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Abstract - The automotive world is going through a paradigm shift. With sensor technologies like 4K cameras, LiDARs, Radars, 

etc., becoming more affordable and advances in Deep Learning algorithms development, research is trending towards 

developing Autonomous Vehicles and bringing them mainstream. However, a challenge remains in the commercialization of 

technologies. An automotive vehicle undergoes a rigorous verification and validation model. Perfected over decades, standards 

and guidelines are introduced to minimize failures. However, there exists a gap in testing when working with new sensors and 

algorithms, and our paper focuses on a hybrid setup for hardware in loop testing, which enables software to iterate over their 

development faster without having to wait to deploy on actual cars for testing.  
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1. Introduction 
Embedded Machine Learning, computing on the edge is 

crucial for fostering innovation in a multitude of intelligent 

devices. The evolution of ARM processors has created an 

ecosystem of smart devices where significant computing 

exists to run Machine Learning Models. The next innovation 

is touted to be in the automotive sector, where machine 

learning and hardware combine to improve the transportation 

sector. The edge computer means that the decision-making 

power is now with an ECU [1] (Engine Control Unit). A car 

can have multiple ECUs, with each having its own 

functionality, from controlling the wipers to controlling the 

steering accelerator based on the user input. In autonomous 

vehicles, a software agent shall drive these actuators. This 

makes the testing of the software, along with the underlying 

hardware, a challenge. Hardware-in-the-loop (HIL) testing 

involves connecting a real hardware system (such as an ECU) 

to a virtual environment that simulates real-world conditions.  

This allows engineers to test the control systems’ 

behavior under various conditions without needing the entire 

vehicle. HIL testing allows identify potential issues early in 

the development process, thus reducing the need for expensive 

and time-consuming physical prototypes. Figure 1 shows a V-

Model, also called the verification and validation model. 

International industry standards prescribe the model for the 

development of safety-critical systems like ISO26262. While 

the left side of the V model focuses on requirements at both 

macro and micro levels, the right side focuses on software 

integration and testing. In the initial stages, the software is 

tested in a purely simulated environment to allow for unit and 

module testing, while the later stages test the overall software 

on the target hardware platform with a full load of sensors.  

Often, the testing infrastructure between the initial stages 

in the simulated environment vs the actual target hardware 

brings in a huge variation. For instance, a software driver is 

implemented to capture 3d point cloud data from a LiDAR. 

The software driver in order to test, will fake add function 

stubs in code to mimic the sequence of operations to be 

performed on the LiDAR hardware only to see hardware-

related issues when testing the software on the target 

hardware.  

Our paper aims to bridge the gap in the testing process 

with a Hybrid Hardware Loop Testing process, which uses 

QEMU [2] virtualization and creating custom device models 

in QEMU to enable hardware systems to be patched through 

to the virtualized environment.  

The rest of the paper is organized as follows. Introduction 

to hardware emulators in section II. Section III describes 

QEMU, Section IV describes the Process of Adding User 

Defined Devices in QEMU. Section V shall have the Device 

Driver Development in Linux and we shall conclude in section 

VI.  Fig. 1 v- model of development 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 v-model of development 

 
Fig. 2 Qemu build instruction  

Fig. 3 Invoking QEMU 

2. Hardware Emulators 
An embedded system product development depends on 

the availability of the hardware. In the absence of hardware 

and for the software development to progress, developers 

often use hardware emulators. For instance Android 

developers use the Android Emulator [3]for developing their 

application. In this context, emulation can be  defined as using 

a host CPU’s resources to mimic the functionality of another 

CPU architecture. Thus a software developed for say ARM 

CPU architecture can be run on a host system which has an 

x86 architecture. This is the typical use-case of an Android 

emulator for android application development. Some widely 

used emulation products are QEMU, BOCHS [4] RENODE 

[5] In automotive ECU  HIL testing commercial setups like 

dSPACE [6] are often used for validation. Our paper focuses 

on QEMU and its application in the Hardware in Loop 

Testing. QEMU, an open-source emulator which employs 

dynamic binary translation to achieve high performance when 

emulating guest systems on different host architectures. The 

modular nature of QEMU allows it to emulate a wide range of 

hardware components, including CPUs, network interfaces, 

and storage controllers, making it highly adaptable for various 

use cases. QEMU's KVM (Kernel-based Virtual Machine) 

integration allows for near-native execution speeds by 

leveraging hardware virtualization extensions if supported by 

the host system. While QEMU supports multitude of standard 

hardware interfaces, the Autonomous Vehicle domain brings 

in new hardware which are either not modeled in QEMU or 

not yet available in public domain to be accessible to 

everyone.   

3. QEMU 
We will need the QEMU source code to add custom 

hardware. You can download the source from the official 

QEMU repository https://gitlab.com/qemu-project/qemu.git. 

