
International Journal of Computer Trends and Technology Volume 72 Issue 12, 153-163, December 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I12P119 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Serverless AI-Powered Recommendation Engine with

AWS Lambda and SageMaker

Joyanta Banerjee1, Soumya Barman2

1Senior Modernization Architect, Amazon Web Services, Santa Monica, CA, USA.

2Senior Cloud Infrastructure Engineer, Mckinsey and Company, Seattle, WA, USA.

1Corresponding Author : joyanta.banerjee@gmail.com

Received: 05 November 2024 Revised: 30 November 2024 Accepted: 18 December 2024 Published: 31 December 2024

Abstract - The opportunities for e-commerce, entertainment, and many other services, which can be provided through the

internet, have stimulated the growing need for recommendation systems to improve the experience of users. Such

recommendation systems are based on complex matrices and need substantial equipment with high maintenance costs;

therefore, they are hindered by scalability and performance constraints. Aims: We want to show how organizations could

use serverless computing and leverage the exponential development of artificial intelligence to manage the scalability of

effective recommendation systems with ease of deployment and usually low operating costs. Study Design: This paper

describes the architecture and development of a serverless recommendation system for an e-commerce application based on

AWS Lambda and SageMaker. The potential of the serverless to reduce costs, scale automatically, and be deployed and

maintained easily is also investigated. Furthermore, we incorporate Amazon SageMaker for training, deploying, and

managing machine learning models behind the recommendation engine. Place and Duration of Study: Organizations across

various industries have implemented this approach in 2023 and 2024. Methodology: Collaborative, content-based filtering

and the hybrid approach are employed in the recommendation process, and the results are generated in real-time. The

complete application is built using the serverless computing model, in which AWS Lambda runs simple code in response to

events or user interactions. In contrast, Amazon Sage Maker is used to train the models and make predictions. Exposing

APIs is done with AWS API Gateway; storing users’ data is done with Amazon DynamoDB, while the model artifacts and the

big data are stored in Amazon S3. Results: This architecture helps to avoid provisioning and managing servers, which makes

the operation less complex. In this paper, we will describe all stages of the work, from data preprocessing to the generation

of recommendations. Conclusion: The results thus demonstrate the exceptional scalability and responsiveness of the

recommendation engine, capable of accommodating users’ real-time needs with trivial time delay.

Keywords - Serverless computing, AWS lambda, Amazon sagemaker, Machine Learning, Collaborative filtering, Content-

based filtering, Scalability.

1. Introduction
Recommendation systems are now incorporated into

nearly every contemporary online service, with special

emphasis on e-commerce, media hosting, and social

networking. The way that they have been able to increase

engagement and customer satisfaction, and thus increase

revenues, has been through personalizing the messages to

the users. Central to these systems are machine learning

personas, which analyze user behavior to recommend

products or content, among other things. Conventional

recommenders are designed in a centralized setup where

infrastructure has to be scaled up by hand and is expensive

to maintain. [1-4] However, with the latest trends in

serverless computing, companies like Amazon provide

serverless computing solutions like AWS Lambda and

Amazon Sagemaker for developing recommendation

engines in a better way. Serverless computing is a model in

which applications are executed without the provision of

servers, implementing overhead minimization with

provision for scaling as per requirements. In this research

paper, an extensive framework for creating an AI-based

recommendation system utilizing AWS Lambda and

Amazon SageMaker is developed.

The goal of this architecture is a low-cost, scalable,

real-time recommendation engine that does not require

constant updating of the underlying application

infrastructure to reflect user behavior. This is made possible

by embedding Services such as serverless technologies

coupled with the use of Machine learning algorithms to

make Smart personalized recommendations.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Joyanta Banerjee & Soumya Barman / IJCTT, 72(12), 153-163, 2024

154

1.1. Evolution of Recommendation Techniques

Thus, the development of recommendation approaches

has been through considerable progress in the years due to

technological advancement, the shift in customer behavior

and the complex data set. Achieving this understanding is

crucial for analyzing the current status of and future

prospects for recommendation systems.

Fig. 1 Evolution of recommendation techniques

1.1.1. Early Approaches

Content-Based Filtering: Recommendation systems

started as Content-Based Filtering (CBF) techniques at the

end of the nineties. The entire concept underlying these

systems is based on the assumption that item characteristics

and user profiles can be used to produce recommendations.

For example, if a user likes science fiction movies, then a

CB filtering system will use attributes such as genre,

director, or keywords to describe similar movies. CBF did

include an aspect of recommending products to customers

specific to their needs without needing information from

other customers, as seen in Figure 2; however, it had

limitations. The major disadvantage was that users only saw

items they probably would like, preventing them from

exploring new genres or interests within a band. Therefore,

the given strategy sometimes resulted in an array of

suggestions that did not enrich users’ experiences and let

them discover various materials.

1.1.2. Collaborative Filtering:

Harnessing User Interactions: The fast-growing Internet

increased the amount of user data, and the filtering

techniques known as Collaborative Filtering (CF) are

stronger than the filter that relied much on the content

information of the products. CF uses activities like ratings,

clicks, or purchases made by users to discern relationships

between entities and users as well as associations between

items. Within CF, there are two primary methods: user-

based collaborative filtering and item-based collaborative

filtering. User-based collaborative filtering compares the

customers’ similarities. For example, suppose User A and

User B are friends (indicated by common movie preferences

where User A and User B have watched similar movies). In

that case, then whatever User B has enjoyed and User A has

not yet come across could be recommended to User A. On

the other hand, we have item-based collaborative filtering,

which works on the similarity between the items in

question. If many users mutually appreciate two items, then

they are similar. For instance, if many users who liked

“Inception” also liked “Interstellar,” then the films in the

latter set can be suggested to a user who has rated

“Inception.” Although CF greatly enhanced the

recommendation precision, its drawbacks include the cold

start problem, where new users or products are not

adequately described for recommendations and the

scalability issue, where large volumes of data may be a

problem.

