
 International Journal of Computer Trends and Technology Volume 72 Issue 1, 8-11, January 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I1P102 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Asynchronous Data Stream Ingestion in Distributed

Cloud Infrastructure

Vinay Gupta

Microsoft Corporation, Senior Software Engineer, Redmond, WA, USA.

Corresponding Author : vinaygupta@microsoft.com

Received: 14 November 2023 Revised: 23 December 2023 Accepted: 11 January 2024 Published: 24 January 2024

Abstract - Businesses use cloud infrastructure to boost performance and cut costs, making it a crucial engine for today’s agile

software ecosystem. Given the staggering amount of data generated daily, businesses have started offloading most of their

data onto the cloud. However, cloud providers need to catch up in meeting the exponential volume of incoming data, pushing

cloud providers to come up with innovative solutions to scale ingestion effectively. This paper discusses one innovative

solution for scaling the ingestion of asynchronous data streams using distributed Kafka-based ingestion. I will highlight the

relevant components of a Kafka cluster, what is a bottleneck in naïve data ingestion, and how Kafka can scale ingested data

streams to billions per day. I will also discuss how Kafka clusters are used in distributed cloud infrastructure and why

asynchronous data is a good candidate for Kafka-based ingestion. Kafka has significantly increased the scale of data streams

a public cloud provider can ingest.

Keywords - Apache Kafka, Asynchronous data streams, Cloud infrastructure, Distributed messaging queues.

1. Introduction
Astounding, 329 million terabytes of data are generated

every day. [1] Additionally, the data must be stored,

processed, and converted to meaningful information for

customers in microseconds. Can the monolithic services the

world used in the early 2000s process this amount of data

efficiently?

This is where the business need for public cloud

providers came into existence. The need for fast, centralized

storage of these data streams was becoming increasingly

obvious, but how to change our monolithic architecture to

handle the increasing data requirements was an open

problem. This is where the concept of microservices was

introduced in 2011. [2]

But how can the infrastructure be updated to decouple

the actions performed by individual services and

accommodate seamless communication between these

services?. The current infrastructure used in public cloud

providers is better suited for synchronous data streams. This

paper will advocate distributed messaging queues for

efficient asynchronous communication between software

components of a cloud infrastructure.

2. Background
When the data is sent to be ingested by the cloud

provider, the sender expects three critical assurances:

• Data Persistence

• Data Security

• Data Processing

While one can argue that monolithic service architecture

is good enough for data persistence and data security, fast

data processing can only be done through microservices-

oriented architecture. Furthermore, these data streams can be

both synchronous and asynchronous and be huge. [3] That is

why using a messaging queue in a microservices architecture

is a well-suited solution to this open problem.

2.1. Distributed Cloud Infrastructure to Store Data

To comply with the data privacy laws of different

countries, cloud providers need to ensure that data centers in

each country have a specific data flow structure. This

requires cloud providers to offer services globally and have

local data centers in each country. This also benefits the

customers, as having data centers nearby reduces latency and

improves cloud performance.

2.2. Asynchronous vs Synchronous Data Streams

Customers who send a request to the cloud services and

wait for the processed information are sending synchronous

data streams. However, there are asynchronous data streams

when a customer sends a request to the cloud services and

can do something else after receiving an acknowledgment

from the providers. There is no set clock in asynchronous

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Vinay Gupta / IJCTT, 72(1), 8-11, 2024

9

data streams, and requests of any size can be sent anytime.

Cloud providers need to ingest both asynchronous and

synchronous data streams.

2.3. Distributed Messaging Queue

When billions of asynchronous data streams enter the

cloud provider ecosystem waiting to be processed, they are

added to a messaging queue, which can be considered a long

list. Publishers add data/requests to the queues, and

subscribers fetch this data from the queue to start processing

data to generate meaningful information. [5] Advanced

messaging queues use persistent databases to store data.

3. Apache Kafka as a Distributed Messaging

Queue
Messaging queues can be overloaded with a million

requests if the queue lives on a single server. That is why, to

scale cloud infrastructure, it is essential to distribute a

messaging queue across servers. Kafka is an excellent open-

source distributed messaging queue. It provides fault

tolerance and durable data ingestion. The reason is that

Kafka replicates the queue using a replication factor and

stores the data on the persistent database. [6]

3.1. Partition

When a single queue is distributed into multiple similar

queues, each is called a Partition. The total number of

partitions is called a Partition count. Dividing one queue into

multiple partitions helps scale the ingestion exponentially.

3.2. Topic

Similar data being ingested is consumed by a group of

partitions. This grouping is called a topic.

3.3. Broker

 The partitions live on production servers. Each such

server holding one or more Partitions is called a Broker.

3.4. Record

 Data is stored in the partitions as data items called a

Record.

3.5. Producer

 A Producer is the infrastructure component that supplies

the data to these partitions.

3.6. Consumer

 The data in the partitions is picked up by individual

services called a Consumer.

