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Abstract - Often, e-commerce mobile applications show the public comments of consumers about the products they sell. 

Sometimes, these comments contain foul language, which is inappropriate to be shown on the public platform. App developers 

would want to hide them and show them only after the consent from the app user. The goal of this study is to find the optimal 

way to classify comments as expletive or not using the NLP classification model. This study utilized CNN and LSTM algorithms 

to train the expletive language classification model. These models are used by the mobile application to find whether comments 

from users are expletive in nature or not. If a comment is found to be expletive, it will be hidden. The mobile app will also 

provide an option to unhide the expletive comments if the user wants to see them. LSTM models are found to be more accurate 

than CNN models with large datasets. Hiding expletive comments is very important for organizations to meet the guidelines of 

various countries. Deep learning provides an accurate and novel approach to achieve this feature. 
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1. Introduction 
E-commerce mobile applications usually have a feature 

to let their customers add feedback for the products they 

purchase. These feedback comments are shown on the mobile 

application to all the users. Sometimes, these comments 

contain foul language and are inappropriate to be shown on 

public platforms. These comments should be hidden by 

default and made visible only if the app users consent to it. 

 

Major mobile platforms like Android and iOS SDKs lack 

any API to classify comments text as expletive or non-

expletive. There is also a lack of reliable Web APIs that mobile 

apps can use to detect expletive comments. The goal of this 

research is to train DL base NLP classification models for 

expletive language detection using various approaches and 

compare their performance to find the best model training 

algorithm for this use case. 

 

Deep learning-based NLP is an excellent way to classify 

comments as expletive or non-expletive, and mobile apps can 

leverage these models to hide the expletive comments, only to 

be shown upon consent from users.  

 

This paper used the CADD dataset to train two models 

with CNN and LSTM algorithms, respectively and then found 

the accuracy of these algorithms by using AOC matrices to 

find the best-performing algorithm. The best-performing 

algorithm is deployed on an AWS EC2 instance to be used by 

the mobile apps. 

2. Literature Review 
Detecting expletive language is crucial for fostering a safe 

digital environment in mobile apps. After the detection of such 

language, mobile apps can hide it to protect users from being 

exposed to it, and machine learning-based techniques have 

proven to play a crucial role in detecting expletive language. 

Existing research on expletive language detection is shared 

here, along with the techniques involved and existing 

shortcomings. 

 

2.1. Keyword based Techniques 

Traditional ways for expletive language detection involve 

known keywords and/or regular expressions. 

Keyword/Regular expression-based technique has the 

following shortcomings: 

- Missing the context of a sentence 

- Variation in spelling of keywords 

- Known expletive keywords missing in the sentence 

 

2.2. Machine Learning based Approach 

This approach includes using ML algorithms like Naïve 

Bayes, SVM, etc., for expletive language classification. This 

approach works quite well on small datasets but struggles with 

complex context. This approach is also not suitable for 

multilingual data. 

 

2.3. Deep Learning based Approach 

It includes DL algorithms like CNN, RNN, LSTM and 

transformers. DL-based text classification techniques are 

http://www.internationaljournalssrg.org/
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proven to be very accurate, including in expletive language 

detection. These techniques are quite good at remembering the 

context of words used in a sentence. This study aims to find 

and compare the performance of LSTM and CNN DL 

algorithms in expletive language detection.      

3. DL Model Training Algorithms for Expletive 

Language Detection 
3.1. Dataset Used for Training 

       The dataset used for training the DL model is CADD 

(Comprehensive Abuse Detection Dataset), which contains 

the abusive comments collected from English Redditt posts 

with multifaceted labels and context. 

 

3.2. Preprocessing of Data 

       The training data is pre-processed by following 

techniques prior to training the model: 

- Lowercase training data: For this study, training data was 

lowercase to reduce data complexity and improve 

computational efficiency. Lowercasing reduces data 

complexity by normalizing the input data and improving 

generalization. For example, The words “cat” and “Cat” 

will be considered the same, and the model will focus on 

the meaning of words rather than cases. This also reduces 

the vocabulary size, hence less embedding generation, 

which improves computation efficiency and reduces 

training time. 

