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Abstract - In a dynamic environment, creatures can adapt 

proper actions to interact or deal with other objects that 

are required to identify the relationship of self-behaviors 

and outside environmental data. Furthermore, before 

creatures have properly acted, the creatures have 

experienced or learned a successful way to handle the 

same problems or situations.  In this article, we want to 

demonstrate this identifying mechanism of creatures, 

which leads to the creatures properly interacting and 

learning response with the environment. Those proper 

interactions with environmental data can be observed by 

our sensory organs. Our sensory organs receive data from 

an environment that is a basic fundamental function to 

learn the knowledge or model for proper action. However, 

there is a lot of data, and we need to identify the relation of 

different data.  We use information entropy to measure the 

happened times of data. This kind of formulation is helping 

us to find out the relation between different data and data 

of behaviors. Once we can identify the connection between 

our behaviors and environmental data, that connection 

becomes a logic for judgment and guiding our interactions 

more properly.  Furthermore, we had coded a program to 

demonstrate this dynamic environment and interacting 

behaviors by combined particle swarm optimization (PSO) 

and information entropy.  Moreover, our program is 

presenting that the learning way of a creature is 

constructed by the identifying mechanism to form our 

logic.  The idea of what we propose is basic philosophy, 

pso, statistics, and behavioral psychology.  Those fields 

help us to figure out the steps of our thinking and design 

the program. 

 

Keywords - Central limit theorem, Information entropy, 

Max entropy, Knowledge diffusion, PSO. 
 

 

I. INTRODUCTION 

The creature is continuously collecting data from the 

environment, then it is according to specific data of events, 

and it justifies its behaviors for better survival chances. 

And this mechanism of collecting data and behavioral data 

is one part of our learning knowledge. We want to express 

a similar learning knowledge process in that we create the 

identifying mechanism as a detectable interaction of 

learning purpose (DILP). DILP uses information entropy 

to analyze the dynamic environmental data, and we 

demonstrate a program for explaining the idea. DILP has 

two major considerations of entropy systems: identifying 

data of associated interactions and training data by 

maximum Information. 
 

In identifying data of associated interactions, we are 

interested in a topic. How do creatures justify their 

behaviors for better survival chances? It must understand 

the relation between behavioral results and the 

environment. Our sensory organs collect data, and our 

neural system or memory records those cases which are 

different from the environment or unusual phenomenon, 

especially during our enfant period. We produce a lot of 

neural cells to remember the connection of environment 

data. Those processes are continuous for building our 

logic, and then our logical thinking is able to adapt the 

correct response to the environment. Furthermore, 

identifying the connections between environmental data 

and behavioral data is forming our logic of reasonable 

responses. And our behaviors are also creating unique data 

in any observed environment. So, we can use the relative 

entropy (Kullback-Leibler divergence) to identify the 

connections of environmental data and data of behaviors 

that are able to be the logical identification and learning 

way for adjusting behaviors. 
 

In training data by maximum Information, we want to 

ensure our trained data is best for trained models. The most 

common problems of the best-trained model are under-

fitted and overfit that is a trade-off relation. How do we 

ensure our trained data is best for a model? The maximum 

entropy is what we use for identifying the best-trained 

models when the received data are qualified and enough 

for trained models. 
 

There are a lot of science perspectives for designing 

our programs, such as pso, philosophy, statistics, data 

mining, neural network, and behavioral psychology. The 

initial idea is a problem of AI " reasonable response[1]." 

We need to settle this issue down and provide a 

mathematical perspective for our designs. We focus on the 

behaviors of creatures and the environmental data. Our 

point is that the creature's behaviors interact with the 

environment in that it must create data. That data is 

detectable by our sense organs, and some specific behavior 

produces unique data. Our sense organs observe those 

different data types from the environment that we can use 
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information entropy to identify their relations. 

Furthermore, those relations are similar to our logical 

thinking that we can accurately identify a reasonable and 

expected response from many possibilities. The idea of our 

DILP is based on data quantity or probability to find the 

relation of different data from physical space. Using 

probability to describe the reasonable response of different 

data can construct such logic of handling a dynamic 

environment that has much more meaning for living 

creatures. 
 

In the philosophy views, a priori and a posteriori 

knowledge define how we learn knowledge. And in this 

article, we can only follow the posteriori of philosophy to 

design our theory and program. The posteriori knowledge 

indicates that we can only expect a result from our 

experiences that those experiences are constructed by "try 

and error." And a priori knowledge infers an unknown or 

pre-guess result that requires a lot of posteriori knowledge 

to be the base of inferring thoughts. The posteriori 

knowledge has a critical connection with our logical 

thinking and proper interactions because without the 

expected result or experiences, and there are many possible 

actions that could be total chaos of our actions or go to the 

error side of " try and error." On the other hand, our 

behaviors are gradually settled down by best survival 

purposes. 
 

Statistics is the fundamental of many sciences, and our 

entropy information is also similar to statistics. The current 

applications, neural networks, and data mining are based 

on statistical perspectives. However, those still require a 

lot of human classification and collected data for training 

models. Normally we consider Gaussian distribution to 

estimate the trained degree of models by variance and bias 

of models. 
 