To build QEMU source code: We also require a root file 

system and a Linux Kernel Image to use on our custom QEMU 

emulator. You can use the debootstrap [7] tool to generate a 

Debian [8] base image and the Linux Kernel [9] source code 

from the link below. 

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

. 

Another popular option is to use buildroot [10] 

(https://buildroot.org/) for generating a root file system along 

with the kernel image. Since we are generating an image for 

the QEMU Virtual Platform, we shall use the config 

qemu_aarch64_virt_defconfig. Once both qemu and buildroot 

finish the making process, Qemu can be invoked using the 

command below, shown in Figure 3. QEMU shall execute 

with the kernel image and the roots parameter to start a serial 

console emulating an ARM64 [11] virtual system, as shown 

in Figure 4. 

Implementation 

Module Design Module Test 

Function Design 

System Test System Design 

Functional Test 

Requirements Customer Test 

qemu-system-aarch64 -M virt -cpu cortex-a57 \ 

-smp 4 -m 1G  -kernel Image \ 

-append "root=/dev/vda rw console=ttyAMA0" \ 

-semihosting -nographic -drive file=rootfs.ext4 

https://buildroot.org/
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Fig. 4 Serial console 

4. User Defined Custom Hardware Model 
With the standard QEMU invocation completed, we shall 

now focus on creating a custom hardware model. To re-iterate, 

this user-defined model being developed can be used to 

replicate a hardware interface, say a sensor register layout, add 

function hooks into a world view simulator CARLA [12] or 

add software to create a pass-through of the camera data, 

which is connected to the host via a special interface like 

GMSL [13]. Our target system is an Embedded ARM64 SOC, 

as shown in Figure 5, with a user-defined co-processor added 

to the system bus. To show QEMU’s scalable and modular 

architecture, we can even send an interrupt event from this co-

processor to the main Application Processor. In the QEMU 

source code directory, we shall modify the virtual platform 

defined under hw/arm/virt.c and its associated header file. In 

the include/hw/arm/virt.h file we add a device type 

VIRT_CUSTOM_COPROC. ARM/ARM64 architecture has a 

flat memory model.  

 Fig. 5 ARM virtual platform 

The data structure MemMapEntry holds the memory map 

of the entire SOC. We shall add an entry in a vacant space at 

address 0x0b000000 with a length of 0x200. Similarly, we add 

a virtual IRQ from our user-defined co-processor to the 

Application Processor. Next, we shall create the software 

model of our user-defined model, which is slotted at base 

address  0x0b000000 and has an associated interrupt. Under 

include/hw/arm and under hw/arm, create a new sub-folder, 

which will contain the header file and the source file of your 

model.Our user-defined model has a device id of 0x42024. 

The id offset can be read at base_address + 0x0 

(kPeripheralIDOffset). The simple model shown here shall 

take in two 32-bit input numbers in the input registers from 

the Application Processor and shall return the output of it in 

the output register. The register at offset 0x14 

(kStartProcessing) shall be the trigger from the software driver 

to begin the compute. Additionally, the device driver can 

check if the user modeled coprocessor is busy with the register 

at 0x10 (kProcIdle) as well as reset the co-processor with a 

reset register at 0x30 (kResetCoProc). If the Device Driver 

configures the interrupt (register offset 0x8) to be enabled, the 

user model shall send a completion interrupt back to AP once 

the execution is completed.  

Fig. 6 Virtual ARM Platform Memory Map 

 

Fig. 7 Virtual ARM Platform IRQs 

Booting Linux on physical CPU 0x0000000000 [0x411fd070] 

Linux version 6.6.18 (shwetashob@t-1000) (aarch64-buildroot-

linux-gnu-gcc.br_real (Buildroot 2024.02-479-gdb37b0e27d) 

12.3.0, GNU ld (GNU Binutils) 2.41) #15 SMP Sun Apr 28 

23:22:46 PDT 2024 

random: crng init done 

………. 

Starting syslogd: OK 

Starting klogd: OK 

Running sysctl: OK 

Starting network: udhcpc: started, v1.36.1 

udhcpc: broadcasting discover 

udhcpc: no lease, forking to background 

OK 

 

Welcome to Buildroot 

buildroot login: 

SOC System Bus 

ARM/AArch64  

CPU 
RAM 

ARM GIC 

Custom  

Co-Processor 
Device MMΙΟ Device MMΙΟ 
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Fig. 8 User defined model attributes 

Our new model registration with QEMU uses the macro 

type_init. 