- Tokenization: This step includes breaking down the 

training data texts into smaller units called tokens. Tokens 

can be words or sub-words. The text is split based on 

white space. This study has used “words_tokenize” from 

the “nltk.tokenize” python library. Tokenization 

transforms unstructured text into manageable tokens that 

are essential for training NLP models. 

- Stop words removal: It is an essential step to improve the 

vocabulary size, which in turn improves computation 

efficiency. Stop words are the words that add little to no 

value to the semantics of text. Examples of stop words 

are: “is”, “an”, “in”, etc. 

- Collating bi grams: This study collates the bigrams in the 

training data corpus before performing model training. 

For example, Tokens “New” and “York” are collated to 

“New_York”. 

- Stemming: This study has used stemming to clean the 

data further and improve computational efficiency. 

Stemming is a technique to algorithmically reduce words 

to their base form by removing prefixes and suffixes 

while maintaining the core meaning of the word. 

Stemming might end up changing the word to another 

word, which is invalid in that language. For ex, running 

is stemmed to run. 

 

3.3. CNNs Model Details 

        Convolutional Neural Networks, or CNNs, are based on 

the concept of sliding(convolving) a small window over the 

data sample. This study uses triplets of words in the training 

data for the expletive language classification model. 

 

3.3.1. CNN Model Hyperparameters 

The following hyperparameters are used for the training 

of the CNN model: 

 
Table 1. CNN models hyperparameters 

Hyperparameter Value Description 

epochs 4 

Number of passes of 

training dataset 

through model during 

training 

batch size 128 

The size of the training 

sample that models the 

process in one forward 

and backward pass 

during training 

Vector space 

embedding 
64 

Size of the word vector 

space embedding 

Unique Words 5000 

Count of most 

significant words used 

from the training data 

corpus 

Max review 

length 
400 

Max length of the 

comments 

Embedding 

dropout 
0.2 

Dropping 20% of 

embedding at any 

given round of training 

to generalize on new 

training data 

CNN filters 256 
Count of filters on 

Convolutional layers.  

Kernel length 3 

Size of each filter is 3 

tokens to find the 

triplets of words 

relevant for expletive 

comment detection. 

Dense layer size 256 

Every dense hidden 

layer will have 256 

neurons 

Dropout 0.2 

Dropping 20% of 

neurons from dense 

layer to generalize on 

unseen data 

 

3.3.2. CNN Model Architecture  

      In this case, the CNN model will have the following 

layers: (Embedding, SpatialDropout1D), (Conv1D, 

GlobalMaxPooling1D), (Dense layer, Dropout), (Dense, 

Sigmoid for output) [1]. 

https://github.com/nlpcl-lab/CADD_dataset
https://github.com/nlpcl-lab/CADD_dataset
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The first layer in the CNN is an embedding layer with a 

20% dropout in each training. This layer will create a word 

embedding vector of length 64. The next layer is one 

dimensional CNN layer. Here, 256 filters with a kernel length 

of 3 are used [2][3]. The output of this layer will be a vector 

of size 256. This vector will further be passed to a dense layer 

where each neuron has 256 weights and a “ReLU” activation 

function. The final layer is a dense layer with the activation 

function ‘sigmoid’. This layer determines whether a given 

comment is expletive or not. 

 

3.3.3. Trained CNN Model Hyperparameter Analysis 

 
Fig. 1 Parameters of CNN network 

 
Fig. 2 CNN kernel sliding over text 
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Fig. 3 Working of CNN in text classification 

3.4. LSTM 

        LSTMs are a kind of RNN that maintains a state for each 

layer in the recurrent network. They overcome a challenging 

problem in the RNNs i.e. Vanishing/Exploding gradient. The 

modern version of LSTM typically uses a special neural 

network unit called a “Gated recurrent unit (GRU)”. LSTMs 

contain memory for each layer, which is governed by a trained 

neural network. These neural networks can be trained to learn 

what to remember.  