1.1.3. Hybrid Approaches: Combining Strengths:

Due to inherent weaknesses in CF and CB, hybrid

recommendation systems started getting introduced with the

specific intention of overcoming those weaknesses. A

number of these systems can be seen to address varying

levels of interaction between users and items successfully,

as well as focus on situations where item characteristics can

improve the general recommendation quality.

The advantage of studying the two approaches

individually is that the hybrid systems can give more

accurate and varied recommendations. For instance, Netflix

is using a combination of collaborative filtering and content-

based filtering and incorporating machine learning

algorithms into it. This approach, in turn, helps Netflix to

provide highly individualized recommendations that would

suit the user specifically. At the same time, it exposes the

user to content he or she might not necessarily have gone

through. The flexibility of integrating a number of

recommendation approaches has become extremely valuable

in increasing the density and satisfaction of the user

experience across multiple contexts.

1.1.4. Deep Learning and Advanced Algorithms

Recently, with the emergence of deep learning and even

higher levels of machine learning, recommendation methods

have been drastically changed. Neural collaborative

filtering, RNN, and CNN have made it possible to have

better representations of the users-’ relations. One example

is Neural Collaborative Filtering (NCF), which relies on

neural networks and can capture a non-linear relationship,

whereas most approaches cannot. Based on the study, it has

been shown that NCF can provide better performance than

CRM in many use cases, providing more complex

recommendations.

Also, the sequence-based recommendation approach,

used with RNNs, looks into the temporal interactions since

it is possible to predict the next items users are likely to

engage with based on previous engagements over time. This

capability increases the dynamics of recommendation

relevancy from user trends and often dynamic preferences.

Early Approaches: Content-Based Filtering

Collaborative Filtering: Harnessing User
Interactions

Hybrid Approaches: Combining Strengths

Deep Learning and Advanced Algorithms

Context-Aware Recommendations

Reinforcement Learning in Recommendations

Joyanta Banerjee & Soumya Barman / IJCTT, 72(12), 153-163, 2024

155

1.1.5. Context-Aware Recommendations

New recommendation techniques have also stimulated

the concept of context-aware systems that incorporate time,

place and the user’s feelings in addition to user and item

data. That is why integrating contextual data into these

systems offers more accurate suggestions corresponding to

certain situations. That is why an example of using

contextual information can be a restaurant recommendation

system, where different offers will be shown depending on

the time of day or the user’s location. If a user enters a

search query about dining at 12:00 PM, the system may

suggest lunch places nearby, while if the same user submits

a search query at around 9:00 PM, the system may

recommend dinner places or places with bright lighting. One

way of improving customer satisfaction is to support

recommendation sources with contextual information so that

recommendations are aligned with both user and

environmental factors that may influence the decision-

making process.

1.1.6. Reinforcement Learning in Recommendations

RL is another emerging topic in the field of

recommendation systems. RL algorithms derive a strategy

for selecting content based on the positive feedback it

receives over a period of time and adjust systems

accordingly to increase user satisfaction. In contrast to prior-

art techniques that work with a fixed database of inputs, RL

can dynamically alter the recommended action as and when

the user interacts with the system and his preferences are

updated. This technique allows the system to deliver tailored

experiences over time proportional to the user’s interests to

avoid cases where recommendations are no longer of

interest. For instance, if reinforcement learning is applied to

a music streaming service, it sharpens its playlist

recommendations according to how users react to

recommended songs, gradually identifying which songs

have been liked. This, therefore, not only creates a more

satisfying experience for the ‘user’ but also ensures that they

continue to log into the SD card and, therefore, use the

platform in the long run.

1.2. Benefits of Serverless Architecture for AI and

Machine Learning

Serverless has finally become a powerful model for

developing and deploying AI with a greater number of

benefits than older, traditional models. [5,6] This section

builds upon the main advantages of a serverless architecture

approach to AI and machine learning.

Fig. 2 Benefits of serverless architecture for AI and machine learning

1.2.1. Cost Efficiency

Serverless computing is well known for optimizing

costs compared to its counterparts. Conventional computing

paradigms entail significant overheads to organizations in

terms of resource provisioning and management of

dedicated servers, even if such servers’ utilization rates are

low. In contrast, serverless computing software follows a

usage-based consumption model. This means that the users

are charged only for the actual computation resources they

have invoked during the execution of their code but are not

charged for the amount of time the server they have been

assigned spends in an idle state. For example, in some AI

applications, there can be highly fluctuating processing

loads; with this model, organizations can supplement their

computing capacity. To this extent, it becomes easy to cut

operational costs, which explains why it may suit a start-up

or an enterprise firm.

1.2.2. Automatic Scalability

It can be articulated that the inherent aspect of

serverless architecture is scale, which is optimal for machine

learning and AI use because of their varying workload

patterns. In a serverless environment, it is mostly measured

that resources are elastic and can grow or reduce based on

the traffic generated within the application by users.

Dynamic scaling can also be beneficial since it can respond

quickly to traffic loads, as seen in product launch season or

during certain marketing periods. For example, a

recommendation system built with AI approaches does not

require intricate scaling to work with a large number of user

requests at the same time. This capability makes

communications with users fast, and the services available

to users have some reliability.

1.2.3. Simplified Infrastructure Management

Serverless runs decentralized applications instead of

focusing on infrastructure. This allows developers to build

and deploy applications easily. Such abstraction of

infrastructure management makes deployment easier and

lowers the cost and complexity of having to provision and

set up servers. In the case of AI and machine learning, that

translates to saying that data scientists and engineers can

Cost Efficiency
Automatic
Scalability

Simplified
Infrastructure
Management

Enhanced
Development

Speed

Improved
Resource

Utilization

Seamless
Integration with
Other Services

Enhanced
Reliability and

Availability

Focus on
Innovation

Joyanta Banerjee & Soumya Barman / IJCTT, 72(12), 153-163, 2024

156

focus on the model, data, further experimenting, and

optimization without getting lost in choosing the right

infrastructure. For instance, AWS Lambda and Google

Cloud Functions let teams put machine learning models into

functions, which means a team can often operate at a pace

that results in the organization of a function.