Furthermore, in some sciences, they observed the 

foraging behaviors of animals, and they proposed 

statistical models such as levy flight[2]. Whatever the 

statistical data of levy flight is only based on one target or 

object, and those statistical data are not fully collecting all 

relative data or other affecting elements, which those 

relative data and elements could have associated with 

target data. In the levy flight, scientists observed 

albatrosses which we cannot fully understand their 

behaviors, but behavioral psychology observed human 

behaviors. Some specific human behaviors are triggered or 

caused by specific environmental stimulation. Behavioral 

physiology collected much more about the behaviors of 

humans, and it has much more statistical data and scientific 

methods for reference. Therefore, we can infer the trace of 

interaction between humans and the environment. 
 

When we identify what kind of animals are smarter 

than we normally will think about the animal which has a 

social construction or hierarchy. Therefore, their learning 

efficiency has explicitly increased more than others 

without society. Society provides learning processes a lot 

of reference data and experience for the youth generation. 

For our learning, we need enough samples to identify 

cause and result relations. And this phenomenon has better 

mathematically described as what we proposed " training 

data by maximum 
information entropy." 

 

Particle swarm optimization (PSO) has a better 

explanation of those learning processes. Learning 

processes of pso construction have two major 

considerations, global searching, and local 

searching[3][4][5][6][7]. Global searching is a learning 

style from older people or parents, and the local searching 

is similar to self-expedition. Global searching and local 

searching are trade-off connections. 
 

However, global searching and local searching are not 

suitable to analyze a dynamic environment for identifying 

their relations. Therefore, we propose an information 

entropy system to settle down reasonable response issues 

for dealing with a dynamic environment. But, global 

searching has a similar function as society provides a 

based reference or a guide for those who have not 

experienced some situation. It is an important learning 

style for accumulated knowledge from society or elders. In 

our program, we did not design global and local searching. 

But, we need to share information to improve our 

performance. 
 

The procedure of accumulated knowledge is the most 

important fundamental for our intelligence in nature, and it 

has become a pattern for guiding our behaviors, such as 

educating the offspring, socializing for searching food, or 

protection. The pattern of formed society has an important 

function that is education or spreading knowledge, and that 

also influences our thinking[8]. 
 

In this article, the identifying data of associated 

interactions is connected with how we distinguish the 

relative data of the environment, and the training data by 

maximum information is settling down how we 

accumulate or enhance the knowledge of identifying the 

relative data. We have searched a lot of data for explaining 

our idea of what is a reasonable response. The pso and the 

priori and posteriori knowledge of philosophy demonstrate 

our learning methods, and our idea has only followed their 

rules to explore and explain the process of learning 

methods. The process of learning methods has a major 

function in that it identifies "cause and effect". We use 

information entropy to design the system, which is based 

on probability. Moreover, those daily behaviors are 

accumulating a lot of knowledge of the relative 

environmental conditions that is the reason for bringing 

high survival chances and high competing abilities. And 

we can only use information entropy to similar the 

processes of creatures learning and adapting behavior. 
 

II.  IDENTIFYING DATA OF ASSOCIATED 

INTERACTIONS 
We use information entropy to identify the data of cause 

and effect or interaction, in which data is reviewed by a 

happened event of specific conditions. Our sensory organs 

can detect such determinative data in a dynamic and 
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interacting space that avoids something dreadful affecting 

us. And the data normally has relative to our behaviors or 

even logical thinking. Therefore, this information entropy 

system can collect this quantity of probabilities for 

analyzing purposes. 
 

To demonstrate this process of our ideas, we have 

designed a program to display it.  In this program, it is a 

simple hunter and prey game, and we need to record the 

happened or caught events of data during each time. We 

need a 2-dimensional array 𝑋𝑖𝑗 to save happened times of 

different data types. Properties of environmental data are 

setting as 𝑋𝑖, and in the same property, "j" is recoding 

different values of the same 𝑋𝑖 condition. 
 

We want to find out the relation between an event and 

other data. So we have an entropy value of target event α.    

And we have discrete entropy formulation 

 

H(𝑋𝑖𝑗) = −∑𝑃(𝑋𝑖𝑗)

𝑛

𝑖=1

𝑙𝑜𝑔2𝑃(𝑋𝑖𝑗) 

 
If we can find the H(α), and the α  is binary data, then 

we set log2.  We want to compare their relationship that we 

use relative entropy (Kullback–Leibler divergence) for 

measuring their data sequence of time.  

 
A. Relative Entropy 

When we want to know the relation of two discrete 

probability distributions P and Q defined on the same 

probability space, 𝑋𝑖𝑗 , the Kullback–Leibler divergence 

form is defined as 

DKL(P||Q)= 

 ∑ 𝑃(𝑥)𝑙𝑜𝑔𝑥∈𝑋 (
𝑃(𝑥)

𝑄(𝑥)
) = 𝐻(𝑃, 𝑄) − 𝐻(𝑃) 

If we can find α and β  which they satisfy 

 DKL(α||β)  and  DKL(β||α)==0 

and β ϵ 𝑋𝑖𝑗, 

If we can find the α and β, and their probability 

distributions are the same.  Therefore, we know the α event 

happened then the β was also existing.  The β  data is a 

boundary of decision results for interacting with others 

during this dynamic space in a probabilistic construction.  

 

III.  TRAINING DATA BY MAXIMUM 

INFORMATION 
Creatures can judge or infer an expected result that 

has a good definition to describe those result data from our 

experiences by the posteriori knowledge of philosophy, 

and the posteriori knowledge is also one part of learning 

methods. How do we ensure that the collected data is 

enough for building the best model? We have adopted the 

max information to set the boundary quantity of the data 

set for training the best model. 
 

