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Abstract - An exciting new paradigm in cloud application development, server-less computing promises to be adaptable and 

inexpensive. Serve-less architectures allow developers to concentrate on creating value for businesses by removing the need to 

maintain the underlying infrastructure. This article provides a thorough framework for developing and deploying server-less 

architectures in cloud settings, after which it delves into the fundamental ideas, advantages, and disadvantages of serverless 

computing. Research comparing different cloud providers is still in its early stages and has yet to be extensively investigated. In 

addition, universally applicable best practices for server-less solutions still need to be improved. Server-less apps' efficiency, 

scalability, and performance were tested extensively across several cloud platforms. The findings show that server-less 

architectures can deliver high scalability for various workloads, improve resource usage, and drastically reduce operational 

overhead. Best practices and future research topics are also presented to maximize the adoption of server-less computing in 

real-world applications and solve the constraints. 
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1. Introduction 
The advent of cloud computing has caused a sea shift in 

the app development life cycle. Cloud computing has come a 

long way, with traditional models like Infrastructure-as-a-

Service (Iaas) and Platform-as-a-Service (Pass) allowing 

businesses to tap into computer resources whenever they need 

them [1]. However, the designs' scalability, capacity planning, 

and server management still result in substantial operational 

overhead. 

 A new server-less computing concept has arisen to solve 

these problems by removing the need to maintain the 

underlying infrastructure [2]. Developers develop and deploy 

individual functions in a server-less architecture. Events or 

requests trigger these functions. In response to changes in 

demand, the cloud service provider automatically scales up or 

down the resources used to carry out these tasks. Without 

worrying about server provisioning, scalability, or 

maintenance, developers can concentrate entirely on building 

code and providing business value by utilizing this strategy. 

In the last several years, more and more people have opted 

for server-less computing. According to research by the Cloud 

Native Computing Foundation (CNCF), the percentage of 

platforms that do not need servers will rise from 27% in 2018 

to 41% in 2020. Just recently, some major cloud providers 

have begun offering server-less computing. Amazon Web 

Services (AWS) Lambda, Microsoft Azure Functions, and 

Google Cloud Functions are three options from various cloud 

providers.  

 

Despite its rising profile and advantages, server-less 

computing still has factors and problems that must be 

resolved. Some examples of these issues include vendor lock-

in, statelessness, function composition, and cold start delay 

[4]. Additionally, additional research is needed to determine 

how server-less systems operate, scale, and save costs across 

various cloud platforms and applications. 
 

 This article aims to thoroughly analyse server-less 

computing architectures for efficient and expandable cloud 

applications. The following contributions are made by the 

manuscript: 

• This article comprehensively introduces server-less 

computing's ideas, advantages, and disadvantages by 

comparing it with more conventional cloud architectures. 

• The proposed framework covers essential parts of server-

less architectures, such as function design, event-driven 

patterns, and data management. 

• Server-less apps' efficiency, scalability, and performance 

were tested extensively across various cloud platforms 

and workloads. 

• Our best practices and suggestions are designed to be 

easily implemented in practical settings, helping you 

overcome obstacles and make the most of server-less 

computing. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Here is a rundown of what is left in the article: The 

phrases "server-less computing" and similar ones are defined 

in Section II. An introduction to server-less architecture 

design and implementation is provided in Part III. Section IV 

discusses the methods of assessment and experimental design. 

The findings and interpretation of the experiments are detailed 

in Section V. Section VI focuses on recommending optimal 

practices and highlighting research gaps. The paper is 

concluded in Section VII. 

 

2. Background 
In serverless computing, computer resources may be 

dynamically allocated and provisioned by the cloud provider, 

which is one approach to running cloud computing [5]. In 

response to events or requests, developers create and release 

individual functions, often known as Functions-as-a-Service 

(Fa As), in a server-less architecture. The user is only charged 

for the resources the cloud provider uses to carry out these 

tasks, which are adjusted based on the demand. 

The key characteristics of serverless computing include 

[6]: 

• Developers won't have to stress creating, managing, or 

expanding server infrastructure. The provider of cloud 

services keeps the customer in the dark about the 

infrastructure that supports their services. 

• Event-driven execution: Requests or events, including 

HTTP requests, database changes, or timer events, trigger 

functions. 