1.2.4. Enhanced Development Speed

A serverless solution encourages even shorter

development cycles, allowing teams to launch new features

and updates easily. This is especially true in AI/machine

learning; continuous testing and evaluation are essential for

achieving the project’s main goals. It allows the developers

to easily write the code and/or design models instead of

thinking about the suitable server, their management and

scaling. Data storage, processing, and model deployment

through managed services are also more object-oriented to

enhance development since supported constituents can be

integrated immediately. Thus, organizations can accelerate

the release of their AI and machine learning applications

and gain a competitive advantage.

1.2.5. Improved Resource Utilization

In serverless computing, resources are consumed much

better than consumptions in conventional server-based

solutions. The fact that serverless functions are executed on-

demand and are only alive for the time of the event fired and

then deleted utilizes resources much more efficiently. This

approach reduces the probability of resource wastage,

making the whole process more efficient. In a computing

context, this becomes advantageous for AI and machine

learning in that one can always procure computing

capability where it is required most at the time of high

demand, for example, during model training sessions or

inference. Flexible resource use is another advantage, which

ensures cost effectiveness because organizations use

resources based on need and are charged correspondingly.

1.2.6. Seamless Integration with Other Services

Serverless architecture allows for the effortless

connection with numerous cloud services and other relevant

tools that help advance AI and ML use. For example, in

serverless functions, it is relatively possible to integrate

databases, storage technologies, and messaging services to

ingest and process the data in question. Ainer-based

workflows are beneficial in cases where data is passed from

one stage to another, for example, from data capture data

preprocess to training and prediction stages. Using existing

cloud services allows organizations to quickly develop AI

prototypes and go live with applications that cannot require

significant customization.

1.2.7. Enhanced Reliability and Availability

An Azure infrastructure with reliability and availability

factors has been embarked on. Most cloud computing

providers have native high availability and will give

suppliers measures to safeguard applications from hardware

failures or other downtimes. This feature is paramount for

more mathematical-driven solutions that need high

availability, like a real-time prediction service. In serverless,

an organization enjoys automated load balancing and

failover, thus minimizing the chances of disruption of

services and improving the user experience. This reliability

is especially desirable in applications that are deployed in

manufacturing premises where availability is of paramount

importance.

1.2.8. Focus on Innovation

Last but not least, serverless architecture also lets

organizations focus on innovation, not sweating the details.

By minimizing the requirement for infrastructure

management and allowing for the speed of deployment,

teams can focus more time on descriptive, predictive, and

prescriptive analysis or developing new ideas using complex

algorithms and improvements to existing machine learning

algorithms. This increases the chances of forming better

teams that invest their energy in finding the best solutions to

the organization’s challenges and are encouraged to think

creatively to design better AI solutions. For instance,

through cloud deployment, organizations can leverage new

machine learning methods or experiment with others, such

as Natural Language Processing or Computer vision in

applications, without the barriers posed by conventional

approaches.

2. Literature Survey
2.1. Traditional Recommendation Systems

Recommendation systems have been an important

domain of study and practice of information retrieval and

data mining for more than two decades. Early approaches

primarily employed two techniques: These two are

Collaborative Filtering (CF) and Content-Based Filtering

(CBF). [7-11] Collaborative filtering remains the most

commonly used method, generating recommendations based

on user interactions. It can be categorized into two methods:

item-based approach and user-based approach. User-based

collaborative filtering involves matching similar users and

recommending items that those users like. For instance, if

the two users say User A and User B have similar tastes

while browsing a site or application, User A will see what

User B has already ‘liked’ but has not yet encountered. This

method makes use of the rationale that users with the same

interests will also like similar items. However, item-based

collaborative filtering emphasizes the relationships between

the items and not the users. First, if a user likes an item, then

the system suggests similar items by analyzing user

activities, and this is generally more effective with a large

number of users but a small number of items.

On the other hand, Content-Based Filtering (CBF)

works to produce recommendations based on the attributes

of items, which include genre, tags, descriptions, etc. For

Joyanta Banerjee & Soumya Barman / IJCTT, 72(12), 153-163, 2024

157

instance, in a movie recommendation system where a

certain client loves Sci-Fi films, all the films the system

recommends will be in that particular genre. Content-

oriented approaches are highly effective at offering product

suggestions based on user preferences. At the same time,

they have issues with providing variety or exposing the user

to new items from different categories. Further, CF and

CBF are the fundamental recommendation systems

employed to facilitate the development of current complex

recommendation systems today.

2.2. Hybrid Approaches

These scenarios necessitated the development of new

Recommendation Systems that are more sophisticated than

Collaborative Filtering and Content-Based Filtering. In this

way, integrated methods Systems obtain better results and

higher performance than pure recommendation systems.

These systems use every part of the model, including user-

item interactions and meta-data of the items, which enriches

the recommendation algorithms involved. One of the hybrid

models is the Netflix recommendation engine, which uses

collaborative filtering, content-based filtering and machine

learning algorithms. This way, it becomes possible to please

users with highly targeted recommendations based on their

activity in the service and content provided while

considering the features of individual program offerings.

This kind of hybrid system has exhibited a significant

degree of enhancement in terms of user experience, thereby

increasing the chances of clients sticking to a particular

application or service, be it e-commerce or streaming

services.

2.3. Serverless Computing in AI and Machine Learning

In the last few years, the interest in serverless

computing has risen rapidly in the domains of AI and ML,

mostly because of several features, with the major one being

the ability to manoeuvre execution environments without

the need to deal with infrastructure. Here, one gets the

following advantages: dynamic scaling, a means by which a

system can scale resources depending on the user demand,

which is particularly useful in variable workloads, which is

often the case in AI applications. In addition, serverless

architecture increases scalability and greatly reduces costs

because developers pay only for the time used on the server,

with no overhead for unused time. AWS Lambda and

SageMaker are a perfect case of using one application to

build one serverless AI application from scratch and another

that enables developers to extend with auto-scaling and

event-driven models of Lambda easily.

