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Abstract - The automotive world is going through a paradigm shift. With sensor technologies like 4K cameras, LiDARs, Radars,
etc., becoming more affordable and advances in Deep Learning algorithms development, research is trending towards
developing Autonomous Vehicles and bringing them mainstream. However, a challenge remains in the commercialization of
technologies. An automotive vehicle undergoes a rigorous verification and validation model. Perfected over decades, standards
and guidelines are introduced to minimize failures. However, there exists a gap in testing when working with new sensors and
algorithms, and our paper focuses on a hybrid setup for hardware in loop testing, which enables software to iterate over their
development faster without having to wait to deploy on actual cars for testing.
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1. Introduction

Embedded Machine Learning, computing on the edge is
crucial for fostering innovation in a multitude of intelligent
devices. The evolution of ARM processors has created an
ecosystem of smart devices where significant computing
exists to run Machine Learning Models. The next innovation
is touted to be in the automotive sector, where machine
learning and hardware combine to improve the transportation
sector. The edge computer means that the decision-making
power is now with an ECU [1] (Engine Control Unit). A car
can have multiple ECUs, with each having its own
functionality, from controlling the wipers to controlling the
steering accelerator based on the user input. In autonomous
vehicles, a software agent shall drive these actuators. This
makes the testing of the software, along with the underlying
hardware, a challenge. Hardware-in-the-loop (HIL) testing
involves connecting a real hardware system (such as an ECU)
to a virtual environment that simulates real-world conditions.

This allows engineers to test the control systems’
behavior under various conditions without needing the entire
vehicle. HIL testing allows identify potential issues early in
the development process, thus reducing the need for expensive
and time-consuming physical prototypes. Figure 1 shows a V-
Model, also called the verification and validation model.
International industry standards prescribe the model for the
development of safety-critical systems like 1SO26262. While
the left side of the VV model focuses on requirements at both

macro and micro levels, the right side focuses on software
integration and testing. In the initial stages, the software is
tested in a purely simulated environment to allow for unit and
module testing, while the later stages test the overall software
on the target hardware platform with a full load of sensors.

Often, the testing infrastructure between the initial stages
in the simulated environment vs the actual target hardware
brings in a huge variation. For instance, a software driver is
implemented to capture 3d point cloud data from a LiDAR.
The software driver in order to test, will fake add function
stubs in code to mimic the sequence of operations to be
performed on the LIDAR hardware only to see hardware-
related issues when testing the software on the target
hardware.

Our paper aims to bridge the gap in the testing process
with a Hybrid Hardware Loop Testing process, which uses
QEMU [2] virtualization and creating custom device models
in QEMU to enable hardware systems to be patched through
to the virtualized environment.

The rest of the paper is organized as follows. Introduction
to hardware emulators in section Il. Section Il describes
QEMU, Section IV describes the Process of Adding User
Defined Devices in QEMU. Section V shall have the Device
Driver Development in Linux and we shall conclude in section
VI. Fig. 1 v- model of development
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Fig. 1 v-model of development

cd qemu

mkdir build

cd build
../qemu/configure
make

--target-list=aarch64-softnmu

Fig. 2 Qemu build instruction

gemu-system-aarch64 -M virt -cpu cortex-a57 \
-smp 4 -m 1G -kernel Image \

-append "root=/dev/vda rw console=ttyAMAQ" \
-semihosting -nographic -drive file=rootfs.ext4

Fig. 3 Invoking QEMU

2. Hardware Emulators

An embedded system product development depends on
the availability of the hardware. In the absence of hardware
and for the software development to progress, developers
often use hardware emulators. For instance Android
developers use the Android Emulator [3]for developing their
application. In this context, emulation can be defined as using
a host CPU’s resources to mimic the functionality of another
CPU architecture. Thus a software developed for say ARM
CPU architecture can be run on a host system which has an
x86 architecture. This is the typical use-case of an Android
emulator for android application development. Some widely
used emulation products are QEMU, BOCHS [4] RENODE
[5] In automotive ECU HIL testing commercial setups like
dSPACE [6] are often used for validation. Our paper focuses
on QEMU and its application in the Hardware in Loop
Testing. QEMU, an open-source emulator which employs
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dynamic binary translation to achieve high performance when
emulating guest systems on different host architectures. The
modular nature of QEMU allows it to emulate a wide range of
hardware components, including CPUs, network interfaces,
and storage controllers, making it highly adaptable for various
use cases. QEMU's KVM (Kernel-based Virtual Machine)
integration allows for near-native execution speeds by
leveraging hardware virtualization extensions if supported by
the host system. While QEMU supports multitude of standard
hardware interfaces, the Autonomous Vehicle domain brings
in new hardware which are either not modeled in QEMU or
not yet available in public domain to be accessible to
everyone.