• Auto-scaling: The application can manage varying traffic 

without user intervention because the cloud provider 

automatically adjusts the functionality according to 

incoming demand. 

• Billing based on actual resource consumption: Users are 

only charged for the resources utilized when their 

functions run, usually in milliseconds of CPU time and 

gigabytes of memory. 

 

Figure 1 shows the overall design of a serverless 

computing platform. Two primary parts comprise the 

platform: the serverless runtime and the serverless trigger. In 

reaction to requests or events, the serverless runtime executes 

the user-defined functions. Various services and resources 

may serve as event sources and trigger routines. These include 

object storage, databases, message queues, HTTP requests, 

and static timers. In the FIFO sequence, the event queue 

records and processes incoming requests. Requests are 

assigned to workers for execution by the dispatcher. 

2.1. Benefits of Serverless Computing 

Serverless computing offers several benefits over 

traditional cloud architectures [7]: 

• Reduced Operating Expense: Instead of worrying about 

server administration, scalability, or maintenance, 

developers can concentrate on building code and 

providing business value. 

• Save money: Instead of paying to provide and maintain 

servers, users only pay for the resources they need when 

their functions run.  

• Cost-efficiency: Users are only billed for the resources 

actually used by their tasks, which may lead to significant 

cost savings compared to the ongoing costs of server 

procurement and maintenance. 

• Faster time-to-market: Serverless architectures enable 

developers to quickly prototype and deploy new features 

and functionality without the need for extensive 

infrastructure setup. 

• Improved resource utilization: By dynamically allocating 

resources based on the incoming workload, serverless 

platforms can optimize resource utilization and reduce 

wastage. 
 

2.2. Challenges and Considerations 

Despite the benefits, server-less computing also presents 

several challenges and considerations [8]: 

• Cold start latency: Cold start latency is the time it takes 

for a function to start up again after being inactive for a 

while. This may affect the application's performance, 

particularly for workloads that are sensitive to delay. 

• Function composition: Serverless functions are typically 

designed to be small and focused on a single task. 

Composing multiple functions to build complex 

workflows can be challenging and may require additional 

orchestration mechanisms. 

• Statelessness: Because serverless functions are stateless, 

you can't expect them to keep any permanent state 

between calls. This may be a constraint for applications 

that need delicate processing or processes that run for 

extended periods. 

• Problems with vendor lock-in might arise when using 

server-less systems since they are generally dependent on 

a single cloud provider. Cloud platforms have various 

APIs, tools, and support services, making moving 

serverless apps between them difficult. 

• Debugging and monitoring: Debugging and monitoring 

server-less applications can be more complex compared 

to traditional architectures, as the cloud provider manages 

the execution environment and may not provide detailed 

visibility into the underlying infrastructure. 

• Underlying resources could be shared with other users. 

Careful consideration and configuration are necessary to 

secure and isolate your workload. 
 

3. Designing and Implementing Serve Less 

Architectures 
In this section, a framework for designing and 

implementing serverless architectures for scalable and cost-

effective cloud applications is proposed. The framework 

consists of four key aspects: function design, event-driven 

patterns, data management, and operational best practices. 
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Fig. 1 High-level architecture of a server less computing platform 

 

3.1. Function Design 

Designing serverless functions requires a different 

mindset compared to traditional monolithic applications. 

Functions should be small, focused, and stateless, with a single 

responsibility. The following guidelines can help in designing 

effective serverless functions [9]: 

• Single responsibility: Each function should have a single, 

well-defined responsibility and perform a specific task. 

This promotes molecularity, re-usability, and 

maintainability. 

• Statelessness: It is recommended that functions do not 

keep any lasting state between calls; statelessness is 

known as statelessness. External services, such as 

databases or object storage, should hold any necessary 

state.  

• Input/output contracts: Functions should have well-

defined input and output contracts specifying the 

expected data format and structure. This helps in 

composing functions and ensures interoperability 

between different services. 

• Idem potency: Functions should be designed to be 

idempotent, meaning that multiple invocations with the 

same input will produce the same result. This is important 

for ensuring data consistency and handling retries in case 

of failures. 

