
International Journal of Computer Trends and Technology (IJCTT) – volume 12 number 3 – Jun 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page111

A Comparative Study of Hidden Web Crawlers
Sonali Gupta#1, Komal Kumar Bhatia

#Associate Professors & Department of Computer Engineering, YMCA University of Science & Technology
Faridabad, India

Abstract— A large amount of data on the WWW remains
inaccessible to crawlers of Web search engines because it can
only be exposed on demand as users fill out and submit forms.
The Hidden web refers to the collection of Web data which can
be accessed by the crawler only through an interaction with the
Web-based search form and not simply by traversing hyperlinks.
Research on Hidden Web has emerged almost a decade ago with
the main line being exploring ways to access the content in online
databases that are usually hidden behind search forms. The
efforts in the area mainly focus on designing hidden Web
crawlers that focus on learning forms and filling them with
meaningful values. The paper gives an insight into the various
Hidden Web crawlers developed for the purpose giving a
mention to the advantages and shortcoming of the techniques
employed in each.

Keywords— WWW, Surface Web, Hidden Web, Deep Web,
Crawler, search form, Surfacing, Virtual Integration.

I. INTRODUCTION

Majority of the Internet users depend on the use of search

engines like Google, Yahoo, and Bing etc. to find the
information on the Web. Most of these search engines provide
entry only to the Surface Web, which is a part of the Web that
can be discovered by following hyperlinks and downloading
the snapshots of pages for including them in the search
engine’s index [1]. The results provided by the search engine
are based in this copy of its local index.

Perhaps an even larger amount of information is available

in the Hidden Web, which is a part of the WWW that cannot
be discovered by simply following the hyperlinks. A simple
example of this content includes the structured databases like
product or online library catalogs, satellite images that are
offered by search websites which can be accessed by
submitting a search form. Another category of hidden Web
content includes the dynamic data provided by web
applications which give real-time information based on a
particular user request like the online travel planners or
booking systems. The same request when issued at different
times result in different information. Although, these websites
may provide a hyperlink structure to the database items so as
to accommodate crawling by the crawlers designed for the
surface web. But this does not guarantee that those search
engines will have the current and updated information on
prices and items in stock. Intuitively, this significant portion
of the Web containing publicly available information in the
form of electronic web databases is poorly accessible by
conventional crawlers designed for general purpose search
engines. Thus, in the literature we have a relevant class of

crawlers that effectively work on retrieving and accessing this
hidden information in databases, termed the Hidden Web
Crawlers [3], [6], [12].

II. CHARACTERISTICS AND SCALE OF THE HIDDEN WEB

The Hidden Web provides access to huge and rapidly

growing data repositories on the Web. Some authors have
obtained approximations to its huge size: In 2001, an initial
study by Bergman indicated the size of the data in the Hidden
Web to be approximately 500 times the size of the data in the
Surface Web which included as many as 43,000-96,000 web
sites offering access to 7500 terabytes of data [1]. Later, in
2004, Chang et.al. Used a random IP sampling approach to
measure the Hidden web content in online databases and
revealed that most of the data in such databases is structured
[15]. Further in 2007, Ben He et.al. by analyzing the
percentage overlap between the most commonly used search
engines such as Yahoo!, Google and MSN discovered the
number of such sites to 236,000- 377,000 with only 37% of
the available content being indexed by these search engines
[16]. Thus, according to experts, the hidden Web forms the
largest growing category of new information on the Internet
and comprises of:

 Nearly 550 billion documents
 Content high relevant to every information need,

market and domain
 Up to 2,000 time’s greater content than that of the

Surface Web.
 95% publicly accessible information not subject to fees

or subscription.
 More focused content than Surface Web sites.

