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Abstract - Over the years, in the system software world, Real-Time Systems[1] have made a large impact in a variety of 

applications, including mission-critical environments. Such applications typically require a predictable response in a timely 

fashion to be successful. In areas like aerospace, medical robotics, industrial automation and telecommunications,  real-time 

systems real-time systems have had the biggest impact. Recent trends like autonomous vehicles and smart grids facilitate seamless 

and reliable operations between components. As technology advances, Real-Time Systems have become a fundamental building 

block that is often hidden and mostly misunderstood. This paper intends to shed light on real-time systems while also adding an 

implementation of Rate Monotonic Systems[2] in Linux Kernel[3]. 
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1. Introduction 
A real-time system is a type of computer system which 

has strict timing constraints when executing it’s task. 

Therefore, while the logical correctness of the output is of 

importance, its temporal correctness is of the same 

importance. For instance, an automotive braking action should 

be completed within a specific time period when the system 

applies the braking input. Broadly, real-time systems are of 

two types: hard and soft. Hard real-time systems result in 

catastrophic failure if the timing constraints are not met, as 

mentioned in the example above.  

 

However, soft real-time systems, while still being time-

sensitive, do not cause the same catastrophic failure. An 

example of a soft-real time system is an online video 

streaming application where if a certain video frame is missed, 

it may reduce the video quality. 
 

The rest of the article is defined as follows: 

Section II gives a summary overview of the real-time 

system. Section III demonstrates the Linux Driver 

development to add real-time characteristics to a non-real-

time system. Section IV shall be the result and conclusion, 

followed by references. 
 

2. Overview of Real-Time Systems 
Fig 1. describes a typical operating system[4] stack. It has 

user applications, a library which abstracts away all the 

complex APIs exposed by the kernel. 

 

In the same context, the real-time system software stack 

will look similar to the one shown in Figure 1, with certain 

optimization, extensions added to the Scheduler and Task 

Management.  
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The user application requests access to a hardware 

resource via means of a System Call. System Call switches the 

operating system mode from, say, user to a Privileged mode 

where hardware resources can be accessed via device driver(s), 

amongst other operations of the kernel. 

 
In a Real-Time Embedded System (RTES), the services it 

performs are well-defined and known prior to the deployment. 

This is somewhat necessary since the criticality of service 

needs to be known prior to deployment. Each service can be 

considered a software task (job).  

 

Every task has a timing constraint. The timing constraint 

is specified in terms of the deadline before which the task 

needs to be completed. Based on the criticality of a task and 

whether the deadline can be missed, the RTES can fall into two 

categories: Hard or soft Real-time Time Systems.  

 
2.1. Hard Real-Time Systems 

In hard real-time systems, missing a deadline is 

unacceptable. These systems are found in environments where 

timing precision is critical, as in life-support systems or 

automotive airbag controls. Missing a deadline can lead to 

catastrophic failures, necessitating deterministic scheduling 

algorithms. 

 

Characteristics: 
Schedulability: The tasks should meet their timing constraints. 

Low Latency: Deterministic worst-case response time.  

Error Handling: Error handling to prevent system failure due 

to missed deadlines. 
 

2.2. Soft Real-Time Systems 

Soft real-time systems, while still time-sensitive, allow for 

some flexibility. Missing a deadline results in degraded 

performance rather than catastrophic failure. Systems such as 

online video streaming are deemed soft real-time.  

 

Characteristics: 

Adaptive Scheduling: Dynamic scheduling algorithms adjust 

based on workload, providing flexibility in meeting deadlines. 

Graceful Degradation: Performance drops are handled in a way 

that allows the system to continue operating. 

Resource Efficiency: These systems optimize resource usage 

to balance performance with timing constraints. 

 
There are broadly two classes of algorithms, clock-driven 

and priority-based as shown in Figure 2.  

 
Table 1. Clock driven algorithm 

First Come, First Serve 
Non-preemptive Tasks run in 

the order of arrival. 

Round Robin 
The task receives a fixed 

quantum of the CPU to run. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Scheduling algorithms 

 
Table 2. Fixed priority preemptive algorithm 

Rate Monotonic Scheduling 

Priorities are assigned based 

on the rate of the periodic 

task. The lower the time 

period, the higher the priority. 

Deadline Monotonic 

Scheduling 

Tasks are assigned priority 

based on deadline. Shorter 

deadlines have a higher 

priority. 

Shortest Job Scheduling 

Task priority is based on the 

run-time of the process. 

Lower run-time receives 

higher priority. 

Multi-Queue Round Robin 

Multiple queues with 

different time quanta. Tasks 

are added to a queue based on 

priority. 
 