• Timeouts and resource limits: Functions should have 

appropriate timeouts and resource limits configured to 

prevent long-running or resource-intensive tasks from 

impacting the overall system performance. 

Table 1 summarizes the key considerations for function 

design in serverless architectures. 

Table 1. Key Considerations for Function Design in Server Less 

Architectures 

Consideration Description 

Single Responsibility 
Each function should have a single, 

well-defined responsibility. 

Stateless 
Functions should be designed to be 

stateless. 

Input/output contracts 
Functions should have well-defined 

input and output contracts. 

Idem potency 
Functions should be designed to be 

idempotent. 

Timeouts and 

resource limits 

Functions should have appropriate 

timeouts and resource limits 

configured. 

 

3.2. Event-Driven Patterns 

The core concept of server-less architectures is that events 

or requests activate functions. By using one of several event-

driven paradigms, you can build server-less apps that are both 

Scalable and responsive. [10]: 

• Synchronous request/response: This pattern is used when 

a client needs to wait for a response from the serverless 

function. The client sends a request to the API gateway, 

which invokes the corresponding function and waits for 

the response before sending it back to the client. 

• Asynchronous event processing: In this pattern, functions 

are triggered by asynchronous events, such as message 
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queue notifications or database updates. The function 

processes the event and may perform additional actions, 

such as updating other services or sending notifications. 

• Fan-out/fan-in: This pattern is used to distribute a single 

event to multiple functions for parallel processing and 

then aggregate the results. The fan-out phase involves 

triggering multiple functions simultaneously, while the 

fan-in phase collects and combines the results. 

• Choreography: In this pattern, functions are loosely 

coupled and communicate with each other through 

events. Each function performs its specific task and 

publishes events that trigger other functions in the 

workflow. This allows for more flexibility and scalability 

compared to orchestration-based approaches. 

 

Figure 2 illustrates an example of an event-driven 

serverless architecture using the fan-out/fan-in pattern. An 

external source, such as a user request or a scheduled job 

trigger an event. The event is then distributed to multiple 

functions for parallel processing. Each function performs its 

specific task and publishes the results to an event bus. Another 

function is triggered by the aggregated results, which perform 

the final processing before sending the response back to the 

client. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Example of an event-driven serverless architecture using the fan-out/fan-in pattern 

 

3.3. Data Management 

Data management in server-less systems requires a 

distinct strategy compared to conventional designs. Functions 

that do not rely on servers cannot maintain permanent 

connections to storage services or databases because they are 

stateless and have a limited execution period. Instead, 

information needs to be kept in third-party services designed 

to handle server-less access patterns. [11]. 

Some best practices for data management in serverless 

architectures include: 

• Use managed database services: Amazon DynamoDB, 

Microsoft Azure Cosmos DB, and Google Cloud Data 

Store are managed database services that might be useful 

for server-less applications. With these services, you may 

store data in a way that doesn't rely on servers and will be 

accessible at all times.  

• Decouple data and compute: Serverless functions should 

be decoupled from the data storage layer to ensure 

scalability and flexibility. Functions should access data 

through well-defined API or event-driven patterns rather 

than directly connecting to databases. 

• Use caching and data replication: To improve 

performance and reduce latency, fewer server 

applications can use caching and data replication 

techniques. Caching can help reduce the number of 

requests to the database, while data replication can ensure 

that data is available closer to the functions that need it. 

• Optimize for eventual consistency: Serverless 

architectures often rely on eventual consistency models, 
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where data updates may take some time to propagate 

across different services or regions. Applications should 

be designed to handle eventual consistency and use 

appropriate conflict resolution strategies. 

 

3.4. Operational Best Practices  

Operating server less architectures requires a different set 

of best practices compared to traditional architectures. Some 

key operational considerations include: 

• Monitoring and logging: Serverless platforms such as 

AWS Cloud Watch or Azure Monitor provide built-in 

monitoring and logging capabilities. Applications should 

leverage these tools to gain visibility into the performance 

and health of their functions. 

• Error handling and retries: Serverless functions may 

experience transient failures due to network issues or 

service outages. Applications should implement 

appropriate error handling and retry mechanisms to 

ensure resilience and reliability. 