2.4. AWS Lambda and SageMaker in Production Systems

With the increase in the use of serverless architectures,

several real-world applications of recommendation systems

are coming up, showing the usability of this approach. For

http request management, AWS lambda is often used, and

these systems are event-driven. In contrast, Amazon

SageMaker is available for ML model management and its

process, including training and deployment of models. Both

of these services are tightly coupled to coordinate real-time

data and intelligent models to provide timely and relevant

recommendations. It also helps to achieve easier

deployment and improved reaction to user activities, leading

to a better general user experience. Businesses using

serverless architectures are now discovering that the AWS

Lambda software and SageMaker provide the speed and

intelligibility required for modeling new recommendation

systems, which are important in fast-paced environments.

3. Methodology
3.1. System Architecture

The proposed serverless AI recommendation engine

utilizes various AWS services to create another cost-

effective, flexible, real-time recommendation application.

[12-16] All the services have a certain place within the

architecture where they provide a means of communication

between event-driven functions, machine learning models,

and data storage. Each of the above components has a

specific role in the system, and the following is a

comprehensive explanation.

3.1.1. AWS Lambda

AWS Lambda is a compute service that executes code

in response to events and executes it without the course of

being managed. For the recommendation system of a

platform, Lambda functions are invoked whenever a user

action is made, such as viewing a product or making a

purchase. Lambda, being an event-driven service, allows

high volume quick execution of low logic backend code,

which empowers real-time processing of user activity. This

makes it possible for the recommendation engine to update

users’ profiles in real-time and produce recommendations

whenever required. Further, Lambda is elastic; it

automatically scales according to the traffic to deliver low

latency responses in the system in both high and low traffic

conditions.

3.1.2. Amazon SageMaker

Amazon SageMaker is a one-stop machine learning

platform where you can easily create, train, deploy, and

manage machine learning models. SageMaker uses training

recommendation models in this system based on user past

activity data and item data attributes. These include

collaborative filtering, an aspect essential for recommending

systems, and content filtering, which is also central to the

recommending system. Once trained, SageMaker attaches

them to hosted endpoints, where they can be used for real-

time inferencing. This integration enables the

recommendation engine to pull results based on real-time

user engagements. SageMaker also handles the same issues

related to the scalability of the model inference process with

large-scale requests.

Joyanta Banerjee & Soumya Barman / IJCTT, 72(12), 153-163, 2024

158

Fig. 3 System architecture

3.1.3. Amazon DynamoDB

AWS DynamoDB is an ultra-scalable, highly effective,

fully managed service for creating and operating NoSQL

databases for low-latency web applications. In this

architecture, DynamoDB stores different types of user

interaction data like views, purchases, clicks, ratings, etc.

Every conversation is documented as it happens and is

saved for individual use to give recommendations.

Consequently, the time taken to retrieve the user data to be

processed is very minimal and therefore, DynamoDB

supports the execution of the recommendation engine to

provide relevant results in almost real-time. Also, the

DynamoDB is versatile and capable of supporting both

structured and unstructured data, which enables storing user

data and important activities in the recommendation

process.

3.1.4. Amazon S3

Amazon Simple Storage Service (S3) is an important

service that Amazon uses to store several data sets, models,

and other static files in a secure and scalable manner. In this

architecture, S3 is used as a store to capture data needed for

training the recommendation algorithms, historical user

interaction data and data describing the items being

recommended. S3 also contains the trained model artifacts

used in serving on SageMaker in real-time. This means that

S3 enables the system to store large volumes of data in its

practically inexhaustible capacity. Moreover, due to its high

durability and availability, S3 stores important model data

for backup; in case of any failure, the system will recover

quickly.

3.1.5. Amazon API Gateway

The Amazon API Gateway is a service that creates,

publishes, and secures APIs all over Amazon at a given

scale. In the conceptual recommendation engine proposed

here, the role of API Gateway is to act as the first point of

contact for outside applications like web or mobile to

integrate with the backend system. API Gateway brings

forward RESTful APIs that call AWS Lambda functions

any time a user takes an action. These APIs enable the

recommendation engine to listen to requests and respond in

Training and Test

Data Bucket

Insert Request

Data

Trigger Inference

Request

Update Inference

Response

Initiate Callback

Start

Stop

ML Training Jobs
Trained Models

and Artifacts

Request Capturing

Lambda
REST API on

API Gateway

Store Request

Data

Request Capturing

Lambda

WebSockets API

Web browser
Sagemaker

Endpoint

Joyanta Banerjee & Soumya Barman / IJCTT, 72(12), 153-163, 2024

159

real-time, for instance, with recommendations for a certain

product or content. API Gateway also takes security

responsibility for the system and controls access, rate limit,

and observation of API usage so that the recommendation

service can handle loads and protect itself from threats when

responding to high traffic. API Gateway also provided

WebSocket’s API, which is used here to enable a callback

endpoint where the response of the Inference from the ML

model is pushed

3.1.6. AWS Step Function

AWS Step Functions is a visual workflow service that

helps developers use AWS services to build distributed

applications, automate processes, orchestrate microservices,

and create data and machine learning (ML) pipelines. In this

architecture, the step function performs 4 steps, including

storing the request data in DynamoDB, triggering an

inference request to the Sagemaker Endpoint, updating the

response back in DynamicDB and then triggering a callback

through the WebSocket API to push the inference response

to the browser.

Table 1. System architecture

Service Functionality

AWS

Lambda
Event-driven execution of backend code

SageMaker
Training and deploying recommendation

models

DynamoDB Storing user interaction data

S3 Storing model artifacts and large datasets

API Gateway API endpoint for triggering Lambda functions

Step

Function

Orchestration engine used to manage a

sequence of steps

3.2. Model Selection and Training

When constructing a recommendation engine, the type

of model used is certainly one of the key factors deciding

the reliability and relevance of recommendations. In this

architecture, we use both collaborative filtering-based and

content-based filter recommendation techniques. Together,

this means a better update of the recommendations since

both user behavior and the peculiarities of items can be used

to create more personalized suggestions. By doing it

through Amazon SageMaker, these models can be easily

trained and deployed in a cost-effective, scalable, and fully

managed serving environment that will provide the

recommendation system with real-time inference without

increasing latency. This hybrid approach involves two

models, which are explained in detail as follows.

