpful to reduce the elapsed time 
when to sort the data. RTBS is compared with original bubble sort 
algorithm. This sorting technique is tested for average case, best 
case and the worst case. 
 
Keywords- Sorting algorithm, Bubble sort. 
 

I. INTRODUCTION 
An algorithm is a finite set of steps defining the solution of a 
particular problem. An algorithm can be expressed in English 
like language, called pseudo code, in a programming language, 
or in the form of a flowchart. Every algorithm must satisfy the 
following criteria: 
A. Input 

There are zero or more values which are externally supplied. 
B. Output 

 At least one value is produced. 
C. Definiteness 

Each step must be clear and unambiguous. 
In general, sorting means rearrangement of data according to a 
defined pattern. The task of sorting algorithm is to transform 
the original unsorted sequence to sorted sequence. Different 
sorts are classified in different categories: complexity, memory 
usage, stability, comparison/non- comparison etc. 
1) Complexity: There are mainly two types of 
complexity: Time Complexity is the running time of the 
program as a function of the size of input. Space Complexity is 
the amount of computer memory required during the program 
execution, as a function of the input size. There are three cases 
when measuring the complexity of algorithms: Best case if the 

resources are at least used. Average case if the resources are at 
average used and Worst case if the resources are at most used. 
2) Memory Usage: Computer scientists differentiate between 
internal and external sorting algorithms. While external ones 
need a large amount of extra memory, the internal algorithms 
manipulate the original array and only needs a few byte for 
stack and temporary variables. With the exception of merge 
sort, almost basic sorting algorithms belong to internal sorting 
algorithms. 
3) Stability: Stable algorithms maintain the relative order of 
records with equal sort key values. For example, whenever 
there are two records X and Y with the same key and with X 
appearing before Y in the original list, X will appear before Y 
in the sorted list. Bubble sort, insertion sort, Merge sort, Bucket 
sort Radix sort-LSD are stable algorithms, while Selection sort, 
Heap sort, Quick sort, Shell sort, Radix sort- MSD are unstable 
sorting algorithms. 
4) Comparison/non comparison sorts: A comparison sort 
reads the list elements through a single abstract comparison 
operation (like greater than or equal to). This determines which 
of two elements being compared should occur first in the final 
sorted list. There are many used in comparison sorts: 
Exchanging: used by Bubble sort 
Selection: used by Selection sort and Heap sort 
Insertion: used by Insertion and Shell sort 
Merging: used by Merge sort 
Partitioning: used by Quick sort 
Non- comparison sorts include: 
Bucket sort: examines bit of keys 
Radix sort: examines individual bit of keys. 
Comparison sorts being more popular. 
 

II. RELATED WORK 
Astrachanm has investigated the origin of bubble sort and its 
enduring popularity despite warnings against its use by many 
experts [1]. 
Jehad Alnihoud and Rami Mansi have presented two new 
sorting algorithms i.e. Enhanced Bubble Sort and Enhanced 



International Journal of Computer Trends and Technology (IJCTT) – volume 14 number 1 – Aug  2014 

ISSN: 2231-2803                      http://www.ijcttjournal.org               Page37 
 

 

Selection Sort [2]. ESS has O(n2) complexity, but it is faster 
than SS, especially if the input array is stored in secondary 
memory, since it performs less number of swap operations. 
EBS is definitely faster than BS, since BS performs O(n2) 
operations but EBS performs O(nlogn) operations to sort n 
elements. 
The authors have tried to improve upon the Bubble Sort 
technique in [3], by implementing the algorithm using a new 
approach of implementation. The comparison is done with 
traditional Bubble sort as well as Bi-directional Bubble sort.  It 
is observed that Bi-directional Bubble sort algorithm is the best 
algorithm to be used with regard to worst case analysis where 
the data elements are in reverse order and the proposed 
algorithm can be very effective for the small as well as large 
data files. 
 [4] provides a novel sorting algorithm Counting Position Sort 
which is based on counting position of each element in the 
array. This algorithm is based on counting the smaller elements 
in the array and fixes the position of the element.  
An enhancement of quick sort is presented in [6]. This sorting 
algorithm is named SMS (Scan, Move and Sort) algorithm.  
A new sort algorithm namely “An End-to-End Bi-directional 
Sorting (EEBS) Algorithm is proposed in [7] to address the 
shortcomings of the most popular sorting algorithms. The 
proposed algorithm is based on bubble sort as its working in the 
second step of the operation is somewhat, similar to the bubble 
sort. The proposed algorithm works in two steps. In first step, 
the first and the last element of the array is compared. If the 
first element is larger than the last element, then the swapping 
of the elements is required. The position of the element from 
front end and element from the rear end of the array are stored 
in variables which are increased (front end) and decreased (rear 
end) as the algorithm progresses. In the second step, two 
adjacent elements from the front and rear end of the array are 
taken and compared. Swapping of elements is done if required 
according to the order. Four variables are taken which stores 
the position of two front elements and two rear elements to be 
sorted. The results of the analysis proved that EEBS is much 
more efficient than the other algorithms having O(n2) 
complexity, like bubble, selection and insertion sort.  
A new sorting algorithm is presented in [8], namely, 
“Optimized Selection Sort Algorithm (OSSA)”. OSSA are 
designed to perform sorting quickly and more effectively as 
compared to the existing version of Selection sort. Some key 
ideas are given in [9]. Some enhancements are suggested for 
insertion sort. 
The sorting algorithm “Sorting in Linear Time?” is presented in 
[10]. With this algorithm, the sorting is performed in two 
phases. In the first phase, the size of the numbers is reduced 
using radix sort techniques. In second phase, merge sort is 
performed on shortened numbers.  