• Security and access control: Serverless architectures 

should follow security best practices, such as using least 

privilege access, encrypting sensitive data, and securing 

communication channels. Access control mechanisms, 

such as AWS IAM or Azure RBAC, should be used to 

restrict access to functions and resources. 

• Testing and deployment: Testing serverless applications 

requires a different approach compared to traditional 

architectures. Unit tests should be written for individual 

functions, while integration tests should cover the 

interactions between functions and services. Deployment 

pipelines should be automated and follow best practices, 

such as using infrastructure-as-code and canary 

deployments. 

• Cost optimization: Serverless architectures can provide 

significant cost savings, but it's important to monitor and 

optimize costs. This includes using appropriate function 

memory and timeout settings, leveraging cost-saving 

features such as AWS Lambda Reserved Concurrency, 

and using cost monitoring tools to identify and address 

any unexpected costs. 

 

4. Experimental Setup and Evaluation 

Methodology 
In this section, experimental setup and evaluation 

methodology for assessing the performance, scalability, and 

cost-efficiency of serverless architectures across different 

cloud platforms and workloads is described. 

4.1. Cloud Platforms 

This review examines three well-known cloud systems: 

GCP, Microsoft Azure, and Amazon Web Services (AWS). 

Table II details each platform's server-less capabilities.  

Table 2. Serverless offerings of major cloud platforms 

Cloud Platform Serverless Offering 

AWS AWS Lambda 

Azure Azure Functions 

GCP Google Cloud Functions 

 

4.2. Workloads  

Three representative workloads to evaluate the 

performance and scalability of serverless architectures were 

considered: 

• Web API: This workload represents a typical web 

application that exposes a Restful API. The serverless 

functions handle HTTP requests, perform simple business 

logic, and return JSON responses. The workload is 

characterized by short-lived, stateless functions with low 

to moderate memory requirements. 

• Data Processing: This workload represents a data 

processing pipeline that ingests data from a message 

queue, performs transformations and aggregations, and 

stores the results in a database. The serverless functions 

are triggered by messages in the queue and can be long-

running and memory-intensive. 

• Machine Learning Inference: This workload represents a 

machine learning inference service that receives input 

data, runs a per-trained model, and returns the predictions. 

The serverless functions are triggered by HTTP requests 

and require high-memory and GPU resources for efficient 

inference. 

 

4.3. Performance Metrics  

The performance of serverless architectures was 

evaluated using the following metrics: 

• Response Time: The time taken by a serverless function 

to process a request and return a response. This includes 

the cold start latency and the actual function execution 

time. The average, 90th percentile and 99th percentile 

response times were measured to assess the overall 

performance and tail lateness. 

• Throughput: The number of requests that a server less 

function can process per second. The maximum 

sustainable throughput without causing function failures 

or excessive response times was measured. 

• Scalability: The ability of a server less architecture to 

automatically scale in response to increasing workload. 

The scaling behaviour was evaluated by gradually 

increasing the request rate and observing the 

corresponding changes in response time and throughput. 

 

4.4. Cost Metrics  

The cost-efficiency of serverless architectures is assessed 

using the following metrics: 
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• Cost per Request: The average cost of processing a single 

request is calculated by dividing the total cost of function 

executions by the number of requests processed. This 

metric helps compare the cost-efficiency of different 

serverless platforms and configurations. 

• Cost per Workload: The total cost of running a specific 

workload on a server with less architecture, including the 

costs of function executions, data transfer, and storage. 

This metric helps assess the overall cost-efficiency of 

server less architectures for different workloads. 
 

Table 3. Performance and cost metrics 

 

 

 

 

 

 

 

 

 

Table 4. Performance and cost metrics 

 

 

 

 

 

 

 

 

 

4.5. Evaluation Methodology  

A systematic evaluation methodology was followed to 

assess the performance, scalability, and cost-efficiency of 

serverless architectures: 

• Baseline Measurement: The workloads were deployed on 

each cloud platform using their respective serverless 

offerings. The baseline performance and cost metrics 

were measured under normal load conditions. 

• Scalability Testing: The request rate for each workload 

was gradually increased, and the scaling behavior of the 

server less architectures was observed. The response time, 

throughput, and cost metrics at different load levels were 

measured to assess the scalability and cost-efficiency. 