III. ACCESSING THE HIDDEN WEB

A user accesses the data in the Hidden Web by issuing a

query through the search form (an interface provided by the
Web site), which in turn gives a list of links to relevant pages
on the Web. The user then looks at the obtained list and
follows the associated links to find interesting pages. These
search forms have been designed primarily for human
consumption but serve as the only entry point to the Hidden
Web, thus must be modelled and processed. There are two
basic approaches to this end:

 Surfacing refers to the crawler’s activity of collecting

in the background as much relevant and interesting
fraction of the data as possible and updating the search

International Journal of Computer Trends and Technology (IJCTT) – volume 12 number 3 – Jun 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page112

engine’s index. The Hidden Web crawler has to
automatically process the search forms after
downloading it form the hidden web site and submit
the filled form so as to download the response pages
which can then be used with existing index structures
of the search engine. This approach has the main
advantage of best fit with the conventional search
engine technology. Though pre-computing the most
relevant form submissions for all interesting HTML
forms is a challenging issue but is a passive task that
can be carried off-line by the crawler when active,
independent of the run-time characteristics of the
hidden web resources. Thus, the approach is
straightforward and is easily applicable.

 Virtual Data Integration which refers to the creation of
a specific virtual schema for each domain and mapping
the fields of the search forms in that domain to the
attributes of the virtual schema. This enables the user
to query over all the resources in its domain of interest
just by filling a single search form in the domain.
Search systems using such vertical schema are called
vertical search engines. APIs are then used to access
Hidden Web sources at query time and construct the
result pages based from the retrieved responses. As
external API calls need to be made by the search
engine , the process relies on the performance of the
Hidden Web sources, involving access latency thereby
making it slower than traditional crawling or
Surfacing .

The biggest challenge here is creating & generating a

mediated schema and the semantic mappings between
individual data sources and the mediator form. The problem
has been termed as query routing. In particular, the queries on
any search engine typically is a set of keywords reformulating
which requires identifying the relevant domain of a query and
appropriately routing the keywords in the query to the fields
of the virtual schema that has been designed for the candidate
domain.

Moreover, the number of domains on the Web is very large

and precisely defining boundaries for a domain is tricky
making the design of virtual schemata even more challenging.

Although research has been done in the area of developing
web integration systems but the technological difficulties
involved in the integration approach guide us to choose the
approach of Surfacing as the road to success and discussed
hereafter.

IV. APPROACHES FOR SURFACING THE HIDDEN WEB
The crawler to extract the content in the Hidden Web has to

imitate the above described set of steps that are being
followed by the human i.e. the crawler when provided with
the search form has to generate a query, issue it to the Web
site, download the result index page, and follow the links to

download the actual pages. The authors in [12] have proposed
the following generic algorithm for any Hidden Web crawler.

Fig. 1 Algorithm for crawling Hidden Web Site.

Crawling the Hidden Web involves two prime tasks of
resource discovery and content extraction. The former deals
with automatically finding relevant Web sites that contain a
search form interface while the latter deals with obtaining the
information from these sites by filling out forms with relevant
queries or keywords. Circumscribed by the crawler’s
limitation of resources and the huge size of the Hidden Web,
the common approach to crawl in the contents of the Hidden
Web involves:

1) Breadth-Oriented crawling: As the hidden Web contains
tens of millions of databases and search forms, a breadth
oriented hidden Web crawler focuses on covering more and
more data sources rather than exhaustively crawling the
content inside one specific data source. Thus, the major
challenge in this kind of crawling seems to be locating the
hidden Web resources and analyzing the returned results for
learning and understanding the interface required to automate
the process of content extraction.

2) Depth-Oriented crawling: It focuses on extracting the
contents from a designated hidden web resource i.e. the goal is
to acquire most of the data from the given data source. Now,
the crucial challenge for the crawler is to actively issue
queries at the search interface of the designated database in
order to uncover the database contents while incurring
minimal cost. However, the crawler must automatically
generate promising queries so as to carry out efficient
crawling which is an exigent task. The problem is termed as
query selection.