We use DKL to identify the relative data of specific 

events. However, there is a problem when the reference 

cases are too few. In that situation, the value of each 

entropy data has a chance to be the same value during 

DKL calculation. Such as when the target event has only 

one case that causes DKL values of distinguishing relative 

data to have a weak identification. On the other hand, there 

is a lack of information for entropy systems, and this 

problem is an underfitting problem for trained models. 

When we try to find the best-trained model, we have to 

deal with a balance of trade-offs. The underfit and overfit 

are the common issues of trade-offs. And we can use 

maximum entropy to solve the balance problem of the 

trade-off. Moreover, finding the trade-off problem is 

multiple optimal problems, and the pareto optimal has the 

same function during catching the reference data. 
 

In our program, the best training model is based on 

max entropy to sort the relative data from a binary event 

result. This binary event result is dependent on a particle's 

active behavior, and each particle's active behavior is an 

independent random variable. Therefore, we can use the 

central limit theorem to judge the best training data using 

max entropy. S={𝑂1,𝑂2, 𝑂𝑚}   S is a simple space of the 

random experiment 

I(X) is self-information from outcome  Xϵ S 
And we have n trails of random experiment X 

occurs 𝐶𝑛(X) times in n trails 
each occurrence produces I (X) bits of information 
The average information of the random variable X is 

associated with S as n approaches infinity. 

𝐻(𝑋) = lim
𝑛→∞

(
1

𝑛
∗∑𝐶𝑛(𝑋)𝐼(𝑋)

𝑚

𝑥=1

)

=∑𝑃(𝑋)𝐼(𝑋)

𝑚

𝑥=1

= −∑𝑃(𝑋)𝑙𝑜𝑔2(𝑃(𝑋))

𝑚

𝑥=1

 

 

Where I(X)= 𝑙𝑜𝑔2(P(X)) is the self-information due to an 

occurrence of outcome X. 
Our outcome is a binary result that we can expect the 

best training data on a certain form of probability. In 

Binomial distribution, we have 

P(data | t)=(𝑛
𝑘
)𝑡𝑘 ∗ (𝑡 − 1)𝑛−𝑘   

 

In this formulation, we cannot control the probability 

value t, but we can control the n and k values, and when 

k=1/2n is equal to max entropy, and when the n is large 

enough that we can have P-value near 1/2 during the first 

iteration. But after the first iteration, the behaviors are not 

as independent of the normal distribution, and the P-value 

is not expected. However, the case is still needed for 

analysis, and the max entropy qualifies the condition to set 

the best training data. 

 
IV. CONCLUSION 

In this article, we designed a program to express that 

using information entropy is able to analyze a reasonable 

relation between self-behaviors and environmental data. 

Our major point is using information entropy to design the 

analysis system. The information entropy is based on a 
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probabilistic definition, and the probabilistic inspires us to 

consider different perspectives. Moreover, that reasonable 

relation data is forming one part of our logic and thinking. 

And this one part of our logic and thinking relies on 

probabilities, and it forms our reasonable thinking and 

decisions by mathematical support. 
 

In our article, we created this learning process of 

creatures identifying logic data. It has mathematical 

support in the result. But the most powerful proof of one 

part of our logic is based on probability, and we have to 

mention knowledge diffusion. In knowledge diffusion, it is 

a better way to prove that probability forms some part of 

our logic layers. In a social network, there are some people 

or media that influence us to accept a new idea or product. 

Therefore, knowledge diffusion wants to know in what 

conditions can influence people to accept a new product or 

idea. And knowledge diffusion normally uses cascade and 

threshold models to analyze the complicated social 

network interaction[8]. 
 

As we can expect, the cascade and threshold models 

are based on probability, and those systems are fully 

present that the probability forms our logic layer. However, 

we analyze the environmental data and find the unique 

relation of each interaction to demonstrate what data forms 

reasonable actions or behaviors for a specific question, and 

those unique relative data are accumulated to become a 

large knowledge for society. 
 

If we simply observe the distribution of behavioral 

data that the data is present as a normal distribution, then 

the creature has recognized the problem and adapted 

different behaviors that the behavioral data is no longer a 

normal distribution form as our program demonstrated. 

In the end, the data in the dynamic environment are 

normally in a chaotic situation, if a creature can properly 

interact with the problem from the dynamic environment 

that the creature had recognized what data or condition 

caused the problem, the cause and effect relationship 

between behavior and environmental data is required by 

our learning mechanism to continuously improve and fix, 

and our program is present as this function. The creature's 

learning method is following case by case. Although it may 

have a lack of simples, this is true of the learning steps, 

and this problem is only possibly solved by the 

construction of society. 
 

REFERENCES 
[1] Stuart Russell and Peter Norvig., Artificial Intelligence: A Modern 

Approach, Edition 3, Prentice Hall., (2002) 
[2] X.-S. Yang; S. Deb., Cuckoo search via Lévy flights, World 

Congress on Nature & Biologically Inspired Computing. IEEE 

Publications. Paper core summary, 210–

214.http://papercore.org/Yang2009 
[3] Yang, X. S., Firefly Algorithm, Stochastic Test Functions, and 

Design Optimisation., Paper core summary., 

http://papercore.org/Yang2009., (2008) 1-11. 
[4] Kennedy, J.; Eberhart, R.., Particle Swarm Optimization., 

Proceedings of IEEE International Conference on Neural 

Networks., 4(1942–1948). 
[5] Ujjwal Maulik, Sanghamitra Bandyopadhyay (29 April 1999) " 