3. QEMU

We will need the QEMU source code to add custom
hardware. You can download the source from the official
QEMU repository https://gitlab.com/gemu-project/gemu.git.
To build QEMU source code: We also require a root file
system and a Linux Kernel Image to use on our custom QEMU
emulator. You can use the debootstrap [7] tool to generate a
Debian [8] base image and the Linux Kernel [9] source code
from the link below.
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Another popular option is to use buildroot [10]
(https://buildroot.org/) for generating a root file system along
with the kernel image. Since we are generating an image for
the QEMU Virtual Platform, we shall use the config
gemu_aarch64_virt_defconfig. Once both gemu and buildroot
finish the making process, Qemu can be invoked using the
command below, shown in Figure 3. QEMU shall execute
with the kernel image and the roots parameter to start a serial
console emulating an ARM®64 [11] virtual system, as shown
in Figure 4.



https://buildroot.org/

Shobhit Kukretiet al. / IJCTT, 72(7), 26-31, 2024

Booting Linux on physical CPU 0x0000000000 [0x411fd070]
Linux version 6.6.18 (shwetashob@t-1000) (aarch64-buildroot-
linux-gnu-gee.br_real (Buildroot 2024.02-479-gdb37b0e27d)
12.3.0, GNU 1d (GNU Binutils) 2.41) #15 SMP Sun Apr 28
23:22:46 PDT 2024

random: crng init done

Starting syslogd: OK

Starting klogd: OK

Running sysctl: OK

Starting network: udhcpc: started, v1.36.1

udhcpc: broadcasting discover

udhepe: no lease, forking to background

OK

Welcome to Buildroot
buildroot login:

Fig. 4 Serial console

ARM/AArch64
CPU

SOC System Bus

Device MMIO Device MMIO

4. User Defined Custom Hardware Model

With the standard QEMU invocation completed, we shall
now focus on creating a custom hardware model. To re-iterate,
this user-defined model being developed can be used to
replicate a hardware interface, say a sensor register layout, add
function hooks into a world view simulator CARLA [12] or
add software to create a pass-through of the camera data,
which is connected to the host via a special interface like
GMSL [13]. Our target system is an Embedded ARM64 SOC,
as shown in Figure 5, with a user-defined co-processor added
to the system bus. To show QEMU’s scalable and modular
architecture, we can even send an interrupt event from this co-
processor to the main Application Processor. In the QEMU
source code directory, we shall modify the virtual platform
defined under hw/arm/virt.c and its associated header file. In
the include/hw/arm/virt.h file we add a device type
VIRT_CUSTOM_COPROC. ARM/ARMG64 architecture has a
flat memory model.

ARM GIC

Custom
Co-Processor

Fig. 5 ARM virtual platform

The data structure MemMapEntry holds the memory map
of the entire SOC. We shall add an entry in a vacant space at
address 0x0b000000 with a length of 0x200. Similarly, we add
a virtual IRQ from our user-defined co-processor to the
Application Processor. Next, we shall create the software
model of our user-defined model, which is slotted at base
address  0x0b000000 and has an associated interrupt. Under
include/hw/arm and under hw/arm, create a new sub-folder,
which will contain the header file and the source file of your
model.Our user-defined model has a device id of 0x42024.
The id offset can be read at base_address + O0Ox0
(kPeripheralIDOffset). The simple model shown here shall
take in two 32-bit input numbers in the input registers from
the Application Processor and shall return the output of it in
the output register. The register at offset 0x14
(kStartProcessing) shall be the trigger from the software driver
to begin the compute. Additionally, the device driver can
check if the user modeled coprocessor is busy with the register
at 0x10 (kProcldle) as well as reset the co-processor with a
reset register at 0x30 (kResetCoProc). If the Device Driver
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configures the interrupt (register offset 0x8) to be enabled, the
user model shall send a completion interrupt back to AP once
the execution is completed.

static const MemMapEntry base_memmap[] = {

/* Space up to 0x8000000 is reserved for a boot ROM */
[VIRT FLASH] = { 8, 0x08800800 },
[VIRT_CPUPERIPHS] = { 0x08000008, 0x00020800 },
[VIRT_MMIO] =
[VIRT_CUSTOM_COPROC] =
/* Actual RAM size depends on initial RAM and device memory settings */
[VIRT MEM] = { GiB, LEGACY RAMLIMIT BYTES },

{ 6x0a060000, 0x00800200 },
{ 6x6boBERAEE, 06XBAARO200 },

Fig. 6 Virtual ARM Platform Memory Map

static const int a15irgmap[] = {
[VIRT_UART] = 1,
[VIRT RTC] = 2,
[VIRT SMMU] = 74,
[VIRT PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
[VIRT_CUSTOM_COPROC] = 112 + PLATFORM_BUS_NUM_IRQS,