3.2.1. Collaborative Filtering Model

Recommendation systems developed by using

collaborative filtering methods are widely employed

techniques in many applications. It does this through past

transactions users have had with items such as purchases,

views or ratings from other users to make patterns of the

user. The collaborative filtering model, applied in this work,

is a model based on the user-item interaction history. The

basis of this assumption is that if users A and B are assumed

to be similar based on use behavior, goods and services that

the user prefers, A will likely be suggested to user B. There

are two often used methods in collaborative filtering: user-

based and item-based filtering. Collaborative filtering is

trained in this system using methods such as matrix

factorization or the nearest neighbor approach to identify

hidden relations between users and items. This model is

especially useful in detecting latent relations concerning the

user’s activity, for example, suggesting a product that a user

has not searched for but is frequently purchased by other

users with similar activity patterns.

3.2.2. Content-Based Filtering Model

Content-based filtering, on the other hand, makes its

recommendation through the attributes associated with the

items. It pays much attention to the attributes of items (such

as tag, category, description, etc.) and compares them with

users’ profiles to recommend related items. For instance, in

a movie recommendation system where a user has indicated

a preference for science fiction films, then content-based

filtering recommends other films in similar genres,

directors, etc. The content-based filtering model is trained

with ‘item attributes,’ which may be a tag or keyword, a

description, or product category data. Amazon SageMaker

processes this metadata and constructs a model that can be

trained to map a given item with the user’s preference based

on item attributes. This is especially important for getting

recommendations for products such as new products or

products with very little interaction data: the TA can

recommend such products because they have attributes that

the classification identified. Content-based filtering also

provides the solution for personalization in a way that

recommends content with which a user has demonstrated

some interest. That is, using user information and item

information together, and the recommendation engine can

aim at a more persuasive recommendation system. The

combined technique effectively provides an advantage of

surpassing the limitations of the two methods, and it also

makes sure that users are provided with recommendations

that align with their behavior and attributes. First,

Sagemaker can perform model training and deployment at

an industrial scale, so both models can be trained on large

datasets at once and updated frequently due to changes in

user behavior and the availability of new item catalogues.

3.3. Data Flow and Processing

The centrifugal data flow and processing pipeline is the

backbone of the serverless AI-based recommendation

engine to capture user interaction data and process them to

deliver real-time recommendations. In the following, we

dissect the main stages: user-interaction capture and

handling, generation of recommendations, and their

delivery.

Joyanta Banerjee & Soumya Barman / IJCTT, 72(12), 153-163, 2024

160

3.3.1. Capturing User Interactions

The data flow starts from the time users interact with

the platform in any way, such as viewing, in the shopping

cart, or the purchase of products. Such interactions afford

the recommendation task with a critical vantage point – user

preferences are useful inputs. These events are taken by

front-end applications, whether web-based or mobile and

pass through the AWS API Gateway. API Gateway offers

RESTful operation interfaces that allow exchanging real-

time front-end and backend data. For instance, when a user

views a product, information on the user’s ID, the product’s

ID, together with the date and time of the action, is collected

and passed to AWS Lambda to kick start the next procedure

in the chain.

3.3.2. Processing User Interactions with AWS Lambda

AWS Lambda actions are initiated based on user inputs

received by API Gateway. These functions perform backend

logic, including analyzing the interaction data and

modifying the user stored in the Amazon DynamoDB.

Lambda is an event-based system, which means it can use

the result of each step and process it in time to update the

user’s profile according to the action. For example, if a user

has browsed many products, Lambda functions will

immediately update these views in DynamoDB. This event-

driven architecture guarantees that latency and costs are

comparatively low because the computing resources are

only used when individual events occur and do not have to

be constantly managed.

3.3.3. Data Storage in DynamoDB:

Amazon DynamoDB is the main data delegator for

structured user interaction information, and each user has

one record in this database. The records contain interaction

histories, preferences, and sometimes demographics

pertinent to both the interactive filtering model and the

content-based filtering model. For instance, personal

information could include information that a user has

previously consumed or bought to help the recommendation

system to make recommendations. The fast read and write

capability of DynamoDB is suitable for real-time systems in

which the system can instantly update the user profile and

be fast enough to get the data for recommendation

generation.

3.3.4. Sending Data to SageMaker for Model Inference

After new user interaction data has been added to

DynamoDB, the process continues with creating

recommendations. To this end, the putative updated user

profile data is fed to Amazon SageMaker for real-time

inference using deployed machine learning models. AWS

Lambda forwards the required data, such as recent views or

purchase histories, to SageMaker to run both collaborative

filtering and content-based filtering models. Automated

AWS SageMaker scale confirms that the model can run

inference as efficiently during periods of session high

volume and activity; this way, the system can provide quick

results.

3.3.5. Generating Real-Time Recommendations

The recommendation models are hosted in the Amazon

SageMaker and run in real-time. The collaborative filtering

model seeks patterns and similarities across users by using

the interaction data. On the other hand, the content-based

model tries to map user’s preferences against the item

characteristics (for example, categories and tags). A blend

methodology achieves those outputs; users are presented

with familiar and diverse recommendations. For instance, if

a user uses the system mainly for science fiction books, they

will be recommended more of the same books and other

books that other users with similar tastes have bought.

3.3.6. Delivering Recommendations to the User

Once SageMaker provides the recommendations, they

will be returned to the front-end application through the

AWS API Gateway. They consume the real-time

presentation of recommendations via web or mobile

applications, which enrich the front-end system. It may also

appear as part of ‘You might also like’, as a

recommendation on the right sidebar, or as a recommended

email article. Due to the serverless system where the entire

pipeline exists, the recommendations take even less than a

millisecond to get delivered, and the active users stay

interested.