In [11], the author has investigated the complexity values 
researchers have obtained and observed that there is scope for 
fine tuning in present context. They aim to provide a useful and 
comprehensive note to researcher about how complexity 
aspects of sorting algorithms can be best analyzed.  
In [15], various sorting algorithms are discussed and compared.  
[16] demonstrates how an unstable in-place algorithm sorting 
algorithm, the ALR algorithm, can be made stable by 
temporary changing the sorting keys during the recursion.  
[17] proposes a novel parallel sorting algorithm based on exact 
splitting that combines excellent scaling behavior with 
universal applicability.  
In [18], author has proposed a new sorting algorithm, relative 
Split and Concatenate sort. This algorithm is implemented and 
compared with some existing sorting algorithms.  
In [19], the author uses the stacks to solve the sorting problem. 
Two stack based sorting algorithms are introduced. The first is 
based upon sorting by insertion technique, whereas other is 
based upon sorting by exchange technique.  
 

III. PROPOSED WORK 
A. Concept 

The proposed algorithm for this research paper is RTBS (Run 
Time Bubble Sort). In this sorting technique, the sorting is 
started as the user gives first two elements. The first two 
elements are sorted before user gives the third element. The 
first three elements are sorted before user gives the fourth 
element and so on up to last element to be sorted. In fact, the 
Run Time Bubble Sort is an enhancement to the bubble sort 
algorithm in decreasing the time for traversing the elements 
from beginning. RTBS is a comparison sort with the property 
of stability. 
 

B. Algorithm 
RTBS(DATA,N) 
Step I. Input DATA[0] 
Step II. Repeat steps III and          IV for k=1 to N-1 
Step III. Set PTR=1 
Step IV. Repeat while PTR<=N-K 

a. Input DATA[PTR] 
b. If  DATA[PTR-1]>DATA[PTR], then 
c. Swap DATA[PTR-1] and DATA[PTR] 
d. Set PTR=PTR+1 

Step V. Exit 
 

C. Experimental Results 
In order to test this proposed algorithm for its efficiency the 
algorithm was implemented in C language on core i3 machine 
with operating system window 8. 



International Journal of Computer Trends and Technology (IJCTT) – volume 14 number 1 – Aug  2014 

ISSN: 2231-2803                      http://www.ijcttjournal.org               Page38 
 

 

To calculate the execution time of both algorithms, clock() 
function is used. Both algorithms are compared on the same 
elements of unordered list. 
In order to make a comparison of the proposed algorithms with 
the existing Bubble sort, a number of tests were conducted for 
small as well as large number of elements. Comparison is 
shown in tabular form as following: 

TABLE I 
Elapsed Time for the Proposed RTBS algorithm and the Existing Bubble Sort 

Algorithm 
No. of 

elements 
RTBS 
(in ms) 

Bubble sort 
(in ms) 

10 40 40 
100 39 52 
1000 36 51 

10000 164 191 
As shown in Table 1 above, 10 unordered elements have been 
taken and sort them using proposed RTBS as well as Bubble 
sort.  The elements are selected randomly using random() 
function. The elapsed time was same for both sorts. As the 
number of elements increases upto 100, efficiency of proposed 
algorithm has been shown. The elapsed time using Run Time 
Bubble sort was less than using existing Bubble sort. The 
difference of elapsed time grows as number of elements 
increases. 
Following is the graphical representation of comparison of 
proposed RTBS algorithm and Bubble sort. 

 
Figure 1 Comparison of the Proposed RTBS algorithm and the Existing Bubble 

Sort Algorithm based on the Elapsed Time 
In Figure 1, X-axis shows number of elements and Y-axis 
shows the elapsed time in milliseconds. 