Genetic algorithm-based clustering technique, Pattern 

Recognition., 33(1455) (1465) 1455-1465. 
[6] Ahmad Rabanimotlagh Bursa., An Efficient Ant Colony 

Optimization Algorithm for Multiobjective Flow Shop Scheduling 

Problem" World Academy of Science, Engineering and 

Technology., 51(2011) 127-133. 
[7] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by 

Simulated Annealing., Science 220(4598) (1983) 671-680. 
[8] Nishith Pathak; Arindam Banerjee; Jaideep Srivastava., A 

Generalized Linear Threshold Model for Multiple Cascades., 2010 

IEEE International Conference on Data Mining, DOI: 

10.1109/ICDM.2010.153, ISSN: 2374-8486 

 
 

Appendix 

Matlab code 

 

%This program is demonstrating a learning system that is similar to animals 

%This program has two major parts, identifying the key data when events are 

%caused. And enhance the training data.  There are two parts of our article to demonstrate the idea, 

%"Identifying data of associated interactions, and Training data by maximum 

%Information." 

function [ output_args ] = EvolutionSI( input_args ) 

%EVOLUTIONSI Summary of this function goes here %   Detailed 

explanation goes here 

%Grid environments sizeT=100; 

T=zeros(sizeT,sizeT); 

%create 10 swarms,2-D, and state(size T) of initial individuals, for training data by maximum 

%Information we need to set the swarmN=10, which is the particle number, swarmN=10; 

%Swarm 

S=zeros(10,swarm N);%XXX?6 format 

%building reference properties for estimated NN 

%1, the distance between current predator and S.2, S and S. %3, mark a shortest neighbor 4, S(state=0) and P latest 

position. 5,S(state=0) and P latest second position. 

Properties N N=zeros(swarmN,5); 

%create simple train Data for behaviors train Data A=[100 100 100];%just for 

initial number 
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%position 

for ii=1:swarmN, 

%x,y,states,moving directions,end X,endY, 

S(:,ii)=[51,51,100,0,0,0,0,0,0,0]; 

end 

%temp 

TableEP=zeros(5,3*swarmN,5); SelectionEN=zeros(swarmN,4); 

CountSelEN=zeros(swarmN,4);%debug1 

ComparingEE=zeros(15,2,swarmN); 

%unidentified targets 

%position predatorA=[1,1,100,0,51]; 

%Loop for generations %set 100 

iterations for i=1:100, 

%reset All but keep trainData for ii=1:swarmN, 

%x,y,states,moving directions,end X,endY, 

S(:,ii)=[51,51,100,0,0,0,0,0,0,0]; end 

PropertiesNN=zeros(swarmN,5); 

TableEP=zeros(5,3*swarmN,5); SelectionEN=zeros(swarmN,4); 

CountSelEN=zeros(swarmN,4);%debug1 

ComparingEE=zeros(15,2,swarmN); 

%reset predatorA predatorA=[1,1,100,0,51]; 

%point predatorOnly=0; 

%action times %if (j==1) 

for j=1:2000, 

%Swarm group action for x=1:swarmN, 

%S call the moving function to decide which position is better for approache if S(3,x)>0 

S(7,x)=S(1,x);%recalling last position 

S(8,x)=S(2,x);%recalling last position end 

S(:,x)=move(S(:,x),trainDataA,predatorA);%no Neural Network 

end 

 

%predator acts time 

[predatorA,S]=shortestdistancePS(predatorA,S); 

%calculating entropy values-array if 

(predatorA(4)>predatorOnly) 

predatorOnly=predatorA(4); PropertiesNN=analysis(S,predatorA); 

TableEP=EntropyProc(PropertiesNN,S); 

[ComparingEE SelectionEN]=EntropyFormulation(S,TableEP,PropertiesNN); 

%accumulating SelectionEN results for ASR=1:swarmN, 

for ASC=1:4, 

if (SelectionEN(ASR,ASC)~=0) 

CountSelEN(ASR,ASC)=CountSelEN(ASR,ASC)+1; else 

CountSelEN(ASR,ASC)=0; end end 

end 

end 

%show the actions 

figure(1); set(gcf,'position',[0,0,1000,1000]); 

plot(S(1,:),S(2,:),'O'); hold on; 

plot(predatorA(1),predatorA(2),'X'); xlim([0 100]); 

ylim([0 100]); 

grid on; grid minor; 

pause(.1); 

clf('reset') 

%hold off; 

%set break point 

%if (predatorA(4)==5) 

%     j=0; 

%     break 

%  end 
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%If we set the swarmN=10,and according our "Training data by maximum %Information", the 

>4,which it is stop when we have 5 cases, which is %fitting the maximum information rule. if 

predatorA(4)>4 j=200; break end 

end 

%training Data set 

%position and best direction 

% 

MAXSEN=max(CountSelEN(:)); 

%must be better than this for training data 

%find the Max points point TopMAX=[0,0]; 

%find the most populating value 

Point Culmulating = [PropertiesNN(1,4),0]; 

%collect data to generate points Cumulative 

Can Train=0; for ASC2=4:5, 

for ASR2=1:swarmN, 

if Properties NN(ASR2,1)==300%new1 CanTrain=CanTrain+1; if max(is member(Properties 

NN(ASR2,ASC2),point Culmulating(:,1))) 

[tempX tempY]=is member (PropertiesNN(ASR2,ASC2),point Culmulating(:,1)); point Culmulating 