 

Memory can be used to learn dependencies between 

tokens that stretch across the entirety of data samples, such as 

sentences or documents. An LSTM cell contains 3 gates and a 

memory unit. The gates in LSTM cells contain neurons inside 

them. The gates in the LSTM network are: 

 

3.4.1. Forget Gate 

The forget gate determines how much cellular memory 

you want to erase. The forget gate contains a feed-forward 

neural network that outputs a vector of values between 0 and 

1 using a sigmoid activation function. Forget gate output is 

further used to modify the values of the memory vector. 

 

3.4.2. Candidate Gate 

This gate has 2 neurons and performs the following: 1). 

Decided which input vector element needs to be remembered 

2). Route the remember input element to the right memory. 

3). Output gate: The output of the LSTM cell is formed with 

the help of memory. 

 

3.4.3. LSTM Model Hyperparameters  

- Epochs: 4 

- Batch size: 128 

- Word embedding vector dimension: 64 

- Number of unique words: 10000 

- Max review length: 100 

- pad type = trunc type = ‘pre’ 

- drop embedding = 0.2 

- number of LSTM cells = 256 

- Dropout LSTM layer = 0.2 

- Size of dense layer = 256 

- Dropout dense layer = 0.2 
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3.4.4. Trained LSTM model Hyperparameter Analysis 

 
Fig. 4 Parameters of the LSTM network 

 

 

 

 

 

 

 

 

Fig. 5 Working of LSTM network 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Sequence diagram of Client Server communication 
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4. Deployment 
4.1. Deploy model to AWS EC2 instance 

      For integrating the model’s functionality into mobile 

apps, the model is deployed on an AWS EC2 instance [6]. 

Python’s Fast API framework is used to expose a POST 

endpoint “/predict” that accepts a JSON payload with key 

“comments”. Value for the key comments is a String array 

containing comments that the mobile app wants to classify 

as either expletive or non-expletive.  

 

The response from the POST /predict API is a Boolean 

array where any Boolean values depict whether the String 

in the input at the corresponding index as a Boolean value 

is an expletive comment or not. 

 

4.2. Mobile App Setup 

Mobile apps will use the endpoint POST /predict to 

classify user comments as expletive or not. The mobile app 

will send the array of user comments to the POST API for 

classification. As a response, the mobile app will receive an 

array of Boolean values where true indicates that the 

corresponding comment is expletive. These Boolean values 

can be used to hide the expletive comments.  

 
             Fig. 7 Mobile app UI 

5. Validation and Results 
       The performance of both models is measured on the 

validation data using the ROC AUC (Area under the 

receiver operating characteristic curve) metric. The 

following scores were found for the models:                
Table 3. ROC-AUC scores for CNN and LSTM classification models 

Model ROC-AUC% 

CNN 95.9 

LSTM 93 

 

       The performance of the CNN model is better than that 

of the LSTM model on validation data in the experiment, 

even though LSTM is a more powerful algorithm for 

Natural Language Processing models. This is due to the 

superior ability to link context between tokens in large 

sentences and document text. 

 

Further analysis suggests that the CNN model 

overperformed the LSTM model on validation data because 

of the small amount of data used for training the models. If 

the models are trained on a large amount of data, the LSTM 

model would outperform the CNN model. 
 

6. Discussion 
In this research, CNN and LSTM DL models were 

compared for expletive language classification. This 

research used a small data set to train these models. CNN 

model outperforms the LSTM model on validation data 

using the ROC AUC score. The LSTM model will perform 

better than the CNN model if trained on a larger dataset 

since LSTM has a better ability to remember context.  

      

There are better DL algorithms that can be used to 

improve the performance even more, like Transformers, 

which can handle multilingual comments for expletive 

language classification, unlike CNN or LSTM models.  

 

The dataset has biases that negatively impact the 

performance of models. Creating a bias-free dataset can 

improve the trained model’s performance. Mobile apps of 

eCommerce companies are used all over the world and 

support multiple locales. Training models in multiple 

languages can increase the usefulness of the model. 

 

7. Conclusion 

It was found that the ROC-AUC score was better for 

the CNN-trained model compared to the LSTM model. It is 

also concluded that if we had increased the training data, 

then the LSTM model would have outperformed the CNN 

model. This is because the LSTM model is capable of 

remembering the context throughout large text samples and 

documents. CNN model is only capable of remembering 

context among nearby tokens. 
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