 
Fig. 9 Code to register the user-defined model 

 
Fig. 10 Init 

 
Fig. 11 MMIO read function 

Fig. 12 MMIO write function 

 
Fig. 13 QEMU timer callback 

 The code snippets in Figures 9 to 14 show how the co-

processor is registered with QEMU, its init sequence where 

the memory device memory region is intialized with the length 

0x200. The read/write APIs get invoked when a driver makes 

a hardware register access in the co-processor assigned 

memory section. Once the driver sets a non-zero value in the 

kStartProcessing register, we trigger the QEMU internal 

timer. On completion of the time period, we receive a callback 

where we output the result of the execution as well as send an 

interrupt to the Application Processor. After adding the code 

and adding the source files to the QEMU Kconfig/Meson 

build system, we are ready to rebuild the QEMU binary. 
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Fig. 14 Instantiating the CoProcessor in virt.c 
 

5. Device Driver and Validation 
With the new compiled qemu binary, if we start the 

emulator with the ARM virtual machine in the monitor mode 

and run the command info mtree, you shall see the user-

defined coprocessor in the system address map.  

 

Next, if we read the memory using devmem [14] [at the 

base-address of our new device, we should read the hard-

coded device id, which confirms our user-model read 

operation is working as expected. 

 

 

 

 

 

 

 

 

Fig. 15 Address map with user model 

 

We shall write a tiny linux device driver which will match 

against the compatible string “coproc” as defined earlier in our 

hw/arm/virt.c file. We read the interrupt property in the device 

tree and register an interrupt handler for it. Recall that our co-

processor fires an interrupt when the device driver initiates the  

processing of the inputs by writing to the register at offset 

0x14, which in turn triggers an internal QEMU Timer. The 

timer call back is used to send an interrupt to the AP.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 Registering the linux device driver 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 17 The probe function 

 

 

 

 

 

 

 

 

Fig. 18 The Co-Processor interrupt handler 

 

# devmem 0xb000000 

0x00042024 

#  

  

build ./qemu-system-aarch64 -machine virt -monitor stdio 

QEMU 9.0.50 monitor - type 'help' for more information 

(qemu) info mtree 

address-space: cpu-memory-0 

address-space: memory 

  0000000000000000-ffffffffffffffff (prio 0, i/o): system 

    0000000009010000-0000000009010fff (prio 0, i/o): 

pl031 

   .... 

   .... 

    000000000b000000-000000000b0001ff (prio 0, i/o): 

CoProcessor-Custom 

static int coproc_remove(struct platform_device *pdev) 

{ 

    return 0; 

} 

static const struct of_device_id coproc_of_match[] = { 

    { .compatible = "coproc", }, 

    { } 

}; 

MODULE_DEVICE_TABLE(of, coproc_of_match); 

static struct platform_driver coproc_driver = { 

    .probe = coproc_probe, 

    .remove = coproc_remove, 

    .driver = { 

        .name = "coproc-driver", 

        .of_match_table = of_match_ptr(coproc_of_match), 

    }, 

}; 

module_platform_driver(coproc_driver); 

static int coproc_probe(struct platform_device *pdev) 

{ 

    struct device *dev = &pdev->dev; 

  ... 

    cd->base = devm_ioremap(dev, res->start, 

resource_size(res)); 

  

    cd->virq = irq_of_parse_and_map(pdev->dev.of_node, 

0); 

    if (cd->virq == 0) { 

    } 

    else { 

        ret = request_irq(cd->virq, 

(irq_handler_t)coproc_irq_handler, 

  IRQF_TRIGGER_RISING, 

"COPROC_IRQ_HANDLER", cd); 

    } 

    // Enables Interrupt 

    writel(1, cd->base + 0x8); 

} 

 

static irqreturn_t coproc_irq_handler(int irq, void *data) 

{    

    struct coproc_data *cd = (struct coproc_data*) data; 

 
    pr_info("-------------------------------CoProc Irq Rx\n"); 

    readl(cd->base + 0xc); 

    pr_info("-------------------------------CoProc Irq Cleared 

When Status Reg is Read\n"); 

    return IRQ_HANDLED; 

} 
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We compile the device driver into the Linux Kernel 

Image and re-invoke QEMU with the new kernel image. On 

running cat /proc/interrupts, we should see our IRQ handler 

registered. 

 
Fig. 19 Linux interrupts 

 

 
Fig. 20 Running the shell script 

We shall use a shell script with devmem to write two input 

numbers and observe the output. An interrupt is generated on 

completion of the work and we see the print statements in the 

serial console. 

6. Conclusion 
In this paper, we present a new hybrid approach to 

performing Hardware Loop Testing for automotive 

applications. QEMU being a versatile emulator, we add a user-

defined model using the ‘C’ programming language.  

 

With the HIL setup as part of the test infrastructure, 

developers can focus on higher-level Computer Vision and 

Deep Learning problems with real input data such as camera 

images, radar data or the 3d point cloud data from a LiDAR.  

 

For future work, we intend to provide create a sensor 

framework layer which will allow the user-defined model to 

interface with automotive sensors seamlessly.
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