
International Journal of Computer Trends and Technology Volume 72 Issue 12, 144-152, December 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I12P118 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Advancements in File Similarity Techniques: Traditional

and Modern Approaches for Malware Detection

Udbhav Prasad

Corresponding Author : udbhav523@gmail.com

Received: 04 November 2024 Revised: 30 November 2024 Accepted: 17 December 2024 Published: 31 December 2024

Abstract - Threat hunting, malware analysis and digital forensic techniques often use signatures to identify malicious

executables. While cryptographic hashes are helpful for identifying a particular file uniquely, attackers often tailor their

malware to particular systems, releasing variants that target different platforms, operating systems, and even specific

organizations or governments. As attacks become more sophisticated, security researchers have proposed “similarity”

digests that attempt to overcome the limitations of cryptographic hashes and other traditional signatures by detecting

variants of an executable. Modern enterprises manage tens of thousands of endpoints with billions of files, making the

scalability of the proposed techniques more important than ever. This survey reviews traditional file similarity digests, such

as ssdeep, sdhash, and TLSH, alongside emerging technologies like embeddings and vector databases. By classifying and

comparing these techniques, the paper highlights their strengths, weaknesses, and practical applications in malware

detection. Key contributions include a structured taxonomy of methods and insights into integrating traditional digests with

modern vector database solutions for scalable, efficient detection. This work provides a roadmap for future research and

development in this critical domain.

Keywords - Cybersecurity, Malware detection, File similarity, Fuzzy digests, Vector databases.

1. Introduction
Enterprise IT organizations manage tens of thousands

of endpoints on average [1]. As companies lean into more

distributed workforces, the number of IoT-connected

devices is projected to grow to 29 billion by 2030 [2].

Forensic examiners face major challenges in threat hunting

and malware analysis [3] due to the sheer amount of data

available.

Indicators of compromise (IoCs) are high-confidence

signals of computer intrusion on a machine or network.

Malware detection techniques often rely on IoCs to identify

malicious files. These IoCs include cryptographic hashes

(e.g., SHA-1, MD5), IP addresses, domain names, file paths,

and digital certificates, which are extracted using static or

dynamic analysis of executables. These indicators are

compared against databases of trusted or malicious

signatures, such as the National Software Reference Library

(NSRL) [4], which catalogs digital signatures of known

software. Similarly, platforms like MalwareBazaar [6]

curate malware samples for use in blocklists, while tools

like YARA [7] enable advanced static analysis through

customizable rulesets for malware pattern detection.

However, static feeds of indicators are cumbersome to

maintain and update. Additionally, cryptographic hashes

drastically change with minor modifications to the

executable, making it easy for malware authors to evade

detection. These shortcomings have motivated the

development of “similarity” digests, which can be compared

with approximate matching functions. These digests are

designed such that similar objects produce similar digests,

and comparing two digests produces a measure of the

similarity between the corresponding files.

The National Institute of Standards and Technology

(NIST) defines similarity digests as a compressed

representation of the original data object’s feature set that is

suitable for comparison with other similarity digests created

by the same algorithm. Similarity digests can significantly

improve file identification rates [8], but they come with

computational and storage challenges. Traditional exact-

match systems like key-value stores and relational databases

are not well-suited for storing and retrieving similarity

digests, which often require two steps: feature extraction

and digest computation, followed by comparison against

reference digests to identify matches. Brute-force

comparison is expensive, and several data structures have

been proposed to organize the reference digests for more

efficient retrieval. The different techniques proposed in the

literature encode information in different ways, making it

difficult to design a common data structure across similar

techniques.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Udbhav Prasad / IJCTT, 72(12), 144-152, 2024

145

Embeddings are vector representations of data objects

and are generated using machine learning models. These

embeddings enable highly scalable approximate similarity

comparisons by evaluating the geometric distance between

vectors in a shared feature space. To efficiently store and

retrieve these embeddings at scale, vector databases such as

Milvus [9], Pinecone [10], and Weaviate [11] have emerged

as off-the-shelf solutions. These systems are specifically

optimized for handling vector data, offering advanced

indexing techniques like HNSW (Hierarchical Navigable

Small World) [12] and ANNOY (Approximate Nearest

Neighbors Oh Yeah) [13] to accelerate similarity searches.

