
International Journal of Computer Trends and Technology Volume 72 Issue 8, 130-133, August 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I8P119 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Enhancing Query Performance Through Relational

Database Indexing

Ankit Anchlia

Software Architect, Senior Software Engineer@Blue Moon Software, IEEE Sr. Member, Austin, TX, USA.

Corresponding Author : aanchlia@gmail.com

Received: 22 June 2024 Revised: 26 July 2024 Accepted: 13 August 2024 Published: 31 August 2024

Abstract - Indexing in relational databases is a crucial technique for optimizing query performance. This paper explores

various indexing methods, their implementation, and their impact on database efficiency. By examining different types of

indexes, such as B-trees and hash indexes, and their applications in common relational database systems, this research

provides insights into best practices for database design and maintenance. The study concludes with recommendations for

database administrators and developers to maximize the benefits of indexing.

Keywords - B-tree index, Database optimization, Indexing, Query performance, Relational database.

1. Introduction
Relational databases are foundational to modern data

management. It provides structured storage and efficient

retrieval of large datasets. As the volume of data grows, the

performance of data retrieval operations becomes

increasingly critical. Inefficient data retrieval can lead to

slower application performance, user dissatisfaction, and

increased operational costs. This problem is particularly

acute in large-scale systems where the volume of data and

frequency of queries can overwhelm standard query

processing methods.

Indexing is one of the most effective techniques for

improving query performance. It reduces the time required to

locate and retrieve data within a database. Despite the

extensive use of indexing in relational databases, there

remains a lack of comprehensive understanding of how

different indexing methods perform under various conditions

and query types.

This paper aims to provide a comprehensive overview of
relational database indexing, detailing various indexing
techniques, their advantages and disadvantages, and practical
implementation strategies. By understanding these aspects,
database professionals and developers can make informed
decisions to optimize their systems.

2. Type of Indexes
Indexing in databases involves creating auxiliary data

structures that enhance the speed of data retrieval operations.

The most common types of indexes include B-trees, hash

indexes, and bitmap indexes, each suited to different kinds of

queries and data structures.

2.1. B-Trees Indexes

B-trees are the most commonly used index type in

relational databases. B-trees are balanced tree structures that

maintain sorted data and allow for logarithmic time

complexity for insertion, deletion, and lookup operations.

Introduced by Bayer and McCreight in 1972. B-trees are

widely used in database systems due to their efficiency in

handling large datasets. The balanced nature of B-trees

ensures consistent performance even as the data grows.

2.2. Hash Indexes

Hash indexes use hash functions to map search keys to

corresponding data locations. This type of indexing is highly

efficient for equality searches but less effective for range

queries or sorting operations. Hash indexes are ideal for

scenarios where exact matches are frequently queried. As the

table grows, hash indexes may require rehashing, which can

impact performance during large data insertions.

2.3. Bitmap Indexes

Bitmap indexes use bit arrays to represent the presence

of values in a dataset. They are highly efficient in read-heavy

environments with low cardinality columns, providing fast

retrieval times for complex queries involving multiple

columns. They perform exceptionally well in data

warehousing and business intelligence scenarios where

complex queries on large datasets are common.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
about:blank

Ankit Anchlia / IJCTT, 72(8), 130-133, 2024

131

3. Methodology
The study involved a series of experiments designed to

measure the impact of different indexing techniques on query

performance. A widely used Relational Database

Management System (RDBMS), MySQL, was selected for

this analysis.

3.1. Experimental Setup

3.1.1. Data Population

Tables were populated with synthetic data representing

typical use cases.

3.1.2. Query Design

A series of queries, including single-row lookups, range

queries, and complex joins, were executed with and without

indexing.

3.1.3. Index Implementation

Various indexes, including B-trees, hash indexes, and

bitmap indexes, were implemented to measure their impact

on query performance.

4. Results and Analysis
To thoroughly understand the impact of various indexing

methods on query performance, we conducted a series of

controlled experiments. We evaluated three primary types of

indexes: B-trees, hash indexes, and bitmap indexes. Each

index type was assessed under different query conditions,

including equality searches, range queries, and complex

multi-column queries.

The results demonstrated that indexing significantly

improves query execution times across different types of

queries and data volumes. The tables below show the precise

execution times in milliseconds (ms) for a sample of the

queries executed in MySQL.

4.1. B-Tree Indexes

B-trees are the most commonly used indexing method

due to their balanced nature and efficiency in handling a

wide range of queries. In our experiments, B-tree indexes

consistently provided logarithmic time complexity for both

insertion and search operations, making them ideal for

general-purpose use.