Perhaps, the above approaches are equally facilitated by
gaining an insight into the type of information being contained
in any web database which may be categorized either as
unstructured or structured. Unstructured databases usually
contain plain-text documents which are not well structured
and provide a simple keyword-based search interface having
an input control (text type) where users type a list of keywords
to fill it in. Fig. 2 shows an example of such a search interface.

International Journal of Computer Trends and Technology (IJCTT) – volume 12 number 3 – Jun 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page113

Fig. 2 Keyword-based Search Interface

In contrast, structured databases provide multi-attribute
search interfaces that have multiple query boxes pertaining to
different aspects of the content. For example, Fig. 3 shows a
multi-attribute search form interface for an online book store
offering structured content (title, author, publisher, price,
ISBN, number of pages) coupled with a structured query
interface (typically a subset of the content attributes like title,
author, ISBN, publisher).

Fig. 3 A multi-attribute search form interface for an online book store

V. HIDDEN WEB CRAWLERS

Crawling techniques have been studied since the advent of

the Web itself but the research on Hidden Web crawlers
emerged with pioneering work by Raghavan and Molina in
2001. They have focused on a design for extracting content
from electronic databases. Since, then numerous depth-
oriented Hidden Web crawlers for structured as well as
unstructured databases have been framed and developed, a
review of which has been presented in the section.

A. Depth-oriented Crawlers for structured databases

Raghavan in 2001 introduced the problem by presenting an

operational model shown in Fig. 4 to describe the interaction
that takes place between the crawler and the search form [3].
This model serves as a basis for their prototype hidden Web
Crawler called the HiWE (Hidden Web Exposer), an outline
of the architecture of which is given in Fig. 5. They have
proposed a method for filling up search forms by raising
potential queries that are either provided manually or collected
from the query interfaces. The term form page is used to
denote the page containing a search form and response page is
used to denote the page received in response to a form
submission.

Fig. 4 Crawler Form Interaction

Fig. 5 Architecture of HiWE.

They modeled the form as having elements of the types:
text box, select list, text area, radio button or checkbox. The
domain of an element is the set of values that can be entered
into this form element. In addition, each element is associated
with a descriptive text termed as “label” for which it first finds
the four closest texts to the element and then chooses one of
them based on a set of heuristics defined by taking into
accounting the relative position of each textual label. The
candidate assignments for a form are generated from the
values in the Label Value Set (LVS) table, which consists of
(L, V) pairs, where “L” is a label and “V” is a fuzzy/grade set
of the values belonging to this label. HiWE does not exhaust
all of the possible assignments for a form. Although the
authors have used the simple measure of the fraction of non-

International Journal of Computer Trends and Technology (IJCTT) – volume 12 number 3 – Jun 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page114

error pages returned, to evaluate each input, they assume the
multiple-inputs to be independent and try to select specific
URLs from the Cartesian product of inputs. Once a candidate
assignment has been submitted to a form, HiWE caches the
resulting page to the repository to support user queries. The
major challenge of their approach is dealing with the form
elements with infinite domain.

In 2002, Liddle et al. described a method to detect form
elements and fabricate a HTTP GET request using default
values specified for each field [9]. The proposed algorithm as
depicted by the flowchart in Fig. 6 is not fully automated like
HiWE and takes user input when required. Though the
approach also models HTML forms in the same way as HiWE
but is much simpler. The major contribution of the work is
retrieving all or at least a significant percentage of the data
before submitting all the queries. Without exhaustively trying
all possible queries, the approach still extracts sufficient data.
In the first phase of the approach, a default query is issued
after which the site is sampled to determine if the response
retrieved from the default query is comprehensive and finally
the queries are issued exhaustively till the specified threshold
is achieved. They suggested the use of stratified sampling
method to select the candidate assignments that are most
likely to extract new information from the hidden web site.
The essence of the stratified sampling method is to use all
form elements evenly.

