
International Journal of Computer Trends and Technology                                                       Volume 72 Issue 12, 78-82, December 2024 

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I12P109                                                      © 2024 Seventh Sense Research Group®  

     

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Real-Time Monitoring and Alerting of POS Applications 

Using Open Telemetry Backend 

Avinash Swaminathan Vaidyanathan1, Ajay Krishna R2, Manoj Shankar Murugesan3 

1,2,3Independent Researcher, USA. 

1Corresponding Author : avinash3788@gmail.com 

Received: 30 October 2024              Revised: 25 November 2024               Accepted: 11 December 2024              Published: 29 December 2024 

 

Abstract - In modern distributed systems, ensuring the health and performance of Point of Sale (POS) applications is crucial for 

businesses. This paper presents the use of Open Telemetry for collecting metrics from POS applications running on Linux and 

Windows servers, intending to create real-time alerts and dashboards for efficient monitoring. Docker is used to deploy the Open 

Telemetry backend components (such as the Open Telemetry Collector, Prometheus, and Grafana) to aggregate telemetry data 

and generate actionable insights. By leveraging Open Telemetry’s standard instrumentation, businesses can benefit from real-

time performance monitoring, providing insights into transaction latency, system resource usage, and overall application health. 

Keywords - Dashboard alerts, Docker, Open telemetry, POS applications, Real-time monitoring, POS monitoring. 

1. Introduction  
Point of Sale (POS) applications are the backbone of 

modern retail and service industries, and their performance 

directly affects customer experience and revenue. The 

complexity of these systems requires constant monitoring to 

ensure seamless operation. Traditional monitoring solutions 

often fail to help businesses track missing sale transactions, 

stock discrepancies, shrinkage, incorrect pricing, and 

fraudulent activity, leading to potential revenue loss and 

customer dissatisfaction. Traditional POS systems fail to 

provide the telemetry data required to improve business. This 

paper introduces Open Telemetry, an open-source framework 

designed to bridge this gap by collecting telemetry data from 

distributed applications, providing visibility into POS and 

application performance. Open Telemetry simplifies the 

collection of various telemetry data, including metrics, traces, 

and logs of POS applications. Businesses can achieve flexible, 

scalable, real-time monitoring solutions by deploying Open 

Telemetry components in Docker. Real-time dashboards and 

alerts play a pivotal role in identifying sales trends, fraudulent 

activity, performance bottlenecks, delays in transaction 

processing or resource overloads, ensuring timely corrective 

actions. 

2. Background 
2.1. POS Architecture and Challenges 

POS systems typically comprise a layered architecture 

with terminals, middleware, databases, and APIs. Monitoring 

this setup is challenging due to the following: 

• Transaction Latency: Real-time processing requirements. 

• Distributed Nature: Multiple endpoints with varying 

telemetry needs. 

• Resource Bottlenecks: Overload risks during peak 

transactions. 

2.2. Existing Solutions and their Gaps 

Traditional monitoring tools lack: 

• Real-Time Integration: Delayed insights from batch 

processing. 

• Scalability: Limited to a fixed number of nodes. 

• Vendor Neutrality: Dependence on proprietary systems. 

Table 1. Open telemetry vs traditional tools 

Feature Open Telemetry 
Traditional 

Tools 

Vendor Neutrality High Low 

Real-Time 

Monitoring 
Yes Limited 

Cost Efficiency Open Source 
Proprietary 

Pricing 

 

3. Materials and Methods 
3.1. Infrastructure Setup 

The POS application is typically deployed across multiple 

Linux or Windows servers. Each server hosts POS application 

instances and might run auxiliary services.  

