
International Journal of Computer Trends and Technology Volume 69 Issue 7, 58-69, July 2021

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V69I7P109 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Self-Organizing Information for Approaching AI

by Relative Entropy

I-HO Lee

Master, Information engineering, I-Shou University,
No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City, Taiwan, R.O.C.

Received Date: 08 June 2021

Revised Date: 11 July 2021

Accepted Date: 21 July 2021

Abstract - In a dynamic environment, creatures can adapt

proper actions to interact or deal with other objects that

are required to identify the relationship of self-behaviors

and outside environmental data. Furthermore, before

creatures have properly acted, the creatures have

experienced or learned a successful way to handle the

same problems or situations. In this article, we want to

demonstrate this identifying mechanism of creatures,

which leads to the creatures properly interacting and

learning response with the environment. Those proper

interactions with environmental data can be observed by

our sensory organs. Our sensory organs receive data from

an environment that is a basic fundamental function to

learn the knowledge or model for proper action. However,

there is a lot of data, and we need to identify the relation of

different data. We use information entropy to measure the

happened times of data. This kind of formulation is helping

us to find out the relation between different data and data

of behaviors. Once we can identify the connection between

our behaviors and environmental data, that connection

becomes a logic for judgment and guiding our interactions

more properly. Furthermore, we had coded a program to

demonstrate this dynamic environment and interacting

behaviors by combined particle swarm optimization (PSO)

and information entropy. Moreover, our program is

presenting that the learning way of a creature is

constructed by the identifying mechanism to form our

logic. The idea of what we propose is basic philosophy,

pso, statistics, and behavioral psychology. Those fields

help us to figure out the steps of our thinking and design

the program.

Keywords - Central limit theorem, Information entropy,

Max entropy, Knowledge diffusion, PSO.

I. INTRODUCTION

The creature is continuously collecting data from the

environment, then it is according to specific data of events,

and it justifies its behaviors for better survival chances.

And this mechanism of collecting data and behavioral data

is one part of our learning knowledge. We want to express

a similar learning knowledge process in that we create the

identifying mechanism as a detectable interaction of

learning purpose (DILP). DILP uses information entropy

to analyze the dynamic environmental data, and we

demonstrate a program for explaining the idea. DILP has

two major considerations of entropy systems: identifying

data of associated interactions and training data by

maximum Information.

In identifying data of associated interactions, we are

interested in a topic. How do creatures justify their

behaviors for better survival chances? It must understand

the relation between behavioral results and the

environment. Our sensory organs collect data, and our

neural system or memory records those cases which are

different from the environment or unusual phenomenon,

especially during our enfant period. We produce a lot of

neural cells to remember the connection of environment

data. Those processes are continuous for building our

logic, and then our logical thinking is able to adapt the

correct response to the environment. Furthermore,

identifying the connections between environmental data

and behavioral data is forming our logic of reasonable

responses. And our behaviors are also creating unique data

in any observed environment. So, we can use the relative

entropy (Kullback-Leibler divergence) to identify the

connections of environmental data and data of behaviors

that are able to be the logical identification and learning

way for adjusting behaviors.

In training data by maximum Information, we want to

ensure our trained data is best for trained models. The most

common problems of the best-trained model are under-

fitted and overfit that is a trade-off relation. How do we

ensure our trained data is best for a model? The maximum

entropy is what we use for identifying the best-trained

models when the received data are qualified and enough

for trained models.

There are a lot of science perspectives for designing

our programs, such as pso, philosophy, statistics, data

mining, neural network, and behavioral psychology. The

initial idea is a problem of AI " reasonable response[1]."

We need to settle this issue down and provide a

mathematical perspective for our designs. We focus on the

behaviors of creatures and the environmental data. Our

point is that the creature's behaviors interact with the

environment in that it must create data. That data is

detectable by our sense organs, and some specific behavior

produces unique data. Our sense organs observe those

different data types from the environment that we can use

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

 I-HO Lee / IJCTT, 69(7), 58-69, 2021

59

information entropy to identify their relations.

Furthermore, those relations are similar to our logical

thinking that we can accurately identify a reasonable and

expected response from many possibilities. The idea of our

DILP is based on data quantity or probability to find the

relation of different data from physical space. Using

probability to describe the reasonable response of different

data can construct such logic of handling a dynamic

environment that has much more meaning for living

creatures.