3.3.7. Data Storage and Updates in Amazon S3

Apart from real-time data processing, Amazon S3 is

also used to store big data and model artifacts. On the other

hand, real-time data, such as information in the immediate

interaction and real-time extent and intensity of user

engagement, can be stored and processed in DynamoDB. In

contrast, in the case of extensive databases such as huge

interaction logs or big data, for which models have to be

retrained, S3 storage is employed. With much data not being

time-sensitive, the system is kept small and fast for

performing real-time operations while still being able to use

S3 for storing and archiving information for use in further

updates of models in the future. Such hybrid forms of

storage arrangements can then be effective for enhancing

performance and cost factors, thereby simplifying the

capacity and comprehensiveness of data handling while at

the same time not overburdening the actual real-time

computation requirements.

4. Results and Discussion
4.1. Performance Evaluation

As the focus of many serverless applications, the

performance evaluation of such an AI recommendation

engine is crucial towards comprehending its applicability in

real-world environments. To evaluate these aspects, we used

a large-scale dataset containing 100 k-users and 1 million

user-item interactions, which permitted testing the response

Joyanta Banerjee & Soumya Barman / IJCTT, 72(12), 153-163, 2024

161

times of real-time recommendations and the system

scalability under changing workloads. This section

discusses the approaches used to measure the system’s

performance: average latency, cost per request, and scaling

efficiency.

4.1.1. Average Latency

Average latency is another measure of the degree of

performance that shows how fast the recommendation

engine responds. It captures the time between when the

customer is scanned, for example, viewing a product or

purchasing a product, and when the recommendation is

offered to the customer again. In this evaluation, the average

latency required by the system was measured at 150 ms

while maintaining response rate continuities below 200 ms.

This low latency shows how event processing can be carried

out effectively using the Lambda function from AWS, as

this handles user events in real-time and does not involve

any scheduled CPU resources. Combined with the Amazon

SageMaker to perform the model inference, the architecture

enables instant access to the interaction data and about 1

second response time for the recommendations. This is

especially important in heavily frequented areas, where even

slight latency can lead to an overall decrease in Customer

Experience, thus pushing up bounce rates while

acknowledging dissatisfied customers. The capability to

ensure low latency is beneficial because user engagement

improves; thus, these parameters are key in the

recommendation system.

4.1.2. Cost per Request

Another key performer is the cost per request, which is

used to effectively evaluate the monetary performance of

the system in terms of the amount spent and the number of

recommendations produced. The Cost per Request while

using the serverless architecture was observed to be

$0.0004. This Figure is important to understand because

both AWS Lambda and SageMaker use a pay-per-use price-

setting model. Using serverless infrastructure, the system

does not have some costs that come with traditional

computing; for instance, having a fixed EC2 means one has

to pay even if the instances are not in use. However,

Lambda and SageMaker provide a pay-what-you-use billing

model where you are charged according to the execution

time and resources taken for the CPU cycle. This flexibility

helps holders of recommendation engines avoid the

difficulty of having high operating costs when the number

of customers is not high. Labour- the labour-shedding

potential of the design means that firms are in a position to

cut costs and, hence, have improved margins.

4.1.3. Scaling Efficiency

Scalable efficiency is one of the significant factors that

determine the capacity of the system to deal with enhanced

traffic and the number of user requests at given intervals.

The testing concluded that the recommendation engine had

a splendid ability to scale with a 99.8% efficiency rating.

This means that the system was also elastic in the sense that

the resources required scaled directly in proportion to the

number of user requests in order to provide the correct

response rate at the peak usage periods. AWS Lambda has a

layered architecture, meaning it scales automatically

depending on the application's number of requests. Lambda

scaling works based on user interactions, and it will

dynamically change the number of instances of a function

allocated based on the usage it receives momentarily. This

dynamic scalability is important for today’s application,

where the workload varies at different times because the

recommendation engine can easily handle lower and higher

loads of work.
Table 2. System performance metrics

Metric Value

Average Latency 150ms

Cost per Request $0.0004

Scaling Efficiency 99.8%

4.2. Cost Analysis

Eliminating wasteful costs is a key benefit fitting into

the serverless computing model for the AI-based

recommendation engine. Unlike prior computing paradigms

that assume specific systems where the client needs to

manage and provision these resources, e.g., Amazon EC2

instances, serverless services like AWS Lambda and

SageMaker use a pay-per-use model. This approach leads to

a concept of operational saving since organizations can only

afford costs that are affiliated with the use of such utilities

instead of overhead costs. The fact that with the help of the

serverless model, it is possible to leave no room for idle

resource costs and, at the same time, provide top-class

computing performance makes this concept appealing to

contemporary applications.

4.2.1. Cost Comparison with Traditional Architectures

To evaluate the cost benefits, a cost breakdown

comparison was made between the serverless stack and a

more traditional stack host using dedicated EC2 instances.

The credibility of the choice of a serverless solution was

discovered throughout the performance testing process,

which showed that additional costs of $0.0004 per request

would be required. This takes into account the operating

costs of AWS Lambda, including the carrying charges for

each call, together with the real-time inference costs in

Amazon SageMaker. In contrast, in a traditional design,

there are permanent active EC2 instances, so if they are

over-provisioned for peak loads, they may become very

expensive when running all the time. Even on standby, the

cost incurred in managing these instances demonstrates how

resourceful additional traditional models are.

4.2.2. Over-Provisioning and Its Implications

An issue that makes conventional architectures

unattractive is the dependency on allocating ample resources

Joyanta Banerjee & Soumya Barman / IJCTT, 72(12), 153-163, 2024

162

to meet variances in traffic demands. This means that to be

prepared for maximal loads, organizations must purchase

and provide enough computing power in advance.

Consequently, existing resources lay idle during low

utilizations, incurring avoidable expenses. Serverless works

to overcome this problem by self-scaling systems to meet

the current number of users’ requests in real-time. As such,

the cost implication of the serverless solution was 45%

cheaper than the traditionally established one. This alone is

a good argument for moving to a serverless architecture,

particularly if the business deals with volume fluctuations.