The “Similarity Metrics” and “Similarity Digests”

sections introduce the different algorithms used to measure

similarity between files, providing an overview of their

mechanisms, their ability to capture similarities, and the

computational complexity involved. The “Similarity Search

and Clustering” section examines the various search and

clustering strategies tailored to these algorithms, discussing

their performance characteristics, scalability, and the trade-

offs they present. Following this, the paper explores the role

of vector databases in addressing the limitations of

traditional similarity digest techniques. Building on these

insights, the subsequent section proposes an optimal

approach that combines TLSH [14] (Trend Micro Locality

Sensitive Hashing) and vector databases, bypassing the need

for custom implementations such as HAC-T [15]

(Hierarchical Agglomerative Clustering for TLSH) by

leveraging the robustness of off-the-shelf solutions. The

paper finally discusses future work in this area, suggesting

stronger integration between language modes and malware

analysis.

2. Methodology
This systematic review focuses on similarity techniques

on binary or executable files. Specifically, text-based

document similarity is not addressed by this review. Modern

work on file similarity techniques is evaluated, although

older work on similarity metrics is used to motivate the

introduction of modern techniques.

The research addresses three key questions: the relative

effectiveness of different similarity detection approaches,

their computational and storage trade-offs, and the potential

impact of modern technologies like vector databases on

scalability.

Techniques are selected based on their practicality in

real-world production environments. Security practitioners

across the globe currently use the approaches reviewed by

this paper for malware detection and threat analysis. Papers

were also selected based on the novelty of their algorithms,

the magnitude of improvement over existing techniques and

comprehensive performance evaluations.

The evaluation and analysis framework evaluates five

key factors: detection accuracy, computational efficiency,

storage requirements, search performance, and

implementation complexity. The methodology emphasizes

empirical evidence and quantitative metrics where available,

supplemented by qualitative analysis of implementation

challenges and operational considerations. This balanced

approach provides insights relevant to both theoretical

advancement and practical deployment of file similarity

techniques in cybersecurity applications.

3. Similarity Metrics
This section explores the evolution of file similarity

techniques, starting from simple algorithms and identifying

their shortcomings to motivate the development of more

complex techniques.

3.1. Edit Distance

In general, edit distance is a measure of the

dissimilarity of two strings. In the case of file similarity, this

is a measure of dissimilarity between two-byte sequences.

Several different types of edit distance have been proposed

in the literature [16], and Hamming Distance, Levenshtein

Distance and Longest-Common Subsequence are commonly

used distance metrics that support different types of

operations.

3.1.1. Hamming Distance
Hamming Distance compares two bit-streams or byte-

streams by simply counting the number of positions where

the two streams differ. The comparison of distance between

two sequences of length N is O(N), though it only applies to

sequence pairs of equal length and is unable to detect

insertions and deletions. Hamming distance is still

employed widely owing to its simplicity, finding

applications in detecting data corruption and errors in

network transmissions.

3.1.2. Levenshtein Distance
Levenshtein distance measures the distance between

two-byte sequences as the minimum number of insertions,

deletions or substitutions to transform one sequence into the

other. The distance between two sequences can be computed

in O(D min(M, N)) [17], where D is the edit distance, and M

and N are the lengths of the two sequences. Because of its

ability to handle insertions, updates and deletions, this

algorithm is popular in spell checks and basic natural

language processing applications like fuzzy string matching.

3.1.3. Longest Common Subsequence

Longest Common Subsequence measures the length of

the longest pairing of characters that can be made between

both strings so that the pairings respect the order of the

letters. The distance is the number of unpaired characters

Udbhav Prasad / IJCTT, 72(12), 144-152, 2024

146

and can be computed in O(MN), where M and N are the

lengths of the two sequences.

3.1.4. Search and Clustering Complexity

Given a target file of length N, when looking through a

corpus of length C, the complexity of searching for the most

similar files using linear-complexity edit distance

algorithms is linear in the size of the corpus O(CN). The

runtime complexity of clustering is quadratic in the size of

the corpus since every file must be compared against every

other file to identify the appropriate clusters.

3.2. Jaccard Distance

The Jaccard Distance J(A, B) between two sets A and B

is defined as

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|

Due to the small number of unique byte values (28 =

256), applying the Jaccard Distance to compare two sets of

bytes is not effective. Most files are likely to have a large

number of these byte values, and the Jaccard distance will

be close to 1. In practice, Jaccard distance is applied to

features extracted from files, like N-grams or the set of

imports [18].

Unlike Edit Distance-based similarity detection, Jaccard

distance computation between two files is linear in the size

of the feature set, not the actual bit- or byte-sequences.

Since extracted features are typically much smaller than the

files themselves, this translates to much faster search and

clustering algorithms in practice. However, the effectiveness

of this approach depends on how well the extracted features

encode the underlying file data. Moreover, Jaccard distance

treats the sets of features as a “bag of words” and loses any

ordering information.