In the philosophy views, a priori and a posteriori

knowledge define how we learn knowledge. And in this

article, we can only follow the posteriori of philosophy to

design our theory and program. The posteriori knowledge

indicates that we can only expect a result from our

experiences that those experiences are constructed by "try

and error." And a priori knowledge infers an unknown or

pre-guess result that requires a lot of posteriori knowledge

to be the base of inferring thoughts. The posteriori

knowledge has a critical connection with our logical

thinking and proper interactions because without the

expected result or experiences, and there are many possible

actions that could be total chaos of our actions or go to the

error side of " try and error." On the other hand, our

behaviors are gradually settled down by best survival

purposes.

Statistics is the fundamental of many sciences, and our

entropy information is also similar to statistics. The current

applications, neural networks, and data mining are based

on statistical perspectives. However, those still require a

lot of human classification and collected data for training

models. Normally we consider Gaussian distribution to

estimate the trained degree of models by variance and bias

of models.

Furthermore, in some sciences, they observed the

foraging behaviors of animals, and they proposed

statistical models such as levy flight[2]. Whatever the

statistical data of levy flight is only based on one target or

object, and those statistical data are not fully collecting all

relative data or other affecting elements, which those

relative data and elements could have associated with

target data. In the levy flight, scientists observed

albatrosses which we cannot fully understand their

behaviors, but behavioral psychology observed human

behaviors. Some specific human behaviors are triggered or

caused by specific environmental stimulation. Behavioral

physiology collected much more about the behaviors of

humans, and it has much more statistical data and scientific

methods for reference. Therefore, we can infer the trace of

interaction between humans and the environment.

When we identify what kind of animals are smarter

than we normally will think about the animal which has a

social construction or hierarchy. Therefore, their learning

efficiency has explicitly increased more than others

without society. Society provides learning processes a lot

of reference data and experience for the youth generation.

For our learning, we need enough samples to identify

cause and result relations. And this phenomenon has better

mathematically described as what we proposed " training

data by maximum
information entropy."

Particle swarm optimization (PSO) has a better

explanation of those learning processes. Learning

processes of pso construction have two major

considerations, global searching, and local

searching[3][4][5][6][7]. Global searching is a learning

style from older people or parents, and the local searching

is similar to self-expedition. Global searching and local

searching are trade-off connections.

However, global searching and local searching are not

suitable to analyze a dynamic environment for identifying

their relations. Therefore, we propose an information

entropy system to settle down reasonable response issues

for dealing with a dynamic environment. But, global

searching has a similar function as society provides a

based reference or a guide for those who have not

experienced some situation. It is an important learning

style for accumulated knowledge from society or elders. In

our program, we did not design global and local searching.

But, we need to share information to improve our

performance.

The procedure of accumulated knowledge is the most

important fundamental for our intelligence in nature, and it

has become a pattern for guiding our behaviors, such as

educating the offspring, socializing for searching food, or

protection. The pattern of formed society has an important

function that is education or spreading knowledge, and that

also influences our thinking[8].

In this article, the identifying data of associated

interactions is connected with how we distinguish the

relative data of the environment, and the training data by

maximum information is settling down how we

accumulate or enhance the knowledge of identifying the

relative data. We have searched a lot of data for explaining

our idea of what is a reasonable response. The pso and the

priori and posteriori knowledge of philosophy demonstrate

our learning methods, and our idea has only followed their

rules to explore and explain the process of learning

methods. The process of learning methods has a major

function in that it identifies "cause and effect". We use

information entropy to design the system, which is based

on probability. Moreover, those daily behaviors are

accumulating a lot of knowledge of the relative

environmental conditions that is the reason for bringing

high survival chances and high competing abilities. And

we can only use information entropy to similar the

processes of creatures learning and adapting behavior.

II. IDENTIFYING DATA OF ASSOCIATED

INTERACTIONS
We use information entropy to identify the data of cause

and effect or interaction, in which data is reviewed by a

happened event of specific conditions. Our sensory organs

can detect such determinative data in a dynamic and

 I-HO Lee / IJCTT, 69(7), 58-69, 2021

60

interacting space that avoids something dreadful affecting

us. And the data normally has relative to our behaviors or

even logical thinking. Therefore, this information entropy

system can collect this quantity of probabilities for

analyzing purposes.