D. Analysis 
When RTBS algorithm is compared with bubble sort, the only 
difference is that the user doesn’t need to compare all last 
entered elements, but he needs only to compare the entire list 
with next coming element, because the list is already sorted 
before entering next element. 

IV. CONCLUSION 
In this paper, efforts are made to point out some deficiencies in 
earlier work related to sorting algorithms. By going through all 
the experimental results and their analysis it is concluded that 

the proposed algorithm is efficient. In all existing algorithms, 
first complete list is entered, then the list is processed for 
sorting, but in case of proposed approach, the list is sorted 
simultaneously. The proposed sorting technique saves the time 
for traversing the list after entering all the elements, as it sorts 
all elements before entering any new. Although the complexity 
is same as the other algorithm being compared i.e. O(n2), but 
the performance is exceptionally well. RTBS works well when 
the list of numbers to be sorted is large. 
 

REFERENCES  
[1] Astrachanm O.,Bubble sort: An Archaeological Algorithm Analysis, Duk 

University, 2003. 
[2] Jehad Alnihoud and Rami Mansi, “An Enhancement of  Major Sorting 

Algorithms,” The International Arab Journal of Information Technology, 
Vol.7, No. 1, January 2010.    

[3] V. Mansotra and Kr. Sourabh, “Implementing Bubble Sort Using a New 
Approach,” in proceedings of 5th National Conference;INDIACom-2011. 

[4] Arora Nitin, Kumar vivek and Kumar Suresh. “A Novel Sorting Algorithm 
and Comparison with Bubble Sort and Insertion Sort,” International 
Journal of Computer Applications (0975-8887) vol. 45, No. 1, May 2012. 

[5] Dmitri Mihhailov, Valery Sklyarov, Iouliia Skliarova and Alexander 
Sudnitson,     “Optimization or Recursive Sorting Algorithms for 
Implementation in Hardware,” 22nd International conference on 
Microelectronics (ICM 2010). 

[6] Rami Mansi, “Enhanced Quicksort Algorithm ,” The International Arab 
Journal of  Information Technology, Vol.7, No. 2, April 2010. 

[7] Kapur Eshan, Kumar Parveen and Gupta Sahil,”Proposal Of A Two Way  
Sorting Algorithm And Performance Comparison With Existing 
Algorithms,” International Journal of Computer Science, Engineering 
and Applications (IJCSEA) vol. 2, No. 3, June 2012. 

[8] Sultanullah Jadoon, Salman faiz Solehria, Prof. Dr. Salim Ur Rehman, Prof. 
Hamid Jan, “Design and Analysis of Optimized Selection Sort 
Algorithm,” International Journal of Electric and computer sciences 
IJECS-IJENS VOL. 11, No. 01 pp. 16- 22. 

[9]  source www.softpanorana.org/Algorhms/Sorting/ insertion_sort shtml. 
[10] Source:-www.drdobbs.com/architecture-and-design/the- fastest-sorting- 

algorithm/184404062. 
[11] Parag Bhalchandra, Nilesh Deshmukh, Sakharam Lokhande and Santosh 

Phulari, “A Comprehensive Note On Complexity Issues in Sorting 
Algorithms,” Advance in       Computational Research, ISSN: 0975-3273, 
Volume 1, Issue 2, 2009 pp. 01-09. 

[12] Shahzad B. and Afzal M., “Enhanced Shell Sorting Algorithm,” Computer 
Journal of Enformatika, vol.21, no. 6, pp. 66-70, 2007. 

[13] Shell D, ”A High Speed Sorting Procedure,” Computer Journal of 
Communications of the ACM vol. 2, No. 7 pp. 30-32, 1959. 

[14] Knuth, D. The Art of Computer Programming, Vol. 3: Sorting and 
Searching, Third edition. Addison-Wesley, 1997. ISBN 0-201-89685-0. 
pp. 106-110 of section. 

[15] Sareen Pankaj, “ Comparison of Sorting Algorithms ( On the Basis of 
Average case)”, International Journal of Advanced Research in Computer 
Science and  software Engineering ISSn: 2277128x, volume 3, Issue 3, 
March 2013, pp. 522-532 

[16] heim.ifi.uio.no/~arnem/sorting/ARLStable2006 /NIK-2006-.pdf. 
[17] www.stanford.edu/~poulson/CME194/papers/splitting.pdf. 
[18] Abdul Wahab Muzaffar, Naveed Riaz, Juwaria Shafiq and Wasi Haider 

Butt, “ Relative Sp lit and Concatenate Sort (RSCS-VI)”, 
International Journal of Computer Theory and Engineering vol. 4, No. 2, 
April 2012. 

[19] www.liacs.nl/~jvrijn/ds2012/assests/stacksorting.pdf. 