Fig. 6 Flowchart of liddele approach

Wu et al. in 2006 focus on the core issue of enabling
efficient crawling of structured databases on the Web through
iteratively issuing meaningful queries [4]. They proposed a
theoretical framework that transforms the database crawling
problem into a one of graph-traversal by following “relational”
links. In their method, the structured web database DB is
viewed as a single relational table with n data records {t1,
t2,…..tn} over a set of m attributes { a1, a2, …am}. All
distinct attribute values occurring in DB are contained by the
Distinct Attribute Value set (DAV). Based on a data source
DB, an attribute-value undirected graph (AVG) can be

constructed. Each vertex vi ϵ V represents a distinct attribute
value avi ϵ DAV and each undirected edge (vi; vj) stands for
the coexistence of the two attribute values avi and avj in a
record tk. According to AV G, the process of crawling is
transformed into a graph traversal in which the crawler starts
with a set of seed vertices and at each iteration a previously
seen vertex v is selected to visit, thus all directly-connected
new vertices and the records containing them are discovered
and stored for future visits. However the attributes chosen in
different queries can be different. It has been assumed that
records and their different attributes can be extracted from the
result pages to maintain reasonable coverage.

Madhavan et al. in 2009 discusses the approach used by
Google in filling Web forms [5].HTML forms usually offer
more than one input and hence a layman’s strategy of
enumerating the Cartesian product to identify of all possible
inputs can result in a very large search space. They have
presented an algorithm that appropriately chooses the input
combinations so as to efficiently navigate the search space by
including only those generated URLs which seem suitable for
inclusion in the web search index. The first step of the
approach contributes the in formativeness test for evaluating
the query templates, i.e., combinations of form inputs. The
basic idea of the in formativeness test is that all templates are
probed to check which can return sufficiently distinct
documents. The next step develops an algorithm that
efficiently traverses the space of query templates to identify
the ones suitable for surfacing. A template that returns enough
distinct documents is deemed a good candidate for crawling.
As a last step the approach contributes to an algorithm which
predicts appropriate input values for the various form fields.
They have described how the identification of typed inputs in
web forms (e.g. zip codes, dates, prices) contributes to a better
crawl.

In [7], a domain specific crawler for the hidden web,
DSHWC that considers multi-input search forms has been
developed. The working of DSHWC has been divided into
several phases with the first one concerning the automatic
downloading of the search forms. Phase 2 describes the most
important component Domain-specific Interface Mapper that
automatically identifies the semantic relationships between
attributes of different search interfaces and guides the next
step of merging the interfaces so as to form a Unified Search
Interface (USI). The USI produced thereof is filled
automatically and submitted to the Web. After obtaining
response pages, the DSHWC stores the downloaded pages
into Page repository that maintains the documents
crawled/updated by the DSHWC along with their URLs.
DSHWC [7] is a fully automated crawler which aims to obtain
the response pages from Hidden Web by submitting filled
search forms.

B. Depth-Oriented Crawlers for Unstructured databases
Lot of research has been done in automating the retrieval of

data hidden behind keyword based simple search forms which
has been reviewed in this section.

Gravano et.al. in 2003 in their work in [14] presented a
technique to automate the extraction of data from searchable

International Journal of Computer Trends and Technology (IJCTT) – volume 12 number 3 – Jun 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page115

text databases by taking a biased sample of documents that
have been extracted by adaptively probing the database with
topically focused queries. The queries have been
automatically derived by using a classifier on a Yahoo! Like
hierarchy of topics. The approach also evaluates the results
and exploits the statistical properties of text thereof to derive
frequency estimates for the words in extracted documents.
The approach further suggested the use of focused probing for
the classification of databases into a topic hierarchy. They
have attempted to automatically categorize Hidden Web
Databases by using a rule-based document classifier during
probing.