To monitor the system, integrate Open Telemetry SDKs 

or agents within the POS application, which send telemetry 

data to a central Open Telemetry backend. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Avinash Swaminathan Vaidyanathan et al. / IJCTT, 72(12), 78-82, 2024 

 

79 

Open Telemetry Configuration Example: 

receivers: 

  hostmetrics: 

    collection_interval: 30s 

    scrapers: 

      cpu: 

      memory: 

      disk: 

      filesystem: 

  filelog: 

    include: ["/var/logs/*"] 

  otlp: 

    protocols: 

      grpc: 

        endpoint: 0.0.0.0:4317 

      http: 

        endpoint: 0.0.0.0:4318 

exporters: 

  otlp: 

    endpoint: "http://localhost:4318" 

    tls: 

      insecure: true 

  prometheusremotewrite: 

    endpoint: "http://localhost:9090/api/v1/write" 

  loki: 

   endpoint: "http://localhost:3100/loki/api/v1/push" 

service: 

  pipelines: 

    metrics: 

      receivers: [hostmetrics] 

      exporters: [prometheusremotewrite] 

    logs: 

      receivers: [filelog] 

      exporters: [loki] 

    traces: 

      receivers: [otlp] 

      exporters: [otlp] 

3.1.1. System Requirements: 

• POS Application: Deployed on Linux or Windows 

servers. 

• Open Telemetry SDKs/Agents: Integrated into the POS 

application to collect performance metrics (CPU usage, 

memory, transaction latency, etc). 

• Backend Components: 

Open Telemetry Collector: Collects, processes, and 

exports telemetry data. 

• Prometheus: Stores and queries metric data. 

• Grafana, Loki, Tempo: Visualizes metrics, traces, logs, 

and generates real-time dashboards. 

• Alert manager: Triggers alerts based on threshold 

conditions. 

3.2. Implementation Steps 

3.2.1. Install Open Telemetry Collector (OTel Collector) in 

Docker 

Use a Docker container to run the Open Telemetry 

Collector. The collector is responsible for receiving telemetry 

data from the POS application agents and exporting it to 

Prometheus. 

3.2.2. Set Up Prometheus for Data Aggregation: 

Prometheus is used for storing the collected metrics and 

querying to generate valuable insights. Define a configuration 

file to scrape metrics from the Open Telemetry Collector. 

3.2.3. Deploy Grafana for Visualization and Dashboards 

Grafana connects to Prometheus to display real-time 

dashboards. Custom dashboards are created to monitor key 

metrics such as transaction latency, system resource usage, 

and error rates. This is included in the LGTM backend docker 

image setup. 

3.2.4. Deploy Grafana Loki and Tempo 

Logs and Trace data should also be visualized in the 

Grafana dashboard. This is included in the LGTM backend 

docker image setup. 

3.2.5. Configure Alerts in Grafana: 

Alerts are set up in Grafana to trigger notifications when 

certain thresholds are exceeded, such as high CPU usage or 

prolonged transaction delays. 

3.3. Data Flow 

3.3.1. POS Application 

Instrumented with Open Telemetry SDKs/agents to send 

telemetry data. 

3.3.2. Open Telemetry Collector 

Receives data, processes it (optional transformation), and 

forwards it to the Prometheus to store it. 

3.3.3. Prometheus 

Stores and queries the data. 

3.3.4. Grafana 

Visualizes the data on dashboards, with alert rules to 

notify stakeholders about potential issues. 

3.4. Security Considerations 

• Data Transmission: Use TLS encryption for telemetry 

streams. 

• Authentication: Employ API tokens to access telemetry 

endpoints. 

• Data Minimization: Avoid storing sensitive information 

like PII. 



Avinash Swaminathan Vaidyanathan et al. / IJCTT, 72(12), 78-82, 2024 

 

80 

 
Fig. 1 Open telemetry architecture for POS application monitoring 

4. Results and Discussion  
4.1. Real-Time Performance KPIs 

Once the Open Telemetry framework is integrated, 

valuable metrics can be collected in real-time.  

These real-time metrics include: 

• Transaction count: Number of transactions processed. 

• Transaction Latency: Average time for a transaction to be 

completed by the POS system. 

• CPU and Memory Usage: Metrics showing the health of 

the underlying infrastructure hosting the application. 

• Error Rates: The frequency of failed transactions. 