• Cost Optimization: Different function configurations, 

such as memory allocation and timeout settings, to 

optimize the cost-efficiency of the server less 

architectures were explored. The impact of these 

optimizations on performance and cost metrics was 

measured. 

• Cross-Platform Comparison: Comparative analysis was 

done on the performance, scalability, and cost-efficiency 

of serverless architectures across different cloud 

platforms to identify the strengths and weaknesses of each 

platform for specific workloads. 

• Results and Analysis: In this section, the results of 

experiments are presented, and the performance, 

scalability, and cost-efficiency of serverless architectures 

across different cloud platforms and workloads are 

analyzed. 
 

5. Results 
5.1. Web API Workload 

Table 3 presents the performance and cost metrics for the 

Web API workload on different cloud platforms. 

The results show that AWS Lambda provides the lowest 

average response time and highest throughput for the Web 

API workload, followed closely by GCP Cloud Functions. 

Azure Functions has slightly higher response times and lower 

throughput compared to the other platforms. 

In terms of cost-efficiency, AWS Lambda has the lowest 

cost per 1 million requests, making it the most cost-effective 

option for the Web API workload. GCP Cloud Functions and 

Azure Functions have slightly higher costs, but the differences 

are relatively small. 

5.2. Data Processing Workload  

Table 4 presents the performance and cost metrics for the 

Data Processing workload on different cloud platforms. 

For the Data Processing workload, AWS Lambda and 

GCP Cloud Functions provide similar average processing 

times and maximum throughput, with AWS Lambda having a 

slight edge. Azure Functions has slightly higher processing 

times and lower throughput compared to the other platforms. 

In terms of cost-efficiency, AWS Lambda has the lowest 

cost per GB of data processed, closely followed by GCP Cloud 

Functions. Azure Functions has slightly higher costs for this 

workload. 

All three platforms show good scalability, with the ability 

to process increasing data volumes without significant 

increase in processing times.  

However, AWS Lambda demonstrates better scalability 

at higher throughput levels compared to Azure Functions and 

GCP Cloud Functions. 

Cloud Platform 
Avg Response Time 

(ms) 

90th 

Percentile 

(ms) 

99th 

Percentile 

(ms) 

Max 

Throughput 

(freq/s) 

Cost per 1M 

Requests ($) 

AWS 25 50 100 1000 0.20 

Azure 30 60 120 800 0.25 

GCP 28 55 110 900 0.22 

Cloud Platform 
Avg Processing 

Time (s) 

90th 

Percentile 

(s) 

99th 

Percentile (s) 

Max 

Throughput 

(MB/s) 

Cost per GB 

Processed ($) 

AWS 5 10 20 100 0.015 

Azure 6 12 24 80 0.018 

GCP 5.5 11 22 90 0.016 
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Table 5. Performance and cost metrics the machine learning inference workload 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Scaling behavior of serverless architectures for the machine learning inference workload 

 

5.3. Machine Learning Inference Workload  

 Table 5 presents the performance and cost metrics for the 

Machine Learning Inference workload on different cloud 

platforms. 

For the Machine Learning Inference workload, AWS 

Lambda provides the lowest average inference time and 

highest throughput, followed by GCP Cloud Functions. Azure 

Functions has slightly higher inference times and lower 

throughput compared to the other platforms. 

In terms of cost-efficiency, AWS Lambda has the lowest 

cost per 1 million inferences, making it the most cost-effective 

option for this workload. GCP Cloud Functions and Azure 

Functions have higher costs, with Azure Functions being the 

most expensive. 

Figure 3 illustrates the scaling behaviour of the server less 

architectures for the Machine Learning Inference workload. 

All three platforms demonstrate good scalability, with the 

ability to handle increasing request rates. However, AWS 

Lambda exhibits better scaling behaviour, maintaining lower 

inference times at higher throughput levels compared to Azure 

Functions and GCP Cloud Functions. 

5.4. Cross-Platform Comparison  

Based on the results of experiments, the following 

observations regarding the performance, scalability, and cost-

efficiency of serverless architectures across different cloud 

platforms were made: 

• AWS Lambda consistently demonstrates the best 

performance and scalability across all three workloads, 

providing the lowest response times, highest throughput, 

and best scaling behaviour. 