(tempY,2)=point Culmulating (tempY,2)+1; 

else point Culmulating(end+1,:)=[Properties NN(ASR2,ASC2) 1]; 

end end 

end 

end 

%create suitable logic layers 

%find the most populating number anchor P=max(point 

Culmulating(:,2)); anchor S=zeros(anchorP,2); 

nouse=0; 

[nouse anchorP]=is member (anchorP, point Culmulating(:,2)); anchorP=point 

Culminating (anchorP,1); nouse=1; 

%fetch logic layer and position,4=last,5=last second for AnchC=4:5, 

for AnchS=1:swarmN, if Properties 

NN(AnchS,AnchC)==anchorP anchor S (nouse,:)=[AnchS 

AnchC]; nouse=nouse+1; end 

end 

end 

%setting rules,S, 

[sizeAry nouse]=size(anchorS); if 

CanTrain>=2%new2 

for anchS=1:sizeAry, 

%negative behaviors create logic actions 

%negative or positive results,and PropertiesNN transport S. 

%distance S-P=(X,Y) 

[comp nouse]=size(trainDataA); compwell=1; 

for ij=1:comp, 

TempTrain=[S(1,anchorS(anchS,1))-S(5,anchorS(anchS,1)) 

S(2,anchorS(anchS,1))-S(6,anchorS(anchS,1)) S(4,anchorS(anchS,1))]; 

if isequal(TempTrain,trainDataA(ij,:)) compwell=0; 

end 

end 

if compwell trainDataA(end+1,:)=TempTrain; end 

% end 

%distance 2 

% if S(anchorS(anchS,1),3)==0 && anchorS(anchS,2)==5 

% end 

%moving distance between predator and prey 

end end end 

trainDataA 

%sub Functions 
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%move function,input parament:nn,randomly move function 

[positionOut]=move(positionIn,trainDa,Pred) %Logic layers to decide which 

machines handle job 

[trDR trDC]=size(trainDa); if 

positionIn(3)>0 

if trDR<=1 positionIn=randomwalk(positionIn); else 

%find the same dirction of predator and S,and abandon actions 

%find the longest distance between predator and S, distancePS=0; for 

ist=2:trDR, 

tempDistan=abs(trainDa(ist,1))+abs(trainDa(ist,2)); if 

tempDistan>distancePS distancePS=tempDistan; end 

end 

tempDistPS=abs(positionIn(1,1)-Pred(1,1))+abs(positionIn(2,1)-Pred(1,2)); 

%If the longest distance of S and Predator is low than present distance if 

distancePS>=tempDistPS 

%find the same position and dirction in the predator and S, 

%except actions 

Paction=10; for ist2=2:trDR, 

if isequal([trainDa(ist2,1) trainDa(ist2,2) ],[positionIn(1,1)-Pred(1,1) 

positionIn(2,1)-Pred(1,2)]) Paction(end+1)=trainDa(ist2,3); 

end 

end 

%except actions %find illegal 

action rightAct=100; for ixt=0:4, 

if ismember(ixt,Paction) else 

rightAct(end+1)=ixt; 

end 

end 

%deal with edge of size [idf 

idf2]=size(rightAct); tempAidf=[100]; 

if idf2>1 

for ixt3=2:idf2, %edge detection 

if rightAct(ixt3)==1 

if positionIn(2,1)+1>100 

tempAidf(end+1)=ixt3; end 

end 

if rightAct(ixt3)==2 

if positionIn(2,1)-1<0 

tempAidf(end+1)=ixt3; end 

end 

if rightAct(ixt3)==3 

if positionIn(1,1)+1>100 

tempAidf(end+1)=ixt3; end 

end 

if rightAct(ixt3)==4 

if positionIn(1,1)-1<0 

tempAidf(end+1)=ixt3; end end end 

end 

%remove illegal action 

[iddf iddf2]=size(tempAidf); for ixt4=0:iddf2 

tempps=rightAct(rightAct~=tempAidf(iddf2)); 

rightAct=tempps; end 

%estimate possible action 

[ittt ittt2]=size(rightAct); direction2=ceil(rand*ittt2); 

direction2 if direction2~=0 direction2=rightAct(direction2); 

switch direction2 case 0    %dont move 

positionIn(4)=0; %do nothing case 1    %move 

up positionIn(2)=positionIn(2)+1; 

positionIn(4)=1; case 2    %move down 

positionIn(2)=positionIn(2)-1; 
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positionIn(4)=2; case 3    %move right 

positionIn(1)=positionIn(1)+1; 

positionIn(4)=3; case 4  %move left 

positionIn(1)=positionIn(1)-1; 

positionIn(4)=4; otherwise %not decide end% 

end switch direction 

else 

positionIn=randomwalk(positionIn); end 

else position In=randomwalk(positionIn); end end end 

positionOut=positionIn; end 

function[comparingE signal]=EntropyFormulation(S2,TableEF,relation2) 

%size of TableEF 

[ni,nj]=size(S2); 

[rni,rnj]=size(relation2); 

%boolean data sT=0; sF=0; 

%Entropy survival for ij=1:rni if 

relation2(ij,1)~=300 sT=sT+1; else 

sF=sF+1; 

end 

end 

%Entropy survival 

EntropyS=-(sT/(sT+sF))*log2((sT/(sT+sF)))-(sF/(sT+sF))*log2((sF/(sT+sF))); 

%problem Nan 

if is nan(Entropy S) 