3.7. Pub-Sub Model

 Pub-Sub model is a short form of the Publisher –

Subscriber model. This means the queue will have a

publisher to produce the data to be added. And a Subscriber

that will consume the data to do intended processing on the

ingested data streams. [7]

Fig. 1 Kafka architecture [8]

Producer

Producer

Producer

Consumer

Consumer

Consumer

 a

Broker-2 Server
Partition 3

Partition 1

Replica 2

a b c d e

Broker-0 Server
Partition 1

Partition 2

Replica 1

a b

Broker-1 Server

Partition 1

Replica 1

A topic

ZooKeeper Ensemble

Node 1 Node 2 Node 3

Partition 2

Consumer group

Vinay Gupta / IJCTT, 72(1), 8-11, 2024

10

4. Enhancing Cloud Capabilities with Kafka
 The need for public cloud providers stems from the vast

amount of data that needs processing, mainly in near real-

time. For this, multiple distributed messaging queues are

required to work together seamlessly.

 They need to serve hundreds of microservices on the

producer and consumer sides. Also, data needs to be

persistent, and processing needs to be fault-tolerant. A single

messaging queue cannot achieve all this. Hence, I advocate

using distributed Kafka to enhance the performance of public

cloud infrastructures. [9]

4.1. Why using Kafka Scales Cloud Infrastructure

 Kafka is a distributed messaging queue. It provides the

capabilities of topics and partitions. Topics help the

producers organize similar data and send it to a defined set of

partitions inside the topic.

 This way, the consumers do not need to search for

relevant data. The consumer can only communicate with the

issues of interest and focus on processing the data faster. [10]

4.2. How Data is Published to Kafka

 Customers use REST APIs to send data to the front-end

microservices. This front-end service will act as the producer

for the Kafka partitions. It will have the logic to determine

the Kafka partition key and send the incoming data to

respective partitions in the topic. [10] There can be multiple

front-end services and many issues that talk to services.

4.3. How Data Lives in Kafka

 Kafka is a fault-tolerant and durable messaging queue. It

replicates the data across multiple partitions using a

replication factor. Another strength of Kafka is that the data

is stored on persistent databases. So, the data is recovered

when a Kafka server restarts.

4.4. How Data is Consumed from Kafka

 The partitions in Kafka are subscribed by microservices

interested in the data for those partitions. Each subscriber has

the location of the data record it needs to read using the

concept of Offsets. [11] Subscriber reads the records

sequentially using offset. Zero or more microservices can

subscribe to each partition.

5. Distributed Kafka in Cloud Infrastructure

Fig. 2 Cloud computing architecture [12]

Fig. 3 Kafka in the Cloud Architecture [13]

Web

Server

Load

Balancer

Internet facing

gateway or

router

Database

Backend

Server

Public Subnet Private Subnet

User

Virtual Private Cloud (VPC)

Vinay Gupta / IJCTT, 72(1), 8-11, 2024

11

6. Conclusion
 Asynchronous data streams are much of the data being

processed by public cloud infrastructure. To efficiently

handle data of this massive scale, creative solutions that go

multiple steps beyond a simple monolithic architecture or a

single messaging queue are needed. Being a distributed,

fault-tolerant, and durable messaging queue, Kafka can help

scale the public cloud providers’ capacity exponentially

while keeping the data persistent. Also, given that Kafka is

open-source, public cloud providers can easily make a

wrapper service around Kafka to cater to their individual

customers’ needs.

References
[1] Fabio Duarte, Amount of Data Created Daily (2024), The Exploding Topics website, 2023. [Online]. Available:

https://explodingtopics.com/blog/data-generated-per-day

[2] Keith D. Foote, A Brief History of Microservices, The Dataversity website, 2021. [Online]. Available: https://www.dataversity.net/a-

brief-history-of-microservices/

[3] Eiman Alothali, Hany Alashwal, and Saad Harous, “Data Stream Mining Techniques: A Review,” TELKOMNIKA (Telecommunication

Computing Electronics and Control), vol. 17, no. 2, pp. 728-737, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[4] Ali T. Atieh, “The Next Generation Cloud Technologies: A Review on Distributed Cloud, Fog and Edge Computing and their

Opportunities and Challenges,” ResearchBerg Review of Science and Technology, vol. 1, no. 1, pp. 1-15, 2021. [Google Scholar]

[Publisher Link]

[5] Anh-Tuan H. Bui et al., “A Comprehensive Distributed Queue-Based Random Access Framework for mMTC in LTE/LTE-A Networks

with Mixed-Type Traffic,” IEEE Transactions on Vehicular Technology, vol. 68, no. 12, pp. 12107-121, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[6] Han Wu, Zhihao Shang, and Katinka Wolter, “Performance Prediction for the Apache Kafka Messaging System,” 2019 IEEE 21st

International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City;

IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, pp. 154-161, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[7] Jonathan Hasenburg, and David Bermbach, “DisGB: Using Geo-Context Information for Efficient Routing in Geo-Distributed Pub/Sub

Systems,” 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), Leicester, UK, pp. 67-78, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[8] Kafka Overview, IBM Automation - Event-driven Solution - Sharing knowledge, The IBM cloud website, 2022. [Online]. Available:

https://ibm-cloud-architecture.github.io/refarch-eda/technology/kafka-overview/.