3.2.1. MinHash

Even with the reduced feature set of Jaccard distance,

computing set union and intersection can be

computationally expensive for large files. MinHash [19]

estimates the Jaccard distance of two sets, A and B, without

explicitly computing their union and intersection. By

applying multiple hash functions to each element of the

feature set, MinHash constructs a signature for each file by

generating a vector where each entry corresponds to the

smallest hash value from a specific hash function. The

MinHash similarity is computed as the fraction of hash

functions for which the MinHash signatures of A and B

match.

𝑀𝑖𝑛𝐻𝑎𝑠ℎ(𝐴, 𝐵) =
|𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒𝑠|

|𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑎𝑠ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠|

This metric is shown to be an unbiased estimator of the

Jaccard distance. Although MinHash is not an improvement

in terms of the accuracy of similarity computation, it offers

significant efficiency gains in specific scenarios. It reduces

the problem of comparing small fixed-size signatures,

significantly reducing computational and storage costs, and

hence scales better to larger datasets. The quality of

MinHash’s approximation increases with the number of

hash functions used.

4. Similarity Digests
Edit Distances and Jaccard Distance either operate on

the full bytes of the input files or operate on a feature set,

which requires complex feature engineering with

unpredictable results and corpus sizes. Jaccard distances and

MinHash are also more effective on text or structured

metadata, which can be tokenized into meaningful chunks.

These shortcomings in traditional similarity metrics

motivated the engineering of similarity digests that worked

natively on binary data.

4.1. SSDeep

ssdeep [20] was introduced as a technique to generate a

feature set without needing to tokenize or transform the

binary data into a set.

ssdeep uses Context-Triggered Piecewise Hashing

(CTPH) to generate a fuzzy hash with the following

algorithm

• Run a sliding window of fixed size over the byte

stream, maintaining a rolling hash over the bytes in the

sliding windows

• Emit variable-sized chunks based on the value of the

rolling hash (boundary condition check)

• Apply a cryptographic hash function over all the

generated chunks

• Base64-encode the least significant bits of the hash

Two ssdeep hashes can only be compared if their block

sizes are equal or differ by a factor of 2x. Levenshtein

distance is then used to measure the number of updates,

insertions and deletions between the hashes, with different

weights given to each type of operation. The resulting value

is scaled to the range 0 – 100. The runtime complexity is

linear in the size of the generated fuzzy hash. Although

ssdeep is fast and accurate for hashes with compatible block

sizes, many data are not comparable. Unlike Jaccard

Distance, it is also sensitive to reordering, compression,

padding and changes to encoding.

4.2. SDHash

The shortcomings of ssdeep and other fuzzy hashing

techniques motivated the creation of sdhash [21]. While

Udbhav Prasad / IJCTT, 72(12), 144-152, 2024

147

ssdeep hashes all file chunks, sdhash chooses 64-byte

sequences that are least likely to occur in other files by

chance. Specifically, sdhash

1. Runs a sliding window of fixed size (64 bytes) over the

byte stream to generate a feature set

2. Calculates the Shannon entropy of the extracted sub-

sequences from the input sequence

3. Chooses a set with the lowest entropy

4. Hashes the features into a Bloom filter. If one Bloom

filter fills up, another one is created.

The sequence of generated bloom filters is the

generated hash. Two hashes are compared by averaging the

maximum Hamming distance of each filter from the first

digest to every filter in the second digest. Although sdhash

outperforms ssdeep in terms of accuracy and robustness, it

has some shortcomings. The final digest is between 2-3% of

the input size, which is a significant proportion of the

original bytes. Hence, searching across a corpus of files is

still proportional to the size of the whole corpus.

4.3. TLSH and Telfhash

TrendMicro designed TLSH [14] as an attempt to

address the shortcomings of ssdeep and sdhash, targeting

robustness to reordering, predictable digest size, linear

digest generation complexity, combinating evasiness,

accounting for frequency of occurrence of features and

generating an approximate metric from digest comparisons.

TLSH samples the bytes of the input byte sequence to create

a histogram of N-grams, finally generating a 35-byte digest.