To demonstrate this process of our ideas, we have

designed a program to display it. In this program, it is a

simple hunter and prey game, and we need to record the

happened or caught events of data during each time. We

need a 2-dimensional array 𝑋𝑖𝑗 to save happened times of

different data types. Properties of environmental data are

setting as 𝑋𝑖, and in the same property, "j" is recoding

different values of the same 𝑋𝑖 condition.

We want to find out the relation between an event and

other data. So we have an entropy value of target event α.

And we have discrete entropy formulation

H(𝑋𝑖𝑗) = −∑𝑃(𝑋𝑖𝑗)

𝑛

𝑖=1

𝑙𝑜𝑔2𝑃(𝑋𝑖𝑗)

If we can find the H(α), and the α is binary data, then

we set log2. We want to compare their relationship that we

use relative entropy (Kullback–Leibler divergence) for

measuring their data sequence of time.

A. Relative Entropy

When we want to know the relation of two discrete

probability distributions P and Q defined on the same

probability space, 𝑋𝑖𝑗 , the Kullback–Leibler divergence

form is defined as

DKL(P||Q)=

 ∑ 𝑃(𝑥)𝑙𝑜𝑔𝑥∈𝑋 (
𝑃(𝑥)

𝑄(𝑥)
) = 𝐻(𝑃, 𝑄) − 𝐻(𝑃)

If we can find α and β which they satisfy

 DKL(α||β) and DKL(β||α)==0

and β ϵ 𝑋𝑖𝑗,

If we can find the α and β, and their probability

distributions are the same. Therefore, we know the α event

happened then the β was also existing. The β data is a

boundary of decision results for interacting with others

during this dynamic space in a probabilistic construction.

III. TRAINING DATA BY MAXIMUM

INFORMATION
Creatures can judge or infer an expected result that

has a good definition to describe those result data from our

experiences by the posteriori knowledge of philosophy,

and the posteriori knowledge is also one part of learning

methods. How do we ensure that the collected data is

enough for building the best model? We have adopted the

max information to set the boundary quantity of the data

set for training the best model.

We use DKL to identify the relative data of specific

events. However, there is a problem when the reference

cases are too few. In that situation, the value of each

entropy data has a chance to be the same value during

DKL calculation. Such as when the target event has only

one case that causes DKL values of distinguishing relative

data to have a weak identification. On the other hand, there

is a lack of information for entropy systems, and this

problem is an underfitting problem for trained models.

When we try to find the best-trained model, we have to

deal with a balance of trade-offs. The underfit and overfit

are the common issues of trade-offs. And we can use

maximum entropy to solve the balance problem of the

trade-off. Moreover, finding the trade-off problem is

multiple optimal problems, and the pareto optimal has the

same function during catching the reference data.

In our program, the best training model is based on

max entropy to sort the relative data from a binary event

result. This binary event result is dependent on a particle's

active behavior, and each particle's active behavior is an

independent random variable. Therefore, we can use the

central limit theorem to judge the best training data using

max entropy. S={𝑂1,𝑂2, 𝑂𝑚} S is a simple space of the

random experiment

I(X) is self-information from outcome Xϵ S
And we have n trails of random experiment X

occurs 𝐶𝑛(X) times in n trails
each occurrence produces I (X) bits of information
The average information of the random variable X is

associated with S as n approaches infinity.

𝐻(𝑋) = lim
𝑛→∞

(
1

𝑛
∗∑𝐶𝑛(𝑋)𝐼(𝑋)

𝑚

𝑥=1

)

=∑𝑃(𝑋)𝐼(𝑋)

𝑚

𝑥=1

= −∑𝑃(𝑋)𝑙𝑜𝑔2(𝑃(𝑋))

𝑚

𝑥=1

Where I(X)= 𝑙𝑜𝑔2(P(X)) is the self-information due to an

occurrence of outcome X.
Our outcome is a binary result that we can expect the

best training data on a certain form of probability. In

Binomial distribution, we have

P(data | t)=(𝑛
𝑘
)𝑡𝑘 ∗ (𝑡 − 1)𝑛−𝑘

In this formulation, we cannot control the probability

value t, but we can control the n and k values, and when

k=1/2n is equal to max entropy, and when the n is large

enough that we can have P-value near 1/2 during the first

iteration. But after the first iteration, the behaviors are not

as independent of the normal distribution, and the P-value

is not expected. However, the case is still needed for

analysis, and the max entropy qualifies the condition to set

the best training data.