Entropy S=0; end 

% Entropy of after selection comparingE=zeros(15,2,nj);%estimating values with R and L2 logic layers(18),2 properties 

and 10 entities 

BfT=0; 

BfF=0; 

%2logic layers,2 properties and 10 entities jj=0; for j=4:rnj, 

jj=jj+1; for i=1:nj, 

%estimating values comparing E(1,jj,i)=relation2(i,j); 

%>,<= 

%>,Entropy R, properties ,S T,S F 

%LT,LF 

%first logic layer comparing E(2,jj,i)=Table EF(1,nj+(i*2-1),j);%<,L comparing 

E(3,jj,i)=Table EF(1,nj+(i*2),j); %<,D comparing E(4,jj,i)=TableEF(5,nj+(i*2-

1),j);%>=,L comparing E(5,jj,i)=Table EF(5,nj+(i*2),j); %>=,D 

%calculating Entropy values 

L2jji=comparingE(2,jj,i)/((comparingE(3,jj,i)+comparingE(2,jj,i))); 

D2jji=comparingE(3,jj,i)/((comparingE(3,jj,i)+comparingE(2,jj,i))); 

%bug fixing 

if isnan(L2jji) L2jji=0; 

end 

if isnan(D2jji) D2jji=0; 

end 

%Entropy 

Comparing E(6,jj,i)=-L2jji*log2(L2jji)-D2jji*log2(D2jji); %<,Entropy 

if(L2jji==0) comparing E(6,jj,i)=-D2jji*log2(D2jji); %<,Entropy end 

if(D2jji==0) comparing E(6,jj,i)=-L2jji*log2(L2jji); %<,Entropy 

end 

if (L2jji==0 && D2jji==0) 

comparing E(6,jj,i)=0; end 

L4jji=comparing E(4,jj,i)/((comparing E(4,jj,i)+comparing E(5,jj,i))); 

D4jji=comparingE(5,jj,i)/((comparingE(4,jj,i)+comparingE(5,jj,i))); 

%bug fixing 

if is nan(L4jji) L4jji=0; 

end 

if is nan(D4jji) D4jji=0; 

end %entropy 
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comparingE(7,jj,i)=-L4jji*log2(L4jji)-D4jji*log2(D4jji);%>=,Entropy 

if(L4jji==0) 

comparing E(7,jj,i)=-D4jji*log2(D4jji); %>=,Entropy end 

if(D4jji==0) comparing E(7,jj,i)=-L4jji*log2(L4jji); %>=,Entropy 

end 

if (L4jji==0 && D4jji==0) 

comparing E(7,jj,i)=0; end 

Enallf=comparing E(2,jj,i)+comparing E(5,jj,i)+comparing E(3,jj,i)+comparingE(4,jj,i); 

EnR=comparing E(2,jj,i)+comparing E(3,jj,i); 

EnL=comparing E(4,jj,i)+comparing E(5,jj,i); 

comparingE(8,jj,i)=EntropyS-((EnR/Enallf*comparingE(6,jj,i))+(EnL/Enallf*comparingE(7,jj,i))) ; %>=,final total 

Entropy 

%second logic layer comparing E(9,jj,i)=TableEF(4,nj+(i*2-1),j);%>,L 

comparingE(10,jj,i)=TableEF(4,nj+(i*2),j); %>,D comparingE(11,jj,i)=TableEF(2,nj+(i*2-

1),j);%<=,L 

 comparing E(12,jj,i)=Table EF(2,nj+(i*2),j); %<=,D 

%calculating Entropy values 

L9jji=comparingE(9,jj,i)/((comparingE(9,jj,i)+comparingE(10,jj,i))); 

D9jji=comparingE(10,jj,i)/((comparingE(9,jj,i)+comparingE(10,jj,i))); 

%bug fixing 

if is nan(L9jji) 

L9jji=0; 

end 

if is nan(D9jji) D9jji=0; 

end 

%Entropy 

Comparing E(13,jj,i)=-L9jji*log2(L9jji)-D9jji*log2(D9jji); %>,Entropy 

if(L9jji==0) 

comparing E(13,jj,i)=-D9jji*log2(D9jji); %>,Entropy end 

if(D9jji==0) comparing E(13,jj,i)=-L9jji*log2(L9jji); %>,Entropy 

end 

if (L9jji==0 && D9jji==0) 

comparing E(13,jj,i)=0; 

end 

L11jji=comparingE(11,jj,i)/((comparingE(11,jj,i)+comparingE(12,jj,i))); 

D11jji=comparingE(12,jj,i)/((comparingE(11,jj,i)+comparingE(12,jj,i))); 

%bug fixing 

if is nan(L11jji) L11jji=0; 

end 

if is nan (D11jji) D11jji=0; 

end %entropy 

comparingE(14,jj,i)=-L11jji*log2(L11jji)-D11jji*log2(D11jji);%<=,L Entropy 

if(L11jji==0) comparing E(14,jj,i)=-D11jji*log2(D11jji); %<=,Entropy 

end 

if(D11jji==0) comparing E(14,jj,i)=-L11jji*log2(L11jji); %<=,Entropy 

end 

if (L11jji==0 && D11jji==0) 

comparing E(14,jj,i)=0; 

end 

Enalls=comparing E(9,jj,i)+comparing E(10,jj,i)+comparingE(11,jj,i)+comparingE(12,jj,i); 

EnRs=comparing E(9,jj,i)+comparing E(10,jj,i); 