The steps in the algorithm are:

1. Run a sliding window of size 5 byte-by-byte over the

input file

2. Extract unique 3-grams from each 5-byte window

3. Map each 3-gram to a bucket in a histogram and

increment its count

4. Calculate p25, p50, p75 quantiles over the array of

bucket counts

5. Construct the 3-byte digest header as a combination of

the input checksum, input length and the quantiles

6. Construct the 32-byte digest body as a function of the

histogram values, emitting different bit pairs for

different quantile thresholds

TLSH distance between two files is computed using

two functions: one to calculate the distance between headers

and the other, the distance between bodies. Distance == 0

means the two files are the same and increases as files

become more dissimilar. TLSH has been shown to be more

robust to changes in the input bytes than ssdeep or sdhash

[23] and generates a fixed-size digest, but sdhash performs

better at containment detection and in recognizing the same

program when compiled in different ways [24].

The latter motivated the development of Telfhash,

specifically the need to enhance similarity hashing

specifically for ELF (Executable and Linkable Format)

binaries, addressing the limitations of TLSH when applied

to these files.

While TLSH is a robust general-purpose locality-

sensitive hash, its reliance on global byte distribution

statistics makes it less effective for binary executables,

particularly those with structural changes like code

injections or section rearrangements. telfhash improves

upon TLSH by incorporating binary-specific features, such

as focusing on code sections, symbols, and metadata that are

more indicative of functional similarity in ELF binaries.

This allows telfhash to better handle cases where binaries

are modified for obfuscation, packed, or minimally altered.

4.4. Evaluation

Table 1, 2, and 3 show the results of evaluating the

aforementioned techniques against several parameters: the

hashing technique, output sizes in bytes, computational

complexity of hashing and search, as well as their strengths

and weaknesses.

Table 1. Summary of hashing techniques

 k: Number of hash functions (where applicable), d: Digest size

Digest Type Hashing Technique Output

MinHash
Randomized hashing of

sets

Fixed-size vector,

depends on k: O(k)

ssdeep
Context-triggered

piecewise hashing

Up to 128 characters

(Base64 string)

sdhash
Statistical feature

extraction

Binary digest, variable

size (d)

TLSH
Locality-sensitive

hashing with entropy

Fixed-size hash (35

bytes)

Udbhav Prasad / IJCTT, 72(12), 144-152, 2024

148

Table 2. Hashing complexity and practicality

 k: Number of hash functions (where applicable), n: Input length

Digest Type Hashing Complexity Strengths Weaknesses

MinHash O(k⋅n) Efficient; scalable
Approximation may

lose fine details

ssdeep O(n)

Fast and widely

used; easy

integration

Sensitive to reordering

and padding

sdhash O(n⋅log(n))
Robust to minor

modifications

High storage and

computational costs

TLSH O(n)
Robust, predictable

size, scalable

Less effective for

binary-specific cases

Table 3. Evaluation of similarity techniques

 d: Digest size

Digest Type Similarity technique
Similarity

complexity

MinHash Jaccard similarity O(d)

ssdeep
Fuzzy matching via

edit distance
O(d2)

sdhash Hamming distance O(d)

TLSH
Distance metric in

TLSH space
O(d)

5. Similarity Search and Clustering
Practical applications of similarity digests usually

search for the files most similar to a target file from a

reference list of N files like NSRL or MalwareBazaar. The

naive approach to solve this problem using the similarity

digests from the previous sections would be to perform a

brute-force search by comparing the target file digest to

each of the N files’ digests in the reference list. As expected,

this approach is to time- and resource-intensive for large

datasets.

Systems that are designed to search for exact matches,

like against cryptographic hashes, build reverse indexes of

the hashes and map them to files in the reference list using

data structures like skip lists [25] or B-trees. When the data

does not fit in memory, on-disk storage structures like log-

structured merge [26] trees are used to store the reverse

indexes. The search complexity over N files in these cases is

O(log(N)).

Some of the proposed approaches to improve similarity

digest search over a large corpus of files are discussed by

presenting relevant in-memory and on-disk data structures

and how they apply to the similarity digests previously

discussed. This section also discusses the clustering

properties and complexity of the proposed data structures.

Figure 1 shows the general flow of ingesting a corpus

of N files, converting them into digests and storing them

efficiently for search, while Figure 2 shows the flow of data

when a user queries the same system for files similar to a

target file. Table 4 evaluates the different similarity search

and clustering approaches based on their runtime

complexities

4.1. Fast Forensic Similarity Search (F2S2)

F2S2 [27] proposes reducing the search space for digest

comparisons with an indexing structure based on the n-

grams extracted from an input sequence. A reverse index is

then constructed, mapping each n-gram segment to all the

digests of the input bytes that contain it. When searching for

similar digests across a corpus of N files, n-gram segments

are extracted from the target file. For each n-gram, all

matching digests are retrieved from the reverse index

constructed earlier. This set of matching digests is the

reduced search space against which similarity comparisons

are executed.