Table 3. Dynamic priority preemptive algorithm 

Earliest Deadline First 

The task is assigned priority 

based on a deadline. Shorter 

deadlines have higher 

priority. Priority changes on 

the fly. 
 

Utilization (U) = Compute Time ( C ) / Time Period (T). 
 

The sum of utilization of all tasks should be less than 100%. 
 

2.3. Rate Monotonic Scheduling 
It is an optimal fixed scheduling policy, i.e. if a set of tasks 

cannot be scheduled by Rate Monotonic policy, then it may not 

be schedulable by any other fixed priority algorithms.  
 

It is proven by Liu and Layland[5] that under Rate 

Monotonic policy, a set of tasks is only schedulable if their 

utilization is up to 69.3%. 
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Table 4. Number of Tasks vs Utilization (Upper Bound Test) 

Num Tasks Utilization 

1 1 

2 0.828 

3 0.780 

4 0.757 

5 0.743 

6 0.735 

…..  

∞ 0.693 

 
Table 5. Sample task set 

Tasks C T U 

T1 4 10 0.4 

T2 4 15 0.27 

T3 10 35 0.29 

 

T1 has higher priority than T2, T2 has higher priority 

than T3 based on their time period (T) 
 

Here, a set of T1 and T2 together are schedulable as 

utilization of 0.67 < 0.828 from Table 4. 

 

T1, T2, and T3 all together have a utilization of 0.96, 

which is greater than 0.780 when the number of tasks (n) = 3. 

Hence, the task set is not schedulable under the upper bound 

test.  
 

Response Time (RT) test has to be applied when a set is 

not schedulable under the Upper Bound test. However, we will 

use the upper bound test when implementing the RMS policy 

in Linux.  

 

3. Implementation 
Several CPU scheduling policies are supported in a 

modern kernel, each tailored to manage particular kinds of 

workloads effectively. In Linux systems where real-time 

processes are not required,  the Completely Fair Scheduler 

(CFS) predominantly handles the CPU scheduling tasks. CFS 

is a widely used scheduler. It consists of sophisticated 

heuristics that aim to optimize performance across a diverse 

array of workloads. CFS offers various adjustable parameters 

to fine-tune its policy. Despite its complexity and adaptability, 

CFS may not satisfy all use cases which is a testament to the 

challenges in CPU scheduling.  
 

In this section, we will discuss steps about implementing 

a real-time system by extending the Linux kernel. To put it 

succinctly, at the implementation level, an RTS requires task 

management based on the parameters (C,T) set by the system 

architect. The values of C,T are system-dependent and 

requirement-dependent. 
 

3.1. Task Management 
A task can be in one of the multiple states on its inception, 

such as Ready, Running, Waiting and Exiting. A new task when 

created, is added to the Ready Queue. When the scheduler 

tick/irq occurs, the scheduler picks the next task to run. In our 

RTS system, recall that we shall pick the state based on the 

higher rate of occurrence as a higher priority.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Life of a Task in OS  - 
 

 

 

 

 

 

 

 

 
 

 
 

 

 

 
Fig. 4 Task control block 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Linux TCB 
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.... 
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…. 
struct pid *thread_pid; 
 
/* Monotonic time in nsecs: */ 
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}; 
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Every task is described with a Task Control Block (TCB). 

A TCB describes the task’s current state, its scheduling 

attributes, open file references, hardware register state, and the 

memory it can access. On Linux Kernel which is our target 

platform for implementation, the TCB is defined with a struct 

task_struct. Figure 5 shows the task_struct with a few 

attributes displayed. 
 

Based on the information we have about the task state and 

TCB, task_struct from Linux, we will add our own parallel OS 

within the kernel space. 
 

1. We add a new system call for our driver. This is required 

by the user-space application to specify three parameters.  

• Process ID or PID 

• Worst Case Execution Time or ‘C’ in msec 

• Time Period or ‘T’ in msec 
 

2. The linux kernel calls a function called context_switch 

(task_struct *old, task_struct *new)  when it switches 

between tasks. We add a hook here which calls a function 

called force_rt() in our driver. 
 

3. Setup code for Linux High-Resolution Timer[6]. We start 

an hour timer with a tick of 10 microseconds 

(configurable). 
 

4. Implement the RMS Upper Bound Algorithm with a 

partitioned scheduler scheme in which task sets are 

grouped together to run on certain cores of the CPU. 
 