EnLs=comparing E(11,jj,i)+comparing E(12,jj,i); 

comparingE(15,jj,i)=EntropyS-((EnRs/Enalls*comparingE(13,jj,i))+(EnLs/Enalls*comparingE( 

14,jj,i))); %>=,final total Entropy 

end 

end 

jj=0; 

signal=zeros(nj,4); 

%comparing E 8and15 have the estimating value to decide relations for ix=1:nj, %<,>=,First 

if (comparing E(8,1,ix)==0) 
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signal(ix,1)=1; end 

%>,<=,F 

if (comparing E(15,1,ix)==0) 

signal(ix,2)=1; end 

%<,>=,Second 

if (comparingE(8,2,ix)==0) 

signal(ix,3)=1; end 

%>,<=,S 

if (comparingE(15,2,ix)==0) 

signal(ix,4)=1; end 

end 

end 

function[]=food() 

%search 

%flight 

end 

function[matries]=analysis(object1s,target1p) 

[An,Ann]=size(object1s); 

matries=zeros(Ann,5); 

%1,distance between current predator and S.2, S and S. %3, mark a shortest neighbor 4,S(state=0) and P latest position. 

5,S(state=0) and P latest second position. 

for ix=1:Ann, 

%1,distance between current predator and S if(object1s(3,ix)==100) 

matries(ix,1)=abs(object1s(1,ix)-target1p(1))+abs(object1s(2,ix)-target1p(2)); 

else matries(ix,1)=300; end 

%2,  S and S.,shortest distance between S. 

%3, mark a shortest neighbor shortestXY=200; 

for ixx=1:Ann, if(ix~=ixx) distanceX=abs(object1s(1,ix)-

object1s(1,ixx)); distanceY=abs(object1s(2,ix)-object1s(2,ixx)); 

distanceXY=distanceX+distanceY; 

if(distanceXY<shortestXY) 

shortestXY=distanceXY; matries(ix,3)=ixx; 

matries(ix,2)=shortestXY; 

end end 

end 

%4,S(state=0) and P lastest position. 5,S(state=0) and P lastest second position. if(object1s(3,ix)==0) 

matries(ix,4)=abs(object1s(1,ix)-object1s(5,ix))+abs(object1s(2,ix)-object1s(6,ix)); 

matries(ix,5)=abs(object1s(7,ix)-object1s(5,ix))+abs(object1s(8,ix)-object1s(6,ix)); else matries(ix,4)=300; 

matries(ix,5)=300; end 

end 

%adjust arrary1 to arrarty 4 and 5 for i=4:5, 

for j=1:Ann, if matries(j,i)==300 

matries(j,i)=matries(j,1); end end end 

end 

%building a logical,relation1=s,2=predator function[EntropyTable]=EntropyProc(relation1,S1) 

%setting logic layers 

[Cn,Cnn]=size(relation1);%10,5 

%There are 5 logic layers and 10 for entropy boolean,which were set by authour,EntropyTable(5 logic 

%layers,5Elements,10=S numbers), 

EntropyTable=zeros(5,3*Cn,Cnn);%5X30X5,3*Cn=30 for ij=1:Cnn, for 

ijj=1:Cn, 

%comparing each others 

for ijjj=1:Cn 

%excluding self 

if relation1(ijj,ij)~=300 

if (ijj~=ijjj) 

% compared results accumulate 5 logic layers,run (Cn-1) times 

%first logic layer,">" ,smaller 

if relation1(ijj,ij)>relation1(ijjj,ij)&(relation1(ijjj,ij)~=300) 
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EntropyTable(1,ijj,ij)=EntropyTable(1,ijj,ij)+1; %adjusting the 

state for entropy if S1(3,ijjj)==100 

EntropyTable(1,(Cn+(ijj*2)-1),ij)=EntropyTable(1,(Cn+(ijj*2)-1),ij)+1; else 

EntropyTable(1,(Cn+(ijj*2)),ij)=EntropyTable(1,(Cn+(ijj*2)),ij)+1; end 

end 

%second logic layers,">=" 

if relation1(ijj,ij)>=relation1(ijjj,ij)&(relation1(ijjj,ij)~=300) 

EntropyTable(2,ijj,ij)=EntropyTable(2,ijj,ij)+1; if S1(3,ijjj)==100 

EntropyTable(2,(Cn+(ijj*2)-1),ij)=EntropyTable(2,(Cn+(ijj*2)-1),ij)+1; else 

EntropyTable(2,(Cn+(ijj*2)),ij)=EntropyTable(2,(Cn+(ijj*2)),ij)+1; end 

end 

%Third logic layers."=" 

if (relation1(ijj,ij)==relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)) 

EntropyTable(3,ijj,ij)=EntropyTable(3,ijj,ij)+1; if S1(3,ijjj)==100 

EntropyTable(3,(Cn+(ijj*2)-1),ij)=EntropyTable(3,(Cn+(ijj*2)-1),ij)+1; else 

EntropyTable(3,(Cn+(ijj*2)),ij)=EntropyTable(3,(Cn+(ijj*2)),ij)+1; end 

end 

%Fourth logic layers."<" 

if (relation1(ijj,ij)<relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)) 

EntropyTable(4,ijj,ij)=EntropyTable(4,ijj,ij)+1; if S1(3,ijjj)==100 

EntropyTable(4,(Cn+(ijj*2)-1),ij)=EntropyTable(4,(Cn+(ijj*2)-1),ij)+1; else 

EntropyTable(4,(Cn+(ijj*2)),ij)=EntropyTable(4,(Cn+(ijj*2)),ij)+1; end 

end 

%Fifth logic layers."<=" 

if (relation1(ijj,ij)<=relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)) 