[9] Mohamed Ouhssini et al., “Distributed Intrusion Detection System in the Cloud Environment Based on Apache Kafka and Apache

Spark,” 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS), Fez, Morocco, pp. 1-6, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[10] The Apache Kafka Documentation, 2021. [Online]. Available: https://kafka.apache.org/documentation/.

[11] Sean Rooney et al., “Kafka: The Database Inverted, but Not Garbled or Compromised,” 2019 IEEE International Conference on Big Data

(Big Data), Los Angeles, CA, USA, pp. 3874-3880, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[12] What Is Cloud Computing? Definition, Benefits, Types, and Trends, The Spiceworks Website, 2022. [Online]. Available:

https://www.spiceworks.com/tech/cloud/articles/what-is-cloud-computing/.

[13] Reading Avro Streams from Confluent Cloud into Apache Druid, The Hellmar Becker Website, 2021. [Online]. Available:

https://blog.hellmar-becker.de/2021/10/19/reading-avro-streams-from-confluent-cloud-into-druid/.

https://explodingtopics.com/blog/data-generated-per-day
http://doi.org/10.12928/telkomnika.v17i2.11752
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Alothali%2C+E.%2C+Alashwal%2C+H.%2C+%26+Harous%2C+S.+%282019%29.+Data+stream+mining+techniques%3A+a+review.+TELKOMNIKA+%28Telecommunication+Computing+Electronics+and+Control%29%2C+17%282%29%2C+728-737.+&btnG=
http://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/11752
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Next+Generation+Cloud+technologies%3A+A+Review+On+Distributed+Cloud%2C+Fog+And+Edge+Computing+and+Their+Opportunities+and+Challenges&btnG=
https://www.researchberg.com/index.php/rrst/article/view/18
http://doi.org/10.1109/TVT.2019.2949024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C48&q=A.+-T.+H.+Bui%2C+C.+T.+Nguyen%2C+T.+C.+Thang+and+A.+T.+Pham%2C+%22A+Comprehensive+Distributed+Queue-Based+Random+Access+Framework+for+mMTC+in+LTE%2FLTE-A+Networks+With+Mixed-Type+Traffic%2C%22+in+IEEE+Transactions+on+Vehicular+Technology%2C+vol.+68%2C+no.+12%2C+pp.+12107-121&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C48&q=A.+-T.+H.+Bui%2C+C.+T.+Nguyen%2C+T.+C.+Thang+and+A.+T.+Pham%2C+%22A+Comprehensive+Distributed+Queue-Based+Random+Access+Framework+for+mMTC+in+LTE%2FLTE-A+Networks+With+Mixed-Type+Traffic%2C%22+in+IEEE+Transactions+on+Vehicular+Technology%2C+vol.+68%2C+no.+12%2C+pp.+12107-121&btnG=
https://ieeexplore.ieee.org/abstract/document/8880524
http://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00036
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C48&q=Wu%2C+H.%2C+Shang%2C+Z.%2C+%26+Wolter%2C+K.+%282019%2C+August%29.+Performance+prediction+for+the+apache+kafka+messaging+system.+In+2019+IEEE+21st+International+Conference+on+High+Performance+Computing+and+Communications%3B+IEEE+17th+International+Conference+on+Smart+City%3B+IE&btnG=
https://ieeexplore.ieee.org/abstract/document/8855525
http://doi.org/10.1109/UCC48980.2020.00026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C48&q=%22J.+Hasenburg+and+D.+Bermbach%2C+%22DisGB%3A+Using+Geo-Context+Information+for+Efficient+Routing+in+Geo-Distributed+Pub%2FSub+Systems%2C%22+2020+IEEE%2FACM+13th+International+Conference+on+Utility+and+Cloud+Computing+%28UCC%29%2C+Leicester%2C+UK%2C+2020%2C+pp.+67-78%2C+doi%3A+10.1109%2FU%22.+&btnG=
https://ieeexplore.ieee.org/abstract/document/9302811
http://doi.org/10.1109/ICDS53782.2021.9626721
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C48&scioq=%22MICROSERVICES+IN+CLOUD+NATIVE+DEVELOPMENT+OF+APPLICATION%22&q=Distributed+intrusion+detection+system+in+the+cloud+environment+based+on+Apache+Kafka+and+Apache+Spark&btnG=
https://ieeexplore.ieee.org/abstract/document/9626721
http://doi.org/10.1109/BigData47090.2019.9005583
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C48&q=%22S.+Rooney+et+al.%2C+%22Kafka%3A+the+Database+Inverted%2C+but+Not+Garbled+or+Compromised%2C%22+2019+IEEE+International+Conference+on+Big+Data+%28Big+Data%29%2C+Los+Angeles%2C+CA%2C+USA%2C+2019%2C+pp.+3874-3880%2C+doi%3A+10.1109%2FBigData47090.2019.9005583.%22.+&btnG=
https://ieeexplore.ieee.org/abstract/document/9005583