J* ...to 74 + NUM_SMMU TRQS - 1 */

Fig. 7 Virtual ARM Platform IRQs
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#define TYPE_CUSTOM_COPROC "CoProcessor-Custom"
#define CoProcessor(obj) OBJECT_CHECK(CoProcessorState, (obj), TYPE_CUSTOM_COPROC)

static const uint32_t kpPeripherallID = 0x042024;

/* Register Layout */
static const uint32_t kpPeripheralIDoffset = 8x0;
static
static

const
const

uint32_t
uint32_t

kCompletionIRQEnOffset = Ox8;
kCompletionIRQStatus = Oxc;

static
static

const
const

uint32_t
uint32_t

kCoProcIdle = 0x10;
kStartProcessing = 0x14;
static
static
static

const
const
const

uint32_t
uint32_t
uint32_t

kInpRegl = ©x18;
kInpReg2 = @xic;
koutputReg = 0x20;
static const

uint32_t kResetCoProc = 0x30;

static const uint32_t kDebugEn = 0x40;

typedef struct
{

SysBusDevice parent_obj;
MemoryRegion iomem;

QEMUTimer *timer; // QEMU Internal Time

qgemu_irq irq; // To send IRQ to AP

bool irgstatus; // Single IRQ Status Line

uint32_t id; // Co-Processor ID

uint32_t en; // Enable IRQ flag

uint32_t inp1; // Input 1 Register

uint32_t inp2; // Input 2 Register

uint32_t out; // OutPut Register

bool busy; // Co-Processor Busy Signal

bool reset; // Reset CoProcessor

bool debug; // SW Debug Flag for Verbose Output

} CoProcessorstate;

Fig. 8 User defined model attributes

Our new model registration with QEMU uses the macro
type_init.

static const Typelnfo _coProcessorInfo = {
.name = TYPE_CUSTOM_COPROC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CoProcessorState),
.instance_init = coProcessorInit,

.instance_finalize = coProcessorCleanUp,
IH
static void registerCoProcessor(void)
{

type_register_static(&_coProcessorInfo);
}

type_init(registerCoProcessor)

Fig. 9 Code to register the user-defined model

static const MemoryRegionOps CoProcOps = {
.read = CoProcRead,
.write = CoProcHrite,
.endianness = DEVICE_NATIVE_ENDIAN,

}

static vold CoProcessorWorkCompletion(void *opaque)

CoProcessorState *s = (CoProcessorState *)opaque;
s-sout = s-»inpl + s->inp2;
s-sbusy = false;
s->irqStatus = true;
CoProcSetIRQ(s);
}

static void coProcessorInit(Object *obj)

CoProcessorState *state = CoProcessor(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);

memory_region_init_io(&state->lomem, OBJECT(state), &CoProcOps, state,
TYPE_CUSTOM_COPROC, 6x200);

sysbus_init_mmio(sbd, &state->iomem);

sysbus_init_irq(sbd, &state->irq);

// initialize internal state

state->id = kPeripherallD;
state->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, CoProcessorWorkCompletion, state);

Fig. 10 Init
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static uint64_t CoProcRead(void *opaque, hwaddr offset, unsigned size)
CoProcessorState *s = (CoProcessorState *)opaque;
uint32_t ret = OXDEADBEEF;
switch (offset)

case kPeripherallDoffset:
ret = s-»>id;
break;

case kCoProcIdle:
ret = !s->busy;
break;

case kOutputReg:
ret = s5->out;
break;

}

return ret;

Fig. 11 MMIO read function

static void CoProcrite(void *opaque, hwaddr offset, uinté4_t value,
unsigned size)
{
CoProcessorState *s = (CoProcessorState *)opaque;
switch (offset)
{

case kCompletionIRQEnOffset:
s-»>en = value & 0x1;
break;

case kInpRegil:
s->inpl = value;

break;

case kInpReg2:
s-»inp2 = value;

break;

break;
case kStartProcessing:
s->busy = value ? true :
if (s->busy) {
s-»out = 0;
setUpTimer(s);

false;

break;

Fig. 12 MMIO write function

static void CoProcessorWorkCompletion({void *opaque)

{
CoProcessorState *s = (CoProcessorState *)opaque;
s-»out = s->inpl + s-=inp2;
s->busy = false;
s->1rqStatus = true;
CoProcSetIRQ(s);
3