EntropyTable(5,ijj,ij)=EntropyTable(5,ijj,ij)+1; if S1(3,ijjj)==100 

EntropyTable(5,(Cn+(ijj*2)-1),ij)=EntropyTable(5,(Cn+(ijj*2)-1),ij)+1; else 

EntropyTable(5,(Cn+(ijj*2)),ij)=EntropyTable(5,(Cn+(ijj*2)),ij)+1; end 

end 

else 

%fix(ijj~=ijjj) cause problems of entropy %firt logic layer,">" ,smaller if 

relation1(ijj,ij)>relation1(ijjj,ij)&(relation1(ijjj,ij)~=300) 

%adjusting the state for entropy if S1(3,ijjj)==100 

EntropyTable(1,(Cn+(ijj*2)-1),ij)=EntropyTable(1,(Cn+(ijj*2)-1),ij)+1; else 

EntropyTable(1,(Cn+(ijj*2)),ij)=EntropyTable(1,(Cn+(ijj*2)),ij)+1; end 

end 

%second logic layers,">=" 

if relation1(ijj,ij)>=relation1(ijjj,ij)&(relation1(ijjj,ij)~=300) 

if S1(3,ijjj)==100 

EntropyTable(2,(Cn+(ijj*2)-1),ij)=EntropyTable(2,(Cn+(ijj*2)-1),ij)+1; else 

EntropyTable(2,(Cn+(ijj*2)),ij)=EntropyTable(2,(Cn+(ijj*2)),ij)+1; end end 

%Third logic layers."=" if 

(relation1(ijj,ij)==relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)) if S1(3,ijjj)==100 

EntropyTable(3,(Cn+(ijj*2)-1),ij)=EntropyTable(3,(Cn+(ijj*2)-1),ij)+1; else 

EntropyTable(3,(Cn+(ijj*2)),ij)=EntropyTable(3,(Cn+(ijj*2)),ij)+1; end 

end 

%Fourth logic layers."<" 

if (relation1(ijj,ij)<relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)) if S1(3,ijjj)==100 

EntropyTable(4,(Cn+(ijj*2)-1),ij)=EntropyTable(4,(Cn+(ijj*2)-1),ij)+1; else 

EntropyTable(4,(Cn+(ijj*2)),ij)=EntropyTable(4,(Cn+(ijj*2)),ij)+1; end 

end 

%Fifth logic layers."<=" if 

(relation1(ijj,ij)<=relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)) if S1(3,ijjj)==100 

EntropyTable(5,(Cn+(ijj*2)-1),ij)=EntropyTable(5,(Cn+(ijj*2)-1),ij)+1; else 

EntropyTable(5,(Cn+(ijj*2)),ij)=EntropyTable(5,(Cn+(ijj*2)),ij)+1; end 

end end 

% if(relation1(ijj,ij~=300)) else 

EntropyTable(1,ijj,ij)=300; EntropyTable(2,ijj,ij)=300; 

EntropyTable(3,ijj,ij)=300; EntropyTable(4,ijj,ij)=300; 

EntropyTable(5,ijj,ij)=300; 
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%adjusting the state for entropy 

end 

end 

end 

end 

end 

function[object,others]=shortestdistancePS(object,others) 

[N,NN]=size(others); 

%selected a target for predator Tempj=1; 

if others(3,1)>0 shortX=others(1,1); shortY=others(2,1); totalD=abs(object(1)-

others(1,1))+abs(object(2)-others(2,1)); else shortX=100; shortY=100; totalD=200; 

end 

%searching shortest targets for j=2:N, 

if others(3,j)>0 totalT=abs(object(1)-others(1,j))+abs(object(2)-others(2,j)); 

if totalD>totalT 

shortX=others(1,j); 

shortY=others(2,j); totalD=totalT; 

Tempj=j; end end 

end 

%moving direction updown=object(2)-

shortY; rightleft=object(1)-shortX; 

tempC=1; tempOldX=object(1); 

tempOldY=object(2); if updown<0 

object(2)=object(2)+1; tempC=0; 

end if updown>0 

object(2)=object(2)-1; 

tempC=0; 

end 

if rightleft<0&tempC 

object(1)=object(1)+1; 

end 

if rightleft>0&tempC 

object(1)=object(1)-1; end %catch one if 

object(2)==others(2,Tempj)&object(1)==others(1,Tempj) others(3,Tempj)=0; 

others(5,Tempj)=tempOldX; others(6,Tempj)=tempOldY; object(4)=object(4)+1; 

end 

end function[objec]=randomwalk(objec) 

direction=floor(rand*5); switch direction case 0    

%dont move objec(4)=0; %do nothing case 1    

%move up objec(2)=objec(2)+1; objec(4)=1; case 2    

%move down objec(2)=objec(2)-1; objec(4)=2; case 3    

%move right objec(1)=objec(1)+1; objec(4)=3; case 4  

%move left objec(1)=objec(1)-1; objec(4)=4; 

otherwise %not decide end% end switch direction 

if objec(1)>100 objec(1)=100; 

end 

if objec(2)>100 objec(2)=100; 

end 

if objec(1)<0 

objec(1)=0; end 

if objec(2)<0 objec(2)=0; 

end end end 