4.2.3. Cost Efficiency Breakdown

A brief discussion of cost provides insights into the

role of different AWS services to the broad affordability of

the serverless approach to architecture. AWS Lambda has a

straightforward pricing model of charging based on the

number of requests and the amount of time the functions

take to run, and therefore, it is billed only when the

functions are in use. Lambda functions only operate when

invoked by some user activity, such as a page view,

meaning there are no charges for service idling. Thus, this

service is well-suited for applications likely to have sporadic

usage. Amazon SageMaker, in turn, allows real-time model

inference in the per-inference pricing by increasing the price

of per-inference as the number of made inferences grows.

The recommendation engine also scales SageMaker’s

managed infrastructure to efficiently allocate resources,

eliminating operational costs. Both services combined

provide conditions in the context of which the system can

promptly react to users’ actions and, at the same time, keep

costs low. Furthermore, the web application utilizes the

cost-effective pay-as-you-go model provided by Amazon

DynamoDB and Amazon S3 to store data. These services

come with costs of data ULS [used logical space] and Read

Access ULS with no more need for constant resource

provisions.

4.2.4. Variable Traffic and Cost Implications

The savings are clearly visible in periods of variable

traffic. In the traditional EC2-based model, constant

resource maintenance for peak times incurs high costs

during off-peak periods as resources remain idle. Serverless

architecture, on the other hand, scales automatically to fit

user demand, enabling organizations to only pay for the

resources actually used. This capability guarantees that the

costs are on-demand usage and is, therefore, more

economical in the long run.

5. Conclusion
As part of the related work in this paper, we proposed

a serverless AI Recommendation system that utilizes AWS

Lambda and SageMaker to provide recommendations while

optimizing for efficiency, scalability and cost. One of the

major benefits of the serverless architecture is fully implied

by its name – it is operationally cheap. Essentially, through

the concept of payment for use rather than initial capacity,

chargesÏ of resources and services that would face long

periods of insignificance in conventional resource-heavy

structures can be avoided. This needs to happen, particularly

in today’s fast-paced digital environment, where success

often depends on the organization’s ability to adapt to the

users’ needs. This flexibility to adjust the scale of system

usage in response to interactions with users means that

performance consistently remains high despite the amount

of activity without requiring daily intervention or resource

allocation.

By addressing both collaborative filtering and content-

based filtering techniques, the engine accurately constructs

real-time recommendations with a latency of less than 150

milliseconds. This swift processing capability of

suggestions makes it possible to provide users with

suggestions at the right time, which is important for

customer engagement and conversion in today’s highly

competitive markets. This design makes it easy for the

system to scale to any level of traffic to guarantee that the

users continuously enjoy the best service, as it can expand

or shrink as the traffic demands.

Subsequent work for future studies will be aimed at

improving the flexibility and accuracy of the

recommendation engine. One of them is the application of

high deep learning models for increasing the accurate rate of

recommendations. Further, neural collaborative filtering can

provide more complex user behaviors and preferences by

using other methods like Recurrent Neural Networks

(RNN). Further, structural adjustments that will enhance the

utilization of resources and response rates will also be made,

especially as the uptake of the interactions increases. It is

also possible to expand the system’s capabilities in terms of

its learning potential to add the next layers involving

mechanisms for feedback, enabling the system to adjust and

further fine-tune recommendations in response to user

feedback received in real-time.

In summary, using a serverless AI recommendation

model is a viable solution when an organization wants to

adopt machine learning into its digital strategy. This means

that it is cost-effective, can handle big volumes, and works

at high speeds as a tool for competitive online services. To

move forward with this technology further, we have great

expectations that this technology can help to provide a better

experience for users in different fields of interest, such as

the electronics business, entertainment, etc.

Joyanta Banerjee & Soumya Barman / IJCTT, 72(12), 153-163, 2024

163

References
[1] Badrul Sarwar et al., “Item-Based Collaborative Filtering Recommendation Algorithms,” Proceedings of the 10th International

Conference on World Wide Web, Hong Kong Hong Kong, pp. 285-295, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[2] Michael J. Pazzani, and Daniel Billsus, Content-Based Recommendation Systems, The Adaptive Web, Springer, Berlin, Heidelberg,

pp. 325-341, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[3] Robin Burke, “Hybrid Recommender Systems: Survey and Experiments,” User Modeling and User-Adapted Interaction, vol. 12, pp.

331-370, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[4] Congying Guan et al., “Apparel Recommendation System Evolution: An Empirical Review,” International Journal of Clothing

Science and Technology, vol. 28, no. 6, pp. 854-879, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[5] Yi-Cheng Chen, and Yen-Liang Chen, “A Novel Virtual-communicated Evolution Learning Recommendation,” Industrial

Management & Data Systems, vol. 124, no. 1, pp. 416-441, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[6] Ta Phuong Bac, Minh Ngoc Tran, and YoungHan Kim, “Serverless Computing Approach for Deploying Machine Learning

Applications in Edge Layer,” 2022 International Conference on Information Networking, Jeju-si, Korea, Republic of, pp. 396-401,

2022. [CrossRef] [Google Scholar] [Publisher Link]

[7] Peter Elger, and Eoin Shanaghy, AI as a Service: Serverless Machine Learning with AWS, Manning, pp. 1-328, 2020. [Google

Scholar] [Publisher Link]

[8] Amine Barrak, Fabio Petrillo, and Fehmi Jaafar, “Serverless on Machine Learning: A Systematic Mapping Study,” IEEE Access, vol.