In 2004, Barbosa and Freire in [6] claimed that assigning
the values to fields of certain types like radio buttons, combo
box is a bit easier than dealing with those that accept free form
text as input like text boxes as these form elements actually
expose the set of all possible values that can be input and
automatically submitted by the crawler. They proposed a two
phase algorithm to generate textual queries. The first stage
involves creating a sample of data from the website and
automatically discovering keywords which are associated
weights based on the generated sample. This results in high
recall; it then uses these keywords to build queries that siphon
the results from the database in its second phase. To siphon, it
uses a greedy algorithm so as to retrieve as much contents as
possible with minimum number of queries, it iteratively
selects the term with the highest frequency from the term list,
and adds it to a disjunctive query if it leads to an increase in
coverage. They have evaluated their algorithm over several
real Web sites and obtained promising results in the
preliminary stage itself. The results clearly indicated that their
approach is effective in obtaining coverage of over 90% for
most of the sites considered.

In 2005, Ntoulas et.al in their work [12] have provided a
theoretical framework for analyzing the process of generating
queries for a document collection that support single-attribute
queries by examining the obtained results. The approach
defines three policies for choosing the queries: a random
policy where queries are randomly selected from a dictionary
and serves as baseline for comparison, a generic policy based
on the frequencies of keywords in any generic document
corpus and an adaptive policy that learns from the collection
downloaded so far. The process starts by learning a global
picture starting with a random query, downloading the
matched documents, and learning the next query from the
current documents. This process is repeated until all the
documents are downloaded. They compared their adaptive
method with two other query selection methods: the random
method (queries are randomly selected from a dictionary), and
the generic-frequency method (queries are selected from a
5.5-million-web-page corpus based on their decreasing
frequencies). The experimental result shows that the adaptive
method performs remarkably well in all cases.

Though much research focuses on the design and
development of depth oriented hidden web crawlers but few
have also focused on the issue of discovering relevant hidden
web resources in a domain. This section presents a brief

overview of some of the most cited works in this direction of
hidden web crawlers.

1) Breadth Oriented crawlers
In 2003, Bergholz et.al [10] focused on automatically

discovering the entry points into the Hidden Web. They
implemented a domain-specific crawling technique that starts
out on the Surface Web using a general-purpose search engine
to identify Hidden Web resources relevant in a domain. The
crawling techniques to detect query able pages have been
implemented and a method that help to assess whether a query
able page is an HW resource or not has been developed. In
their paper a Hidden Web crawler that discovers potentially
interesting pages, analyzes and probes them to determine
which pages can serve as Hidden Web resources has been
described. Also, Experiments have been conducted to show
that the number of Hidden Web resources is highly domain
dependent, which can be found with little crawling effort.
Their techniques perform well in both the domain-specific and
random mode of crawling. The current crawler also combines
the syntactic analysis of HTML forms with the query probing
and show excellent results for full-text document search which
comprises of a major portion of the Hidden Web but fails for a
small fraction of the Hidden Web relevant to multi attribute
form.

Barbosa and Freire in [11] in 2005 presented a form
focused crawler (FFC) to automatically locate web forms
based on topics. The architecture of FFC has been presented
in Fig. 7. The crawler combines the use of a page classifier
and a link classifier that have been trained for focusing its
crawl on a particular topic by taking into account the contents
of pages and patterns in & around the hyperlinks paths to a
web page. The authors first make use of a backward search
strategy to analyze and prioritize links which are likely to lead
to a searchable form in one or more steps. The frontier
manager is another major component of the FFC framework
and is used to select the next target link for crawling based on
their reward values decided by the current status of the
crawler and the priority of the link in the current crawling step.
The FFC also uses a form classifier to filter out useless forms.
If a form is found searchable by the form classifier, it is added
to the form database if not already present in it.

Fig. 7 Form Focused crawler

International Journal of Computer Trends and Technology (IJCTT) – volume 12 number 3 – Jun 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page116

In 2006 Barbosa and Friere in [13] addressed the
limitations of the FFC by presenting a new framework ACHE
(Adaptive Crawler for Hidden-Web Entries) whereby crawlers
adapt to their environments and improve the behavior by

learning from previous experiences. Given a set of Web forms
that are entry points to online databases, ACHE aims to
efficiently and automatically locate other forms in the same
domain.