IV. CONCLUSION

In this article, we designed a program to express that

using information entropy is able to analyze a reasonable

relation between self-behaviors and environmental data.

Our major point is using information entropy to design the

analysis system. The information entropy is based on a

 I-HO Lee / IJCTT, 69(7), 58-69, 2021

61

probabilistic definition, and the probabilistic inspires us to

consider different perspectives. Moreover, that reasonable

relation data is forming one part of our logic and thinking.

And this one part of our logic and thinking relies on

probabilities, and it forms our reasonable thinking and

decisions by mathematical support.

In our article, we created this learning process of

creatures identifying logic data. It has mathematical

support in the result. But the most powerful proof of one

part of our logic is based on probability, and we have to

mention knowledge diffusion. In knowledge diffusion, it is

a better way to prove that probability forms some part of

our logic layers. In a social network, there are some people

or media that influence us to accept a new idea or product.

Therefore, knowledge diffusion wants to know in what

conditions can influence people to accept a new product or

idea. And knowledge diffusion normally uses cascade and

threshold models to analyze the complicated social

network interaction[8].

As we can expect, the cascade and threshold models

are based on probability, and those systems are fully

present that the probability forms our logic layer. However,

we analyze the environmental data and find the unique

relation of each interaction to demonstrate what data forms

reasonable actions or behaviors for a specific question, and

those unique relative data are accumulated to become a

large knowledge for society.

If we simply observe the distribution of behavioral

data that the data is present as a normal distribution, then

the creature has recognized the problem and adapted

different behaviors that the behavioral data is no longer a

normal distribution form as our program demonstrated.

In the end, the data in the dynamic environment are

normally in a chaotic situation, if a creature can properly

interact with the problem from the dynamic environment

that the creature had recognized what data or condition

caused the problem, the cause and effect relationship

between behavior and environmental data is required by

our learning mechanism to continuously improve and fix,

and our program is present as this function. The creature's

learning method is following case by case. Although it may

have a lack of simples, this is true of the learning steps,

and this problem is only possibly solved by the

construction of society.

REFERENCES
[1] Stuart Russell and Peter Norvig., Artificial Intelligence: A Modern

Approach, Edition 3, Prentice Hall., (2002)
[2] X.-S. Yang; S. Deb., Cuckoo search via Lévy flights, World

Congress on Nature & Biologically Inspired Computing. IEEE

Publications. Paper core summary, 210–

214.http://papercore.org/Yang2009
[3] Yang, X. S., Firefly Algorithm, Stochastic Test Functions, and

Design Optimisation., Paper core summary.,

http://papercore.org/Yang2009., (2008) 1-11.
[4] Kennedy, J.; Eberhart, R.., Particle Swarm Optimization.,

Proceedings of IEEE International Conference on Neural

Networks., 4(1942–1948).
[5] Ujjwal Maulik, Sanghamitra Bandyopadhyay (29 April 1999) "

Genetic algorithm-based clustering technique, Pattern

Recognition., 33(1455) (1465) 1455-1465.
[6] Ahmad Rabanimotlagh Bursa., An Efficient Ant Colony

Optimization Algorithm for Multiobjective Flow Shop Scheduling

Problem" World Academy of Science, Engineering and

Technology., 51(2011) 127-133.
[7] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by

Simulated Annealing., Science 220(4598) (1983) 671-680.
[8] Nishith Pathak; Arindam Banerjee; Jaideep Srivastava., A

Generalized Linear Threshold Model for Multiple Cascades., 2010

IEEE International Conference on Data Mining, DOI:

10.1109/ICDM.2010.153, ISSN: 2374-8486

Appendix

Matlab code

%This program is demonstrating a learning system that is similar to animals

%This program has two major parts, identifying the key data when events are

%caused. And enhance the training data. There are two parts of our article to demonstrate the idea,

%"Identifying data of associated interactions, and Training data by maximum

%Information."

function [output_args] = EvolutionSI(input_args)

%EVOLUTIONSI Summary of this function goes here % Detailed

explanation goes here

%Grid environments sizeT=100;

T=zeros(sizeT,sizeT);

%create 10 swarms,2-D, and state(size T) of initial individuals, for training data by maximum

%Information we need to set the swarmN=10, which is the particle number, swarmN=10;

%Swarm

S=zeros(10,swarm N);%XXX?6 format

%building reference properties for estimated NN

%1, the distance between current predator and S.2, S and S. %3, mark a shortest neighbor 4, S(state=0) and P latest

position. 5,S(state=0) and P latest second position.