Table 1. Execution time with and without B-tree index

Query Type
Without Index

(ms)

With B-tree

Index (ms)

Single-row Lookup 1500 150

Range Query 5000 600

Complex Join 10000 1200

Fig. 1 Performance Comparison: Without Index vs. With B-tree Index

4.2. Hash Indexes

Hash indexes are highly efficient for equality searches

but are limited in their application due to their inability to

support range queries.

Table 2. Execution time with and without Hash index

Query Type
Without Index

(ms)

With Hash

Index (ms)

Single-row Lookup 1500 250

Equality Search 3000 500

Complex Join 10000 1500

4.3. Bitmap Indexes

Bitmap indexes are particularly useful in read-heavy

environments with low cardinality columns, such as data

warehouses.

Table 3. Execution time with and without Bitmap index

Query Type
Without

Index (ms)

With Bitmap

Index (ms)

Multi-column Query 8000 1000

Range Query 5000 800

Complex Join 10000 1800

0

2000

4000

6000

8000

10000

12000

Single-row Lookup Range Query Complex Join

ti
m

e(
m

s)

Query Type

Without Index (ms) With B-tree Index (ms)

Ankit Anchlia / IJCTT, 72(8), 130-133, 2024

132

Fig. 2 Performance with and without Hash Index

Fig. 3 Performance with and without Bitmap Index

5. Discussion
The findings highlight the importance of selecting the

appropriate indexing technique based on the specific use case

and query patterns.

5.1. B-tree Indexes

B-trees offer balanced performance across a variety of

query types, making them a versatile choice for general-

purpose indexing. Their logarithmic time complexity ensures

scalability as datasets grow, and they are particularly

effective in handling range and complex queries.

5.2. Hash Indexes

Hash indexes provide the fastest performance for

equality searches but are limited by their inability to support

range queries. They are best suited for use cases where

queries are predominantly equality-based and where range

queries are rare.

5.3. Bitmap Indexes

Bitmap indexes are highly effective for complex queries

involving multiple columns and Boolean operations,

particularly in environments with low cardinality data.

However, their higher storage requirements must be taken

into account when deploying them in large-scale systems.

6. Conclusion
Indexing is an essential component of relational database

optimization, offering significant improvements in query

performance. This study provides practical insights into the

benefits and limitations of various indexing techniques,

guiding database administrators and developers in their

efforts to design efficient and responsive databases.

Recommendations
• Analyze the types of queries most frequently executed to

determine the most suitable indexing strategy.

• For queries involving multiple columns, consider using

composite indexes to enhance performance.

• Continuously monitor query performance and adjust

indexing strategies as data volumes and query patterns

evolve.

0

2000

4000

6000

8000

10000

12000

Single-row Lookup Equality Search Complex Join

T
im

e
(m

s)

Query Type

Without Index (ms) With Hash Index (ms)

0

2000

4000

6000

8000

10000

12000

Multi-column Query Range Query Complex Join

T
im

e
(m

s)

Query Type

Without Index (ms) With Bitmap Index (ms)

Ankit Anchlia / IJCTT, 72(8), 130-133, 2024

133

References

[1] Rudolf Bayer, and Edward McCreight, “Organization and Maintenance of Large Ordered Indexes,” Acta Informatica, vol. 1, pp. 173-

189, 1972. [CrossRef] [Google Scholar] [Publisher Link]
[2] C. J. Date, An Introduction to Database Systems, 7th ed., Addison-Wesley, pp. 1-938, 2000. [Google Scholar] [Publisher Link]
[3] Michael Stonebraker et al., “The Design and Implementation of INGRES,” University of California, Berkeley, Technical Report, 1976.

[CrossRef] [Google Scholar] [Publisher Link]
[4] MySQL 8.0 Reference Manual: Including MySQL NDB Cluster 8.0, MySQL, 2024. [Online]. Available:

https://dev.mysql.com/doc/refman/8.0/en/
[5] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton, “Architecture of a Database System,” Foundations and Trends in

Databases, vol. 1, no. 2, pp. 141-259, 2007. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/BF00288683
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09+Organization+and+maintenance+of+large+ordered+indices&btnG=
https://link.springer.com/article/10.1007/BF00288683
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=C.+J.+Date%2C+An+Introduction+to+Database+Systems&btnG=
https://www.google.co.in/books/edition/An_Introduction_to_Database_Systems/WuZQAAAAMAAJ?hl=en
https://doi.org/10.1145/320473.320476
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+design+and+implementation+of+INGRES&btnG=
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1976/29338.html
https://doi.org/10.1561/1900000002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Architecture+of+a+database+system%2C+JM+Hellerstein%2C+M+Stonebraker&btnG=
https://www.nowpublishers.com/article/Details/DBS-002