Fig. 8 ACHE Architecture

In addition to FFC, the ACHE comprises of two more
classifiers: the searchable form classifier (SFC) which
classifies the retrieved form as searchable or non-searchable
and the domain-specific form classifier (DSFC) which checks
whether the form belongs to the target domain. ACHE also
employs a component called the adaptive link learner that
dynamically learns features automatically extracted from
successful paths by the feature selection component and
updates the link classifier.

To achieve a notable progress in this fragment of Hidden
Web crawling requires additional efforts for extending the

current crawlers. In the next section we provide a comparison
of the above discussed crawlers.

VI. COMPARISON
Hidden Web crawlers are designed to automatically parse,

process and interact with search forms. The tasks are
automated by different crawlers in different ways which forms
the focus of this study. A detailed comparison of the various
Hidden Web crawlers that have been used in this study are
been outlined in Table 1.

TABLE I
COMPARISON OF HIDDEN WEB CRAWLER

Descriptive
criteria

Year Focused
Perspective

Database
type

Technique Strength Limitation

Raghavan
et.al.[3]

2001

Depth-
Oriented
crawler for
content
extraction

Multi-
attribute
or
structured

1) Text similarity to match fields
and domain attributes.
2) Partial page layout and visual
adjacency for identifying form
elements
3) Hash of visually important parts
of the page to detect errors

1) Significant contribution to label
matching process
2) Updates the user provided task
description by learning information
from the successful extracts of
crawling.

1) ignores forms with fewer than 3
attributes
2) Require significant human input thus
performance highly depends on the
quality of input data 3) not
scalable to hidden web databases in
diversified domains.

Liddle et.al.
[9]

2002

Depth-
Oriented
crawler for
content
extraction

Multi-
attribute
or
structured

1) Stratified Sampling Method
(avoid queries biased toward
certain fields)
2)Fields with finite set of values,
ignores automatic filling of text
field
3) Concatenation of pages
connected through navigational
elements

1) domain-independent approach
2) accounts for duplicate results
identified by computing hash values

1) Do not consider detection of forms
inside result pages.
2) Detection of record boundaries and
computes hash values for each sentence
poses huge resource requirements.

Garvano
et.al. [14]

2002

Depth-
Oriented
crawler for
content
extraction

document
based or
unstructur
ed

1) use of topically focused queries
2) adaptive query probing

1) facilitates design of meta-search
engines 2) used to categorize hidden
web databases

1) Query chosen only by using
hierarchical categories as in Yahoo! and
does not consider flat classification

Bergholz
et.al. [10] 2003 Breadth-

oriented
unstructur
ed

1) domain specific crawling
2) Query prober to recognize and

1) Efficient at discovering unstructured
hidden web resources as uses the

1) Only deal with full text search forms.
2) Initialized with pre-classified

International Journal of Computer Trends and Technology (IJCTT) – volume 12 number 3 – Jun 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page117

crawler for
resource
discovery

databases
in a
domain

assess the usefulness of the HW
resource.

combination of syntactic elements of
HTML forms and query probing
technique.

documents and relevant keywords

Barbosaet.al
. [6]

2004

Depth-
Oriented
crawler for
content
extraction

document
based or
unstructur
ed

1) Considers candidate query based
on its frequency of appearance in
each round

1) Simple and completely automated
strategy
2) Automatically creates sufficiently
accurate description of document
therefore, can be used in other resource
discovery systems.
3) Leads to high coverage.

1) No assurance of acquiring new pages
2) ineffective for search interfaces that
fix the number of returned results
3) simple approach therefore raises
security issues

Ntoulas
et.al. [12]

2005

Depth-
Oriented
crawler for
content
extraction

document
based or
unstructur
ed

1) Incremental adaptive method 2)
frequency estimation based on
already downloaded documents
3) greedy algorithm that tries to
maximize the 'potential gain' in
every step.