Properties N N=zeros(swarmN,5);

%create simple train Data for behaviors train Data A=[100 100 100];%just for

initial number

 I-HO Lee / IJCTT, 69(7), 58-69, 2021

62

%position

for ii=1:swarmN,

%x,y,states,moving directions,end X,endY,

S(:,ii)=[51,51,100,0,0,0,0,0,0,0];

end

%temp

TableEP=zeros(5,3*swarmN,5); SelectionEN=zeros(swarmN,4);

CountSelEN=zeros(swarmN,4);%debug1

ComparingEE=zeros(15,2,swarmN);

%unidentified targets

%position predatorA=[1,1,100,0,51];

%Loop for generations %set 100

iterations for i=1:100,

%reset All but keep trainData for ii=1:swarmN,

%x,y,states,moving directions,end X,endY,

S(:,ii)=[51,51,100,0,0,0,0,0,0,0]; end

PropertiesNN=zeros(swarmN,5);

TableEP=zeros(5,3*swarmN,5); SelectionEN=zeros(swarmN,4);

CountSelEN=zeros(swarmN,4);%debug1

ComparingEE=zeros(15,2,swarmN);

%reset predatorA predatorA=[1,1,100,0,51];

%point predatorOnly=0;

%action times %if (j==1)

for j=1:2000,

%Swarm group action for x=1:swarmN,

%S call the moving function to decide which position is better for approache if S(3,x)>0

S(7,x)=S(1,x);%recalling last position

S(8,x)=S(2,x);%recalling last position end

S(:,x)=move(S(:,x),trainDataA,predatorA);%no Neural Network

end

%predator acts time

[predatorA,S]=shortestdistancePS(predatorA,S);

%calculating entropy values-array if

(predatorA(4)>predatorOnly)

predatorOnly=predatorA(4); PropertiesNN=analysis(S,predatorA);

TableEP=EntropyProc(PropertiesNN,S);

[ComparingEE SelectionEN]=EntropyFormulation(S,TableEP,PropertiesNN);

%accumulating SelectionEN results for ASR=1:swarmN,

for ASC=1:4,

if (SelectionEN(ASR,ASC)~=0)

CountSelEN(ASR,ASC)=CountSelEN(ASR,ASC)+1; else

CountSelEN(ASR,ASC)=0; end end

end

end

%show the actions

figure(1); set(gcf,'position',[0,0,1000,1000]);

plot(S(1,:),S(2,:),'O'); hold on;

plot(predatorA(1),predatorA(2),'X'); xlim([0 100]);

ylim([0 100]);

grid on; grid minor;

pause(.1);

clf('reset')

%hold off;

%set break point

%if (predatorA(4)==5)

% j=0;

% break

% end

 I-HO Lee / IJCTT, 69(7), 58-69, 2021

63

%If we set the swarmN=10,and according our "Training data by maximum %Information", the

>4,which it is stop when we have 5 cases, which is %fitting the maximum information rule. if

predatorA(4)>4 j=200; break end

end

%training Data set

%position and best direction

%

MAXSEN=max(CountSelEN(:));

%must be better than this for training data

%find the Max points point TopMAX=[0,0];

%find the most populating value

Point Culmulating = [PropertiesNN(1,4),0];

%collect data to generate points Cumulative

Can Train=0; for ASC2=4:5,

for ASR2=1:swarmN,

if Properties NN(ASR2,1)==300%new1 CanTrain=CanTrain+1; if max(is member(Properties

NN(ASR2,ASC2),point Culmulating(:,1)))

[tempX tempY]=is member (PropertiesNN(ASR2,ASC2),point Culmulating(:,1)); point Culmulating