5. Add sysfs entries show() to show our driver’s internal 

state. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6 RTS driver data structure 

 

Figure 6 shows the design of the driver queue data 

structure. It holds the process ID, user-specified timing 

constraints, actual time spent by the task running on the system 

and some attributes required for the Linux sysfs framework.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 Code snippet of the system call 
 

Our Linux HR Timer callback forms the basis of the 

system tick of our implementation. In the hr_timer_callback 

struct rt_sched_queue { 
struct task_struct *tsk; 
struct rt_sched_queue *next, *prev, *cpuq; 
int utils; 
// capture actual time spent 
struct timespec cts, pts, ets, rawts, rawets, rawpts; 
spinlock_t lock; 
int state, ctimer_state, ptimer_state, raised_exit; 
// specified by user 
int e_time, c_time, p_time; 
pid_t pid; 
struct kobject pid_kobj; 
…. 
}; 

asmlinkage long sys_rt(pid_t procid, int comp_time, int 

period) 
{ 
sched_queue *tmp; 
// check if dup exit for the pid 
tmp = check_dup(&runqueue, (pid_t)procid); 
if (tmp !=NULL) return -1; 
 
tmp = create_node(); 
 
tmp->pid = procid; 
tmp->c_time = comp_time; 
tmp->p_time = period; 
 
tmp->tmr_c.timer_callback = &c_callback; 
tmp->state = TSK_RUN; 
 
tmp->ctimer_state = CLK_STOP; 
tmp->ptimer_state = CLK_STOP; 
 
struct task_struct *tsk =    
                                     find_task_by_vpid(procid); 
 
// raise the priority of our task 
tsk->prio = 105; 
// Set the scheduling policy as Round Robin 
tsk->policy = SCHED_RR; 
 
/* Insert Node in Per processor Queue */ 
 
// Worst Fit Descreasing Packaging per Core 
if (wfd_packing() == -1) { 
      delete_node(procid); 
      return -1; 
} 
// create sysfs entry for user view 
create_pid_sysfs(tmp); 
 
// Assign task set per CPU Core RunQueue 
if (assign_task_core(cpu0, 4) != 0) 
pr_err("new Task Set Not Schedulable"); 
 
if (assign_task_core(cpu1, 5) != -1) 
pr_err("new Task Set Not Schedulable"); 
if (assign_task_core(cpu2, 6) != -1) 
pr_err("new Task Set Not Schedulable"); 
if (assign_task_core(cpu3, 7) != -1) 
pr_err("new Task Set Not Schedulable"); 
... 

} 
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we iterate over all the task(s) in our queue advance the running 

‘C’ and ‘T’ values. Once a task has finished its ‘C’ execution 

units, we call the per task assigned callbacks to move the Task 

into a TASK_SUSPENDED state. Similarly, when a task 

finishes overall of ‘T’ units, it is woken up and added back to 

the ready queue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 Main call back of HR timer 
 

We use bin packing heuristics to pack the task in a set 

which will run on a specific core. By setting the CPU affinity 

of a task, we bind the task to a core. Recall that your upper 

bound test means we can only load our code to 69.3% 

utilization to achieve RMS.  
 

In our code implementation, we pick the Worst Fit 

Heuristic. The Worst Fit Decreasing (WFD) heuristic is a 

strategy used in bin packing problems to minimize the number 

of bins required. This heuristic involves two primary steps: 

sorting the items in descending order based on size and then 

applying the Worst Fit method. In the Worst Fit method, each 

item is placed in the bin with the most remaining space that 

can still accommodate the item. By prioritizing the emptiest 

bins, the WFD heuristic tends to distribute items more evenly 

across the available bins compared to other methods. This 

forms the basis of our simple algorithm of sorting the tasks and 

then placing them in sets (buckets) assigned to a core. 

4. Result andConclusion 
With our algorithm in place and the driver compiled into 

the kernel. We create some user applications which we would 

want to adhere to the RMS policy. 
 

Figure 9 shows the internal state of our driver, which is 

managing tasks identified by the PID (P). 

 

C_ms and T_ms are the user-specified real-time 

constraints. RC and RT values indicate the actual time spent by 

the task in the kernel either running, waiting or suspended. 

‘pre’ number tells us how many times the kernel switched out 

the task. The kernel exports RC and RT values to user space 

via sysfs. The above result indicates that:  

(C/T) == (RC/RT) 

Fig. 9 Result 

It means that the utilization which the user specified is 

what our real time driver was able to achieve for the user-task. 

While our implementation worked, we made some 

assumptions about no tasks accessing a shared resource. If 

there is a lock shared across two tasks with both of them 

accessing the shared resource, if the lower priority task 

acquires the mutex, then it leads to priority inversion.  

 

In our case, it will lead to the violation of the timing 

constraints. There are locking protocols, such as Priority 

Inheritance Protocol and Highest Locker Protocol, but that is 

outside the scope of our current implementation and will be 

considered in the next implementation.  

 

Our work is inspired from Linux/RK work done at 

Carnegie Mellon University[7].  
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