1) Combination of policies (random,
generic and adaptive) for choosing
appropriate queries.
2) use of multiple frequency estimators
-independent and zipf's law based

1) Query distribution does not make
sure to adapt to the attribute values set
of the database.
2) Memory requirements for calculating
potential gain are huge.
3) Assumed constant cost for every
query which does not hold in real
situations.

Barbosa
et.al. [11]

2005

Breadth-
oriented
crawler for
resource
discovery

structured
&
unstructur
ed
databases

1) Link classifier to focus search on
a specific topic
2) use of a stopping criteria to
avoid unproductive searches

1) Highly efficient in retrieving
searchable forms focused for a
particular topic

1) Manually selecting a representative
training set is difficult so creating the
link classifier is time consuming

Alvarez
et.al. [16]

2006

1) set of domain definitions each
one of which describes a data-
collection task
2) use of heuristics to automatically
identify relevant query forms

1) System can be extended for
discovering relevant resources.
2) Handles client side as well as server
side hidden Web
3) Experimentally proved effective for
collecting data.

1) No defined threshold for associating
form elements and attributes in the
domain definitions
2) hypothetical assumption of having at
least one label associated with every
form element which does not hold true
for most of the bounded form elements
(drop down boxes)

Ping Wu
et.al. [4]

2006

Depth-
Oriented
crawler for
content
extraction

Multi-
attribute
or
structured

1) Models each structured database
as a distinct attribute -value graph
2) Set the graph to crawl the
database (set-covering problem)

1) issues only meaningful queries as
tuned with domain knowledge
2) overcomes limitation of greedy
methods

1) Query results in each round must be
added to the graph thus involves huge
cost of resources

Barbosa
et.al. [13]

2007

Breadth-
oriented
crawler for
resource
discovery

unstructur
ed
databases

1)Greedy algo derived by the
weights associated to keywords in
the collected data
2)Issue queries using dummy words
to detect error pages

1) Improved harvest rates as crawl
progresses
2) retrieves homogeneous set of forms
3) Automated and adaptive thus
eliminates any bias arising out of
learning process.

1) configuring the crawler to start
initially needs more effort than
manually configured crawlers
2) works only for Single keyword-based
queries

Madhavan
et.al. [5]

2008

Depth-
Oriented
crawler for
content
extraction

Multi-
attribute
or
structured

1) Evaluate the query templates by
defining the in formativeness test.

1) efficiently navigates the search space
of possible input combinations

1) No consideration to the efficiency of
deep web crawling

Komal
Bhatia et.al.
[7]

2010

Depth-
Oriented
crawler for
content
extraction

Multi-
attribute
or
structured

1) Domain Specific Interface
Mapper to create unified query
interfaces for a domain
2) calculation of re-visit frequency
based on probability of change of
web page

1) Multi-strategy interface matching
2) use of mapping knowledge base to
avoid repetition for minimizing the
mapping effort
3) Enhances the scope of developing a
specialized search engine for the
Hidden Web.

1) Indexing technique was not specified
for storing pages in the repository
2) Defined the performance only for
crawling while the efficiency of schema
matching and merging procedures over
variety of query interfaces has not been
quantified.

Sonali
Gupta et.al
[8]

2013

Depth-
Oriented
crawler for
content
extraction

document
based or
unstructur
ed

1) Creates a domain representation
that is stored in domain specific
data repository.
2) uses a domain specific
classification hierarchy for query
term identification

1) Achieves high coverage with just a
small number of queries
2) makes use of domain specific data
repositories and thus can be extended to
other domains
3) Can be fully automated if integrated
with semantic web technologies.

1) Requires human effort for an initial
start of the crawler.
2) domain-specific

VII. CONCLUSIONS
Hidden Web crawlers enable indexing, analysis and mining

of hidden web content. The extracted content can then be used
to categorize and classify the hidden databases. The paper
discusses the various crawlers that have been developed for
surfacing the contents in the Hidden Web. The crawlers have

also been differentiated on the basis of their underlying
techniques and behavior towards different kind of search
forms and domains. As each of the discussed crawlers have
their own strengths and limitations, much more needs to be
explored in the area for better research prospective.