(tempY,2)=point Culmulating (tempY,2)+1;

else point Culmulating(end+1,:)=[Properties NN(ASR2,ASC2) 1];

end end

end

end

%create suitable logic layers

%find the most populating number anchor P=max(point

Culmulating(:,2)); anchor S=zeros(anchorP,2);

nouse=0;

[nouse anchorP]=is member (anchorP, point Culmulating(:,2)); anchorP=point

Culminating (anchorP,1); nouse=1;

%fetch logic layer and position,4=last,5=last second for AnchC=4:5,

for AnchS=1:swarmN, if Properties

NN(AnchS,AnchC)==anchorP anchor S (nouse,:)=[AnchS

AnchC]; nouse=nouse+1; end

end

end

%setting rules,S,

[sizeAry nouse]=size(anchorS); if

CanTrain>=2%new2

for anchS=1:sizeAry,

%negative behaviors create logic actions

%negative or positive results,and PropertiesNN transport S.

%distance S-P=(X,Y)

[comp nouse]=size(trainDataA); compwell=1;

for ij=1:comp,

TempTrain=[S(1,anchorS(anchS,1))-S(5,anchorS(anchS,1))

S(2,anchorS(anchS,1))-S(6,anchorS(anchS,1)) S(4,anchorS(anchS,1))];

if isequal(TempTrain,trainDataA(ij,:)) compwell=0;

end

end

if compwell trainDataA(end+1,:)=TempTrain; end

% end

%distance 2

% if S(anchorS(anchS,1),3)==0 && anchorS(anchS,2)==5

% end

%moving distance between predator and prey

end end end

trainDataA

%sub Functions

 I-HO Lee / IJCTT, 69(7), 58-69, 2021

64

%move function,input parament:nn,randomly move function

[positionOut]=move(positionIn,trainDa,Pred) %Logic layers to decide which

machines handle job

[trDR trDC]=size(trainDa); if

positionIn(3)>0

if trDR<=1 positionIn=randomwalk(positionIn); else

%find the same dirction of predator and S,and abandon actions

%find the longest distance between predator and S, distancePS=0; for

ist=2:trDR,

tempDistan=abs(trainDa(ist,1))+abs(trainDa(ist,2)); if

tempDistan>distancePS distancePS=tempDistan; end

end

tempDistPS=abs(positionIn(1,1)-Pred(1,1))+abs(positionIn(2,1)-Pred(1,2));

%If the longest distance of S and Predator is low than present distance if

distancePS>=tempDistPS

%find the same position and dirction in the predator and S,

%except actions

Paction=10; for ist2=2:trDR,

if isequal([trainDa(ist2,1) trainDa(ist2,2)],[positionIn(1,1)-Pred(1,1)

positionIn(2,1)-Pred(1,2)]) Paction(end+1)=trainDa(ist2,3);

end

end

%except actions %find illegal

action rightAct=100; for ixt=0:4,

if ismember(ixt,Paction) else

rightAct(end+1)=ixt;

end

end

%deal with edge of size [idf

idf2]=size(rightAct); tempAidf=[100];

if idf2>1

for ixt3=2:idf2, %edge detection

if rightAct(ixt3)==1

if positionIn(2,1)+1>100

tempAidf(end+1)=ixt3; end

end

if rightAct(ixt3)==2

if positionIn(2,1)-1<0

tempAidf(end+1)=ixt3; end

end

if rightAct(ixt3)==3

if positionIn(1,1)+1>100

tempAidf(end+1)=ixt3; end

end

if rightAct(ixt3)==4

if positionIn(1,1)-1<0

tempAidf(end+1)=ixt3; end end end

end

%remove illegal action

[iddf iddf2]=size(tempAidf); for ixt4=0:iddf2

tempps=rightAct(rightAct~=tempAidf(iddf2));

rightAct=tempps; end

%estimate possible action

[ittt ittt2]=size(rightAct); direction2=ceil(rand*ittt2);

direction2 if direction2~=0 direction2=rightAct(direction2);

switch direction2 case 0 %dont move

positionIn(4)=0; %do nothing case 1 %move

up positionIn(2)=positionIn(2)+1;

positionIn(4)=1; case 2 %move down

positionIn(2)=positionIn(2)-1;