• GCP Cloud Functions closely follows AWS Lambda in 

terms of performance and scalability, with slightly higher 

response times and lower throughput in some cases. 

• Azure Functions generally have higher response times, 

lower throughput, and slightly less efficient scaling 

compared to AWS Lambda and GCP Cloud Functions. 

Cloud Platform Avg Inference 

Time (ms) 

90th 

Percentile 

(ms) 

99th 

Percentile 

(ms) 

Max 

Throughput 

(freq/s) 

Cost per 1M 

Inferences ($) 

AWS 100 150 300 200 2.50 

Azure 120 180 360 150 3.00 

GCP 110 165 330 180 2.75 
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• In terms of cost-efficiency, AWS Lambda provides the 

lowest costs for all three workloads, making it the most 

cost-effective option overall. GCP Cloud Functions and 

Azure Functions have slightly higher costs, with the 

differences being more pronounced for the Machine 

Learning Inference workload. 

 

These observations suggest that AWS Lambda is the 

preferred choice for server less architectures in terms of 

performance, scalability, and cost-efficiency. However, the 

choice of a serverless platform may also depend on other 

factors, such as existing cloud investments, specific platform 

features, and ease of integration with other services. 

6. Best Practices and Future Research 
Based on findings and the current state of serverless 

computing, the following best practices and future research 

directions are proposed: 

6.1. Best Practices 

Choose the right server less platform based on 

performance, scalability, and cost-efficiency requirements, 

considering factors such as existing cloud investments and 

integration needs. 

• Design serverless functions to be small, focused, and 

stateless, following best practices for function 

composition, error handling, and resource management. 

• Leverage managed services for data storage, message 

queuing, and API management to simplify the 

architecture and reduce operational overhead. 

• Implement proper monitoring, logging, and tracing 

mechanisms to gain visibility into the performance and 

health of serverless applications. 

• Optimize function configurations, such as memory 

allocation and timeout settings, to achieve the desired 

performance and cost-efficiency trade-offs. 

• Encryption, secure communication, and least privilege 

access are security best practices that should be followed 

to protect server-less applications from potential hazards. 

• Pipelines for Continuous Integration and Continuous 

Deployment (CI/CD) and infrastructure-as-code may 

automate deploying and testing server-less applications. 

 

6.2. Future Research Directions 

• Investigating advanced serverless orchestration patterns 

and frameworks for composing and coordinating complex 

workflows across multiple functions and services. 

• Developing efficient mechanisms for handling state and 

data consistency in serverless architectures, such as 

tasteful serverless computing and distributed transaction 

protocols. 

• Exploring hybrid serverless architectures that combine 

serverless and container-based approaches to achieve the 

benefits of both models. 

• Investigating performance optimization techniques, such 

as function per-warming, to reduce cold start lateness and 

improve overall responsiveness. 

• Developing cost optimization strategies and tools to help 

users monitor and control the costs of serverless 

applications in real-time. 

• Researching security and privacy aspects of serverless 

computing, including access control, data protection, and 

compliance with regulations such as GDPR and HIPAA. 

• Exploring the integration of serverless computing with 

emerging technologies, such as edge computing, machine 

learning, and blockchain, to enable new application 

scenarios and use cases. 

 

7. Conclusion 
In this paper, a comprehensive study on implementing 

server less computing architectures for scalable and cost-

effective cloud applications is presented. The key concepts, 

benefits, and challenges of serverless computing and the 

proposed framework for designing and implementing 

serverless architectures are explored. 

Through extensive experiments, the performance, 

scalability, and cost-efficiency of server less architectures 

across different cloud platforms and workloads are evaluated. 

Results demonstrate that server less architectures can provide 

significant benefits in terms of reduced operational overhead, 

improved scalability, and cost-efficiency. 

Best practices and future research directions to address 

the limitations and optimize the adoption of server less 

computing in real-world scenarios are also discussed. As 

serverless computing continues to evolve, further 

advancements in areas such as orchestration, state 

management, performance optimization, and security are 

expected. 

Overall, serverless computing represents a promising 

paradigm for building scalable and cost-effective cloud 

applications. By leveraging the benefits of server less 

architectures and following best practices, organizations can 

unlock new levels of agility, efficiency, and innovation in their 

cloud-native application development and deployment. 
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