International Journal of Computer Trends and Technology (IJCTT) – volume 12 number 3 – Jun 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page118

REFERENCES
[1] Michael Bergman, “The deep Web: surfacing hidden value”. In the

Journal Of Electronic Publishing 7(1) (2001).
[2] Sonali Gupta, Komal Kumar Bhatia: Exploring ‘Hidden’ parts of the

Web: the Hidden Web, in 4rth International Conference on Advances
in recent technologies in communication and computing, ARTCom
2012 proceedings in Lecture Notes in Electrical Engineering , Springer
Verlag Berlin Heidelberg , ISSN 1876-1100, p.p. 508-515, 2012.

[3] S. Raghavan, H. Garcia-Molina. Crawling the Hidden Web. In: the
proceedings of the 27th International Conference on Very large
databases VLDB’01, Morgan Kaufmann Publishers Inc., San Francisco,
CA, p.p. 129-138.

[4] Ping Wu, J.-R. Wen, H. Liu, and W.-Y. Ma. Query Selection
Techniques for Efficient Crawling of Structured Web Sources. In ICDE,
2006

[5] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, A. Halevy :
Google’s Deep-Web Crawl. In proceedings of Very large data bases
VLDB endowment, pp. 1241-1252, Aug. 2008.

[6] L. Barbosa, J. Freire : Siphoning hidden-web data through keyword-
based interfaces. In: SBBD, 2004, Brasilia, Brazil, pp. 309-321.

[7] Komal kumar Bhatia, A.K.Shrma, Rosy Madaan: AKSHR: A Novel
Framework for a Domain-specfic Hidden web crawler. In Proceedings
of the first international Conference on Parallel, Distributed and Grid
Computing, 2010.

[8] Sonali Gupta, Komal Kumar Bhatia: HiCrawl: A Hidden Web crawler
for Medical Domain in proceedings of 2013 IEEE International
Symposium on Computing and Business Intelligence, ISCBI,
August18-18, 2013 Delhi , India .

[9] S. W. Liddle, D. W. Embley, D. T. Scott, S. H. Yau. Extracting Data
Behind Web Forms. In: 28th VLDB Conference2002 , HongKong,
China.

[10] A. Bergholz, B. Chidlovskii. Crawling for domain-specific Hidden
Web resources. In Proceedings of the Fourth International Conference
on Web Information Systems Engineering (WISE’03). pp.125-133
IEEE Press, 2003

[11] L. Barbosa and J. Freire. Searching for Hidden-Web Databases. In
Proceedings of WebDB, pages 1–6, 2005.

[12] A. Ntoulas, P. Zerfos, J.Cho. Downloading Textual Hidden Web
Content Through Keyword Queries. In: 5th ACM/IEEE Joint
Conference on Digital Libraries (Denver, USA, Jun 2005) JCDL05, pp.
100-109.

[13] L.Barbosa and J.Freire, An adaptive crawler for locating hidden-web
entry points," in Proc. of WWW, 2007, pp. 441-450.

[14] P.Ipeirotis and L. Gravano, Distributed search over the hidden web:
Hierarchical database sampling and selection," in VLDB, 2002.

[15] K.C. Chang, B. He, M.Patel, Z.Zhang : Structured Databases on the
Web: Observations and Implications. SIGMOD Record, 33(3). 2004.

[16] B. He, M.Patel, Z.Zhang, K.C. Chang: Accessing the Deep Web: A
survey. Communications

[17] of the ACM, 50(5):95–101, 2007.
[18] Manuel Álvarez, Juan Raposo, Alberto Pan, Fidel Cacheda, Fernando

Bellas, Víctor Carneiro: Crawling the Content Hidden Behind Web
Forms. In Proceedings of the 2007 International conference on
Computational Science and its applications, Published by Springer-
Verlag Berlin, Heidelberg, 2007.