The authors of F2S2 use ssdeep as the digest, but the

general algorithm and indexing structure generalizes to any

digest technique that operates on segments of its input files.

MinHash uses hashed feature sets, making it a good

candidate for F2S2’s indexing technique. While TLSH also

extracts n-grams from its input, it relies on histogram

generation to account for entropy and reduce similarity

complexity, and thus, the applicability of F2S2 to reduce

TLSH search space is not obvious. F2S2 does not work well

with Bloom filter-based similarity techniques like sdhash

since they cannot be indexed.

Udbhav Prasad / IJCTT, 72(12), 144-152, 2024

149

Fig. 1 General flow of ingesting a corpus of N files: (1) Files are ingested from feeds or endpoints (2) The ingestion application calculates the digests

for the files and (3) Stores the digests in an efficient data structure for later retrieval

Fig. 2 General flow of querying for files similar to a target file: (1) User queries the corpus for files similar to a target file. (2) The application server

calculates the digest of the target file. (3) The application server queries the efficient data structure for similar digests, (4) retrieves the files

corresponding to those digests, and (5) returns them to the user

In general, the efficacy of F2S2 is only as good as the

chosen digest technique, and the shortcomings of MinHash

and ssdeep have been discussed earlier.

4.2. Bloom Filter Search

Breitinger et al. [28] propose a hierarchical bloom filter

tree structure using a divide-and-conquer paradigm to

reduce similarity digest search complexity to O(logN).

Bloom filters are organized into a tree structure, with

higher-level nodes representing aggregated subsets of the

corpus and lower-level nodes containing finer-grained

representations. To conduct a similarity search, a query

digest is first matched against the root node to determine

potential matches, and the search then proceeds down the

tree, narrowing the candidate set at each level. This

recursive refinement reduces the number of comparisons

Endpoint

Data Sources

File feed

1. Ingest files from

data sources

2. Calculate digests

of ingested files

Ingestion Server

3. Store digests

in appropriate

data structure

Data Store

Users

1. Query similar

matches of target

file

5. Return similar

files to user

Application

server

3. Query data

structure for

similar

digests

4. Return file

identifiers

corresponding

to similar

digests

Data Store

2. Calculate digest

of target file

Udbhav Prasad / IJCTT, 72(12), 144-152, 2024

150

needed compared to brute force comparisons. This approach

is well suited to sdhash, which generates similarity digests

as sequences of Bloom filters. Researchers have also

proposed extensions of this approach using Cuckoo filters

[29].

4.3. Hierarchical Agglomerative Clustering

The HAC-T algorithm [15] employs a tree-based

approach to enable TLSH similarity searches across a

corpus of files efficiently. It constructs the tree by

recursively splitting the dataset using a selected pivot –

which is a random item from the dataset – and a threshold,

which partitions the data into two subsets: items closer to

the pivot and items farther away from the pivot. The

threshold is chosen so that the two subsets are roughly equal

in size, resulting in a balanced tree. The recursive splitting

continues until a predefined stopping condition is met, such

as a minimum subset size or an insignificant threshold

value.

During a search, the tree is traversed based on the

distance of the query to pivots, resulting in a search

complexity of O(log N) on a corpus of N digests.

Table 4. Evaluation of similarity and clustering techniques

N: File corpus size

Data

Structure

Compatible

Digests

Search

Complexity

Clustering

Complexity

Reverse

Index

(F2S2)

MinHash,

ssdeep

O(N) O(𝑁2)

Bloom

Filter

sdhash O(log N) O(N log N)

HAC-T TLSH O(log N) O(N log N)

5. Future Work
From the discussions and analysis earlier in this paper,

several insights emerge regarding the evolution and future

of file similarity techniques. Below are key

recommendations for advancing this field.

5.1. Multimodal Approach

The analysis shows that no single similarity digest

technique is universally optimal. Each method has its

strengths and weaknesses [30]. Consequently, security

researchers should adopt a toolkit approach that combines

multiple digest techniques to ensure robustness across

diverse use cases.

5.2. Addressing Clustering Limitations

Clustering methods for similarity digests exhibit

varying levels of performance and precision. Existing

methods, such as HAC-T for TLSH or Bloom filter trees for

sdhash, either struggle to generalize well across different

datasets or are challenging to implement in practice. Future

work should focus on developing more versatile clustering

frameworks that strike a balance between scalability, ease of

use, and precision. Hybrid clustering methods that

incorporate aspects of density-based or centroid-based

clustering with domain-specific optimizations could address

these gaps.