• POS Reboots: Cause / Count for the POS application 

restart due to system restarts 

• POS Restarts: Cause / Count the POS application restart 

due to various reasons 

• Pin pad Reboot: Cause / Count the pin entry device to be 

restarted. 

• JVM Metrics:  Memory Pools: Heap and non-heap 

memory usage, including Eden, Survivor, and old 

generations. 

• Garbage Collection (GC): GC count and time spent in GC 

for young and old generations. 

• Threads: Number of live threads, peak threads, and 

daemon threads. 

• Class Loading: Number of classes loaded and unloaded. 

• JVM Uptime: Total uptime of the JVM. 

• HTTP Server Metrics (if using a web server): 

o Request Count: Total number of HTTP requests. 

o Request Latency: Latency for handling HTTP  

requests.  

o Response Codes: Count of HTTP responses by status 

code. 

o Active Connections: Number of active connections. 

4.2. Database Metrics (if connected to DB) 

• Query Latency: Latency of database queries. 

• Connections: Number of active and idle connections in 

the connection pool. 

• Errors: Count of database errors (e.g., connection 

timeouts). 

These metrics help pinpoint areas for optimization, such 

as reducing transaction time or scaling the infrastructure to 

handle increased load. 

• Dashboards and Alerts: Grafana dashboards are designed 

to display the following: 

• Transaction Latency Chart: Tracks the performance of 

transactions in real time. 

• System Health Panel: Monitors the CPU and memory 

usage of the POS application servers. 

• Logs: POS application logs are scraped in real-time from 

each POS terminal across the stores to filter the pattern 

for errors and warnings. 

• Trace: Detailed records of the journey a request takes 

through a system. This data is crucial for understanding 

Grafana / OTEL-LGTM 

OTLP 

Port4317 or 

4318 

Open 

Telemetry 

POS Terminal 

Prometheus Metrics 

DB 

Tempo Traces 

Database 

Loki Logs 

Database 

Grafana 
Web UIv 

Port 3000 



Avinash Swaminathan Vaidyanathan et al. / IJCTT, 72(12), 78-82, 2024 

 

81 

the flow of requests, identifying performance bottlenecks, 

and diagnosing errors in distributed systems. 

• Alert Notifications: Notifications are sent when 

predefined thresholds are breached, such as high 

transaction latency or resource overload. 

4.2.1. Scalability 

The system scales linearly with increased load due to 

Dockerized components. Stress tests on simulated traffic 

showed consistent response times of up to 10k transactions per 

second. 

4.2.2. Error Handling 

Retry Mechanisms: Configured retries for failed 

telemetry transmissions. Alerting: Proactive notifications for 

missed data points. 

4.2.3. Dashboard Usability 

User feedback highlighted Grafana’s intuitive interface. 

Recommended best practices include: Grouping related 

metrics for quick insights. Using color codes for critical alerts. 

  
 Fig. 2 Grafana dashboard 

4.3. Performance Gains 

The integration of Open Telemetry provides a significant 

performance boost in monitoring the POS application. The 

ability to react to real-time data ensures quicker issue 

resolution, improving system uptime and reliability. With 

Docker, the entire stack (Open Telemetry Collector, 

Prometheus, Grafana) can be easily scaled, making it 

adaptable for large-scale systems. 

5. Case Study: Monitoring a Retail POS 

Network 
A retail company with 50 stores implemented Open 

Telemetry to monitor its POS system. Each store's POS 

terminals are connected to local servers, which then 

communicate with a central system hosted on the cloud. 

Challenges included transaction delays during peak hours and 

difficulty diagnosing network or application-level issues.  

5.1. Solution Implementation 

5.1.1. Infrastructure 

POS terminals instrumented with Open Telemetry SDK 

for metrics like transaction duration and error rates. A central 

Open Telemetry Collector aggregated data, processed it and 

exported metrics to a Prometheus instance. 

5.1.2. Dashboards 

Grafana visualized transaction success rates and store-

wise performance. Real-time alerts for slow transactions were 

set up using Alert manager. 