Fig. 13 QEMU timer callback

The code snippets in Figures 9 to 14 show how the co-
processor is registered with QEMU, its init sequence where
the memory device memory region is intialized with the length
0x200. The read/write APIs get invoked when a driver makes
a hardware register access in the co-processor assigned
memory section. Once the driver sets a non-zero value in the
kStartProcessing register, we trigger the QEMU internal
timer. On completion of the time period, we receive a callback
where we output the result of the execution as well as send an
interrupt to the Application Processor. After adding the code
and adding the source files to the QEMU Kconfig/Meson
build system, we are ready to rebuild the QEMU binary.
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static vold create_custom_coproc(const VirtMachineState *wms)
{
hwaddr base = vms->memmap[VIRT_CUSTOM_COPROC].base;
hwaddr size = vms->memmap[VIRT_CUSTOM_COPROC].size;
int irq = vms->irqmap[VIRT_CUSTOM_COPROC];
char *nodename;

sysbus_create_simple(TYPE_CUSTOM_COPROC, base, qdev_get_gpio_in(vms->gic, irq));
MachineState *ms = MACHINE(vms);

nodename = g_strdup_printf("/coproc@" PRIX64, base);
gemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "coproc”):
gemu_fdt_setprop_sized _cells(ms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts”,
GIC_FDT_IRQ TYPE SPI, irg,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);

g_free(nodename);

Fig. 14 Instantiating the CoProcessor in virt.c

5. Device Driver and Validation

With the new compiled gemu binary, if we start the
emulator with the ARM virtual machine in the monitor mode
and run the command info mtree, you shall see the user-
defined coprocessor in the system address map.

Next, if we read the memory using devmem [14] [at the
base-address of our new device, we should read the hard-
coded device id, which confirms our user-model read
operation is working as expected.

build ./qgemu-system-aarch64 -machine virt -monitor stdio
QEMU 9.0.50 monitor - type 'help' for more information
(gemu) info mtree
address-space: cpu-memory-0
address-space: memory
0000000000000000- Tt (prio 0, i/0): system
0000000009010000-0000000009010fff (prio 0, i/0):
plo31

000000000b000000-000000000b000 1 f (prio 0, i/0):
CoProcessor-Custom

Fig. 15 Address map with user model

# devmem 0xb000000
0x00042024
#

We shall write a tiny linux device driver which will match
against the compatible string “coproc” as defined earlier in our
hw/arm/virt.c file. We read the interrupt property in the device
tree and register an interrupt handler for it. Recall that our co-
processor fires an interrupt when the device driver initiates the
processing of the inputs by writing to the register at offset
0x14, which in turn triggers an internal QEMU Timer. The
timer call back is used to send an interrupt to the AP.
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static int coproc_remove(struct platform_device *pdev)

{
}

static const struct of device id coproc_of match[] = {
{ .compatible = "coproc", },
{}
}5
MODULE DEVICE TABLE(of, coproc_of match);
static struct platform_driver coproc_driver = {
.probe = coproc_probe,
.remove = coproc_remove,
.driver = {
.name = "coproc-driver",
.of match_table = of match ptr(coproc_of match),

2

return 0;

|5

module platform_driver(coproc_driver);

Fig. 16 Registering the linux device driver

static int coproc_probe(struct platform_device *pdev)

{

struct device *dev = &pdev->dev;

cd->base = devm_ioremap(dev, res->start,
resource_size(res));

cd->virq = irq_of parse_and map(pdev->dev.of node,
0);

if (cd->virq == 0) {

}

else {

ret = request_irq(cd->virq,
(irq_handler t)coproc_irq_handler,
IRQF_TRIGGER_RISING,

"COPROC IRQ HANDLER", cd);

}

// Enables Interrupt

writel(1, cd->base + 0x8);

}

Fig. 17 The probe function

static irqreturn_t coproc_irq_handler(int irq, void *data)

{

struct coproc_data *cd = (struct coproc_data*) data;

pr_info(" CoProc Irq Rx\n");
readl(cd->base + 0xc);
pr_info(" CoProc Irq Cleared

When Status Reg is Read\n");
return IRQ_HANDLED;

}

Fig. 18 The Co-Processor interrupt handler
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We compile the device driver into the Linux Kernel
Image and re-invoke QEMU with the new kernel image. On
running cat /proc/interrupts, we should see our IRQ handler
registered.

I cat /proc/interrupts
CcPU®

11: 8577
13: 144
16: o]
17: 188
18:
19:
20:

GIC-0 27
GIC-0 33
MSI
MSI
MSI
MSI
MSI
@ GIC-0 34
5 GIC-0 208
@ GIC-8 23

arch_timer
uart-pleil
virtiol-
virtiol-
virtioe-
virtioe-
virtio®-
rtc-plesi
COPROC_IRQ_HANDLER
arm-pmu

Fig. ié Linux i_rfter-rljpts_

Edge
Edge
Edge
Edge
Edge

config
req.e
config
input.@
output.@

Level

CoProc Will Add 1@ 2@

Trigger Start Processing

sending IRQ to Main Processor

------------------------------- CoProc Irq Rx

f--e el CoProc Irq Cleared When Status Reg is Read

Fig. 20 Running the shell script
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