5.3. Machine Learning for Digest Generation

Techniques based on deep neural networks, like

Siamese networks [36], can be used to generate embeddings

that capture similarities between two file feature sets. One

of the challenges faced by these methods is the lack of a

widely used benchmark dataset [37], forcing researchers to

rely on custom datasets [35].

5.4. Leveraging Vector Databases for Scalability

Recent advancements in vector database technology

offer a significant opportunity for scaling file similarity

search and clustering by constructing indexes that allow for

efficient approximate nearest neighbor (ANN) search.

Systems like Milvus [31], Pinecone [32], and Weaviate [22]

provide highly scalable and efficient infrastructures for

managing high-dimensional vector data. These technologies

have been proven to scale to billions of files in production

machine learning environments, and show potential in being

used for similarity digest search.

The embeddings generated by neural networks can also

be seamlessly integrated with vector databases, offering

compact and efficient storage solutions for search and

clustering. For its clustering technique, HAC-T calculates

the mean of multiple TLSH digests by preprocessing them

into 70-dimensional Euclidean coordinates with ASCII

values.

6. Conclusion
This paper provides a detailed discussion of popular file

similarity techniques, discussing the advantages that fuzzy

digests and locality-sensitive hashes provide over traditional

cryptographic methods and static signatures. Additionally,

the paper explored how modern advancements such as

embeddings and vector databases can enhance the

scalability and efficiency of these methods for malware

detection and file similarity search. It also highlights the

importance of a diverse toolkit in the security researcher’s

belt, emphasizing the combination of fuzzy digest

techniques with cutting-edge machine learning and database

technologies to achieve robust, real-time detection across

massive datasets. The discussed file similarity techniques

strengthen the cybersecurity field through early detection of

malware variants based on behavioral similarities. The

evaluation of search and clustering efficiency also allows

organizations to leverage a layered detection approach while

building a comprehensive threat detection database.

Udbhav Prasad / IJCTT, 72(12), 144-152, 2024

151

References

[1] Managing Risks & Costs at the Edge, Ponemon Institute, Report, pp. 1-49, 2022. [Online]. Available:

https://adaptiva.com/hubfs/Reports/Adaptiva-Ponemon-Report-2022.pdf

[2] Cem Dilmegani, Endpoint Security Statistics in 2025, AI Multiple Research, 2024. [Online]. Available:

https://research.aimultiple.com/endpoint-security-statistics

[3] Darren Quick, and Kim-Kwang Raymond Choo, “Impacts of the Increasing Volume of Digital Forensic Data: A Survey and Future

Research Challenges,” Digital Investigation, vol. 11, no. 4, pp. 273-294, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[4] National Software Reference Library, NIST. [Online]. Available: http://www.nsrl.nist.gov/

[5] National Vulnerability Database, NIST. [Online]. Available: http://nvd.nist.gov/

[6] Malware Bazaar. [Online]. Available: https://bazaar.abuse.ch/export/

[7] Reyadh Hazim Mahdi, and Hafedh Trabelsi, “Detection of Malware by Using YARA Rules,” 2024 21st International Multi-Conference

on Systems, Signals & Devices, Erbil, Iraq, pp. 1-8, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[8] Frank Breitinger et al., “Using Approximate Matching to Reduce the Volume of Digital Data,” Advances in Digital Forensics X: 10th

IFIP WG 11.9 International Conference, Vienna, Austria, pp. 149-163, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[9] Jianguo Wang et al., “Milvus: A Purpose-Built Vector Data Management System,” Proceedings of the 2021 International Conference

on Management of Data, Virtual Event China, pp. 2614-2627, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] Build knowledgeable AI, Pinecone. [Online]. Available: https://www.pinecone.io

[11] The AI-Native Database for a New Generation of Software, Weaviate. [Online]. Available: https://weaviate.io

[12] Yu A. Malkov, and D. A. Yashunin, “Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small

World Graphs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 4, pp. 824-836, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[13] Annoy. [Online]. Available: https://github.com/spotify/annoy

[14] Jonathan Oliver, Chun Cheng, and Yanggui Chen, “TLSH - A Locality Sensitive Hash,” 2013 Fourth Cybercrime and Trustworthy

Computing Workshop, Sydney, NSW, Australia, pp. 7-13,2013. [CrossRef] [Google Scholar] [Publisher Link]

[15] Jonathan Oliver, Muqeet Ali, and Josiah Hagen, “HAC-T and Fast Search for Similarity in Security,” 2020 International Conference on

Omni-layer Intelligent Systems, Barcelona, Spain, pp. 1-7, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[16] Gonzalo Navarro, “A Guided Tour to Approximate String Matching,” ACM Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

https://doi.org/10.1145/375360.375365[CrossRef] [Google Scholar] [Publisher Link]

[17] Esko Ukkonen, “Algorithms for Approximate String Matching,” Information and Control, vol. 64, no. 1-3, pp. 100-118, 1985.