10, pp. 99337-99352, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[9] Meng Yu et al., “Review of Recommendation System,” Journal of Computer Applications, vol. 42, no. 6, 1898. [Google Scholar]

[10] Denis Sinani, and Nuhi Besimi, “Application of Machine Learning in AWS for Manufacturing Companies,” Master’s Thesis, South

East European University, pp. 1-88, 2023. [Google Scholar]

[11] Nathalie Rauschmayr et al., “Amazon Sagemaker Debugger: A System for Real-time Insights into Machine Learning Model

Training,” Proceedings of Machine Learning and Systems, vol. 3, 2021. [Google Scholar] [Publisher Link]

[12] Jie Ding, Vahid Tarokh, and Yuhong Yang, “Model Selection Techniques: An Overview,” IEEE Signal Processing Magazine, vol. 35,

no. 6, pp. 16-34, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[13] William Finnoff, Ferdinand Hergert, and Hans Georg Zimmermann, “Improving Model Selection by Nonconvergent Methods,”

Neural Networks, vol. 6, no. 6, pp. 771-783, 1993. [CrossRef] [Google Scholar] [Publisher Link]

[14] Gianpaolo Cugola, and Alessandro Margara, “Processing Flows of Information: From Data Stream to Complex Event Processing,”

ACM Computing Surveys (CSUR), vol. 44, no. 3, pp. 1-62, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[15] Chris Fregly, and Antje Barth, Data Science on AWS, O'Reilly Media, Incorporated, pp. 1-90, 2021. [Google Scholar] [Publisher

Link]

[16] Peter Sbarski, and Sam Kroonenburg, Serverless Architectures on AWS: With Examples Using AWS Lambda, Manning, pp. 1-376,

2017. [Google Scholar] [Publisher Link]

[17] Vijay Panwar, “Leveraging Aws Apis For Database Scalability And Flexibility: A Case Study Approach,” International Journal of

Engineering Applied Sciences and Technology, vol. 8, no. 11, pp. 44-52, 2024. [Google Scholar] [Publisher Link]

[18] S. Andreozzi, L. Magnoni, and R. Zappi, “Towards the Integration of StoRM on Amazon's Simple Storage Service (S3),” Journal of

Physics: Conference Series, vol. 119, pp. 1-9, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[19] Markus Lanthaler, and Christian Gütl, “Seamless Integration of Restful Services into the Web of Data,” Advances in Multimedia, vol.

2012, pp. 1-14, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[20] Abhishek Mishra, Machine Learning in the AWS Cloud: Add Intelligence to Applications with Amazon Sagemaker and Amazon

Rekognition, Wiley, pp. 1-528, 2019. [Google Scholar] [Publisher Link]

https://doi.org/10.1145/371920.372071
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Item-Based+Collaborative+Filtering+Recommendation+Algorithms&btnG=
https://dl.acm.org/doi/abs/10.1145/371920.372071
https://doi.org/10.1007/978-3-540-72079-9_10
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MJ+Pazzani+-+Content-Based+Recommendation+Systems&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-72079-9_10
https://doi.org/10.1023/A:1021240730564
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+Recommender+Systems%3A+Survey+and+Experiments&btnG=
https://link.springer.com/article/10.1023/A:1021240730564
https://doi.org/10.1108/IJCST-09-2015-0100
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Apparel+recommendation+system+evolution%3A+an+empirical+review&btnG=
https://www.emerald.com/insight/content/doi/10.1108/ijcst-09-2015-0100/full/html
https://doi.org/10.1108/IMDS-05-2023-0298
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+virtual-communicated+evolution+learning+recommendation&btnG=
https://www.emerald.com/insight/content/doi/10.1108/imds-05-2023-0298/full/html
https://doi.org/10.1109/ICOIN53446.2022.9687209
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+computing+approach+for+deploying+machine+learning+applications+in+edge+layer&btnG=
https://ieeexplore.ieee.org/abstract/document/9687209
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AI+as+a+Service%3A+Serverless+machine+learning+with+AWS&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AI+as+a+Service%3A+Serverless+machine+learning+with+AWS&btnG=
https://www.google.co.in/books/edition/AI_as_a_Service/BeT7DwAAQBAJ?hl=en&gbpv=0
https://doi.org/10.1109/ACCESS.2022.3206366
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+on+machine+learning%3A+A+systematic+mapping+study&btnG=
https://ieeexplore.ieee.org/abstract/document/9888122
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M+YU%2C+Review+of+recommendation+system&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+Machine+Learning+in+AWS+for+Manufacturing+Companies&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Amazon+sagemaker+debugger%3A+a+system+for+real-time+insights+into+machine+learning+model+training&btnG=
https://proceedings.mlsys.org/paper_files/paper/2021/hash/5c7cb28f9db7a96951df3f06fd0ccfaf-Abstract.html
https://doi.org/10.1109/MSP.2018.2867638
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+selection+techniques%3A+An+overview&btnG=
https://ieeexplore.ieee.org/abstract/document/8498082
https://doi.org/10.1016/S0893-6080(05)80122-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+model+selection+by+nonconvergent+methods&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0893608005801224
https://doi.org/10.1145/2187671.2187677
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Processing+flows+of+information%3A+From+data+stream+to+complex+event+processing&btnG=
https://dl.acm.org/doi/abs/10.1145/2187671.2187677
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=C+Fregly%2C+A+Barth+-+Data+Science+on+AWS&btnG=
https://www.google.co.in/books/edition/Data_Science_on_AWS/4AE6zgEACAAJ?hl=en
https://www.google.co.in/books/edition/Data_Science_on_AWS/4AE6zgEACAAJ?hl=en
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+architectures+on+AWS%3A+with+examples+using+Aws+Lambda&btnG=
https://www.google.co.in/books/edition/Serverless_Architectures_on_AWS/ZDszEAAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Leveraging+Aws+Apis+For+Database+Scalability+And+Flexibility%3A+A+Case+Study+Approach&btnG=
https://www.ijeast.com/papers/44-52,%20Tesma0811,IJEAST.pdf
https://doi.org/10.1088/1742-6596/119/6/062011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+the+integration+of+StoRM+on+Amazon%27s+simple+storage+service+%28S3%29&btnG=
https://iopscience.iop.org/article/10.1088/1742-6596/119/6/062011/meta
https://doi.org/10.1155/2012/586542
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Seamless+integration+of+restful+services+into+the+web+of+data&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2012/586542
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+in+the+AWS+cloud%3A+Add+intelligence+to+applications+with+Amazon+Sagemaker+and+Amazon+Rekognition&btnG=
https://www.google.co.in/books/edition/Machine_Learning_in_the_AWS_Cloud/fXuoDwAAQBAJ?hl=en&gbpv=0