5.1.3. Outcomes 

Transaction latency was reduced by 25% during peak 

hours through bottleneck identification. Immediate detection 

of application crashes, reducing downtime from 30 minutes to 

5 minutes on average. 

5.1.4. Significance 

This practical implementation demonstrates the real-

world scalability and effectiveness of Open Telemetry for 

distributed POS systems. 

6. Future Work: Enhancing Open Telemetry for 

POS Systems 
6.1. AI-Driven Insights 

Integrate machine learning models with Open Telemetry 

data to predict transaction anomalies.  

Use AI for adaptive alert thresholds, dynamically 

adjusting based on historical data patterns. 

6.2. IoT Integration 

Extend monitoring to IoT-based POS devices, such as 

mobile card readers or smart vending machines. 

6.3. Cost Optimization 

Explore telemetry sampling techniques to reduce data 

storage and processing costs. 

6.4. Cloud-Native Observability 

Seamlessly integrate Open Telemetry with Kubernetes 

for containerized POS systems, enabling auto-scaling 

telemetry infrastructure. 

6.5. Security Enhancements 

Implement zero-trust architecture for telemetry data 

pipelines to strengthen security in multi-tenant environments. 

7. Discussion: How Results Compare to State-of-

the-Art Techniques 
7.1. Existing Techniques 

7.1.1. Nagios/CheckMK 

Primarily log-based, lacks real-time monitoring of 

distributed systems. 



Avinash Swaminathan Vaidyanathan et al. / IJCTT, 72(12), 78-82, 2024 

 

82 

7.1.2. New Relic/Dynatrace 

Proprietary tools with comprehensive features but 

expensive and vendor locked. 

7.1.3. Elastic Stack 

Focused on logs and traces but requires significant 

configuration for metric visualization. 

7.1.4. Proposed Solution 

Open Telemetry in a Dockerized Environment 

7.1.5. Advantages 

Real-Time Monitoring: Faster detection of transaction 

anomalies compared to batch-processing systems like Nagios. 

7.1.6. Vendor Neutrality 

Open Telemetry allows seamless integration with various 

backends (Prometheus, Grafana) without platform lock-in. 

7.1.7. Cost Efficiency 

 Open-source stack reduces licensing fees, making it 

suitable for large-scale retail networks. 

7.1.8. Results Achieved 

• 25% improvement in transaction processing time. 

• Reduced MTTR (Mean Time to Resolution) from hours 

to minutes with proactive alerting. 

• Scalability tested with up to 10,000 transactions per 

second without performance degradation. 

• Limitations and Challenges: 

• Requires expertise in configuring and deploying Open 

Telemetry infrastructure. 

• Higher initial setup time compared to plug-and-play 

proprietary tools like Dynatrace. 

8. Conclusion 
The Conclusions section should clearly explain the main 

findings and implications of the work, highlighting its 

importance and relevance.  

Funding Statement 
Authors should state how the research and publication of 

their article were funded by naming financially supporting 

bodies followed by any associated grant numbers in square 

brackets. 

Acknowledgments 
An Acknowledgements section is optional and may 

recognise those individuals who provided help during the 

research and preparation of the manuscript. Other references 

to the title/authors can also appear here, such as “Author 1 and 

Author 2 contributed equally to this work.

References 
[1] Open Telemetry Documentation, Getting Started with Open Telemetry, 2024. [Online]. Available: https://opentelemetry.io/docs/  

[2] Prometheus Documentation, Getting Started with Prometheus, 2025. [Online]. Available:  

https://prometheus.io/docs/introduction/first_steps/  

[3] Grafana Documentation, Getting Started with Grafana, Grafana Labs, 2025. [Online]. Available:  

https://grafana.com/docs/grafana/latest/getting-started/  

[4] An Open Telemetry backend in a Docker image, Introducing Grafana/otel-lgtm, Grafana Labs, 2024. [Online]. Available:  

https://grafana.com/blog/2024/03/13/an-opentelemetry-backend-in-a-docker-image-introducing-grafana/otel-lgtm/  