[CrossRef] [Google Scholar] [Publisher Link]

[18] Joshua Saxe, and Hillary Sanders, Malware Data Science: Attack Detection and Attribution, No Starch Press, pp. 1-272, 2018. [Google

Scholar] [Publisher Link]

[19] A.Z. Broder, “On the Resemblance and Containment of Documents,” Proceedings. Compression and Complexity of SEQUENCES 1997

(Cat. No.97TB100171), Salerno, Italy, pp. 21-29,1997. [CrossRef] [Google Scholar] [Publisher Link]

[20] Jesse Kornblum, “Identifying Almost Identical Files Using Context Triggered Piecewise Hashing,” Digital Investigation, vol. 3, pp. 91-

97, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[21] Vassil Roussev, “Data Fingerprinting with Similarity Digests,” Advances in Digital Forensics VI: Sixth IFIP WG 11.9 International

Conference on Digital Forensics, Hong Kong, China, pp. 207-226, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[22] Dongkwan Kim et al., “Revisiting BCSA Using Interpretable Feature Engineering and Lessons Learned,” IEEE Transactions on

Software Engineering, vol. 49, no. 4, pp. 1661-1682, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[23] Jonathan Oliver, Scott Forman, and Chun Cheng, “Using Randomization to Attack Similarity Digests,” Applications and Techniques in

Information Security: 5th International Conference, Melbourne, Australia, pp. 199-210, 2014. [CrossRef] [Google Scholar] [Publisher

Link]

[24] Thomas Göbel et al., “FRASHER – A Framework for Automated Evaluation of Similarity Hashing,” Forensic Science International:

Digital Investigation, vol. 42, pp. 1-13, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[25] William Pugh, “Skip Lists: A Probabilistic Alternative to Balanced Trees,” Communications of the ACM, vol. 33, no. 6, pp. 668-676,

1990. [CrossRef] [Google Scholar] [Publisher Link]

[26] Patrick O’Neil et al., “The Log-structured Merge-Tree (LSM-tree),” Acta Informatica, vol. 33, pp. 351–385, 1996. [CrossRef] [Google

Scholar] [Publisher Link]

[27] Christian Winter, Markus Schneider, and York Yannikos, “F2S2: Fast Forensic Similarity Search Through Indexing Piecewise Hash

Signatures,” Digital Investigation, vol. 10, no. 4, pp. 361–371, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[28] Frank Breitinger, Christian Rathgeb, and Harald Baier, “An Efficient Similarity Digests Database Lookup - A Logarithmic Divide &

Conquer Approach,” Journal of Digital Forensics, Security and Law, 2014. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.diin.2014.09.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Impacts+of+the+increasing+volume+of+digital+forensic+data%3A+A+survey+and+future+research+challenges&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1742287614001066
http://www.nsrl.nist.gov/
http://nvd.nist.gov/
https://bazaar.abuse.ch/export/
https://doi.org/10.1109/SSD61670.2024.10549308
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+of+Malware+by+Using+YARA+Rules&btnG=
https://ieeexplore.ieee.org/abstract/document/10549308
https://doi.org/10.1007/978-3-662-44952-3_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+Approximate+Matching+to+Reduce+the+Volume+of+Digital+Data&btnG=
https://link.springer.com/chapter/10.1007/978-3-662-44952-3_11
https://doi.org/10.1145/3448016.3457550
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Milvus%3A+A+Purpose-Built+Vector+Data+Management+System&btnG=
https://dl.acm.org/doi/abs/10.1145/3448016.3457550
https://www.pinecone.io/
https://weaviate.io/
https://doi.org/10.1109/TPAMI.2018.2889473
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+and+robust+approximate+nearest+neighbor+search+using+Hierarchical+Navigable+Small+World+graphs&btnG=
https://ieeexplore.ieee.org/abstract/document/8594636
https://github.com/spotify/annoy
https://doi.org/10.1109/CTC.2013.9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=TLSH+-+A+Locality+Sensitive+Hash&btnG=
https://ieeexplore.ieee.org/abstract/document/6754635
https://doi.org/10.1109/COINS49042.2020.9191381
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HAC-T+and+Fast+Search+for+Similarity+in+Security&btnG=
https://ieeexplore.ieee.org/abstract/document/9191381
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+guided+tour+to+approximate+string+matching&btnG=
https://dl.acm.org/doi/abs/10.1145/375360.375365
https://doi.org/10.1016/S0019-9958(85)80046-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Algorithms+for+approximate+string+matching&btnG=
https://www.sciencedirect.com/science/article/pii/S0019995885800462
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+Data+Science+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+Data+Science+&btnG=
https://www.google.co.in/books/edition/Malware_Data_Science/lURBDwAAQBAJ?hl=en&gbpv=0
https://doi.org/10.1109/SEQUEN.1997.666900
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+resemblance+and+containment+of+documents&btnG=
https://ieeexplore.ieee.org/abstract/document/666900
https://doi.org/10.1016/j.diin.2006.06.015
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identifying+Almost+Identical+Files+Using+Context+Triggered+Piecewise+Hashing&btnG=
https://www.sciencedirect.com/science/article/pii/S1742287606000764
https://doi.org/10.1007/978-3-642-15506-2_15
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+fingerprinting+with+similarity+digests&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-15506-2_15
https://doi.org/10.1109/TSE.2022.3187689
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Revisiting+BCSA+Using+Interpretable+Feature+Engineering+and+Lessons+Learned&btnG=
https://ieeexplore.ieee.org/abstract/document/9813408
https://doi.org/10.1007/978-3-662-45670-5_19
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+Randomization+to+Attack+Similarity+Digests&btnG=
https://link.springer.com/chapter/10.1007/978-3-662-45670-5_19
https://link.springer.com/chapter/10.1007/978-3-662-45670-5_19
https://doi.org/10.1016/j.fsidi.2022.301407
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FRASHER+%E2%80%93+A+framework+for+automated+evaluation+of+similarity+hashing&btnG=
https://www.sciencedirect.com/science/article/pii/S2666281722000889
https://doi.org/10.1145/78973.78977
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Skip+lists%3A+a+probabilistic+alternative+to+balanced+trees&btnG=
https://dl.acm.org/doi/abs/10.1145/78973.78977
https://doi.org/10.1007/s002360050048
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+log-structured+merge-tree+%28LSM-tree%29&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+log-structured+merge-tree+%28LSM-tree%29&btnG=
https://link.springer.com/article/10.1007/s002360050048
https://doi.org/10.1016/j.diin.2013.08.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=F2S2%3A+Fast+forensic+similarity+search+through+indexing+piecewise+hash+signatures&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1742287613000789
https://doi.org/10.15394/jdfsl.2014.1178
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Similarity+Digests+Database+Lookup+-+A+Logarithmic+Divide+%26+Conquer+Approach&btnG=
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs/7/

Udbhav Prasad / IJCTT, 72(12), 144-152, 2024

152

[29] Bin Fan et al., “Cuckoo Filter: Practically Better Than Bloom,” Proceedings of the 10th ACM International Conference on Emerging

Networking Experiments and Technologies, Sydney Australia, pp. 75-88, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[30] Irfan Ul Haq, and Juan Caballero, “A Survey of Binary Code Similarity,” ACM Computing Surveys, vol. 54, no. 3, pp. 1-38, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[31] Jiang Du et al., “A Review of Deep Learning-Based Binary Code Similarity Analysis,” Electronics, vol. 12, no. 22, pp. 1-18, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[32] Abhiraj Malhotra, “Single-Shot Image Recognition Using Siamese Neural Networks,” 2023 3rd International Conference on Advance

Computing and Innovative Technologies in Engineering, Greater Noida, India, pp. 2550-2553, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

https://doi.org/10.1145/2674005.2674994
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cuckoo+Filter%3A+Practically+Better+Than+Bloom&btnG=
https://dl.acm.org/doi/abs/10.1145/2674005.2674994
https://doi.org/10.1145/3446371
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Binary+Code+Similarity&btnG=
https://dl.acm.org/doi/abs/10.1145/3446371
https://doi.org/10.3390/electronics12224671
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+of+Deep+Learning-Based+Binary+Code+Similarity+Analysis&btnG=
https://www.mdpi.com/2079-9292/12/22/4671
https://doi.org/10.1109/ICACITE57410.2023.10182466
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Single-Shot+Image+Recognition+Using+Siamese+Neural+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/10182466