 I-HO Lee / IJCTT, 69(7), 58-69, 2021

65

positionIn(4)=2; case 3 %move right

positionIn(1)=positionIn(1)+1;

positionIn(4)=3; case 4 %move left

positionIn(1)=positionIn(1)-1;

positionIn(4)=4; otherwise %not decide end%

end switch direction

else

positionIn=randomwalk(positionIn); end

else position In=randomwalk(positionIn); end end end

positionOut=positionIn; end

function[comparingE signal]=EntropyFormulation(S2,TableEF,relation2)

%size of TableEF

[ni,nj]=size(S2);

[rni,rnj]=size(relation2);

%boolean data sT=0; sF=0;

%Entropy survival for ij=1:rni if

relation2(ij,1)~=300 sT=sT+1; else

sF=sF+1;

end

end

%Entropy survival

EntropyS=-(sT/(sT+sF))*log2((sT/(sT+sF)))-(sF/(sT+sF))*log2((sF/(sT+sF)));

%problem Nan

if is nan(Entropy S)

Entropy S=0; end

% Entropy of after selection comparingE=zeros(15,2,nj);%estimating values with R and L2 logic layers(18),2 properties

and 10 entities

BfT=0;

BfF=0;

%2logic layers,2 properties and 10 entities jj=0; for j=4:rnj,

jj=jj+1; for i=1:nj,

%estimating values comparing E(1,jj,i)=relation2(i,j);

%>,<=

%>,Entropy R, properties ,S T,S F

%LT,LF

%first logic layer comparing E(2,jj,i)=Table EF(1,nj+(i*2-1),j);%<,L comparing

E(3,jj,i)=Table EF(1,nj+(i*2),j); %<,D comparing E(4,jj,i)=TableEF(5,nj+(i*2-

1),j);%>=,L comparing E(5,jj,i)=Table EF(5,nj+(i*2),j); %>=,D

%calculating Entropy values

L2jji=comparingE(2,jj,i)/((comparingE(3,jj,i)+comparingE(2,jj,i)));

D2jji=comparingE(3,jj,i)/((comparingE(3,jj,i)+comparingE(2,jj,i)));

%bug fixing

if isnan(L2jji) L2jji=0;

end

if isnan(D2jji) D2jji=0;

end

%Entropy

Comparing E(6,jj,i)=-L2jji*log2(L2jji)-D2jji*log2(D2jji); %<,Entropy

if(L2jji==0) comparing E(6,jj,i)=-D2jji*log2(D2jji); %<,Entropy end

if(D2jji==0) comparing E(6,jj,i)=-L2jji*log2(L2jji); %<,Entropy

end

if (L2jji==0 && D2jji==0)

comparing E(6,jj,i)=0; end

L4jji=comparing E(4,jj,i)/((comparing E(4,jj,i)+comparing E(5,jj,i)));

D4jji=comparingE(5,jj,i)/((comparingE(4,jj,i)+comparingE(5,jj,i)));

%bug fixing

if is nan(L4jji) L4jji=0;

end

if is nan(D4jji) D4jji=0;

end %entropy

 I-HO Lee / IJCTT, 69(7), 58-69, 2021

66

comparingE(7,jj,i)=-L4jji*log2(L4jji)-D4jji*log2(D4jji);%>=,Entropy

if(L4jji==0)

comparing E(7,jj,i)=-D4jji*log2(D4jji); %>=,Entropy end

if(D4jji==0) comparing E(7,jj,i)=-L4jji*log2(L4jji); %>=,Entropy

end

if (L4jji==0 && D4jji==0)

comparing E(7,jj,i)=0; end

Enallf=comparing E(2,jj,i)+comparing E(5,jj,i)+comparing E(3,jj,i)+comparingE(4,jj,i);

EnR=comparing E(2,jj,i)+comparing E(3,jj,i);

EnL=comparing E(4,jj,i)+comparing E(5,jj,i);

comparingE(8,jj,i)=EntropyS-((EnR/Enallf*comparingE(6,jj,i))+(EnL/Enallf*comparingE(7,jj,i))) ; %>=,final total

Entropy

%second logic layer comparing E(9,jj,i)=TableEF(4,nj+(i*2-1),j);%>,L

comparingE(10,jj,i)=TableEF(4,nj+(i*2),j); %>,D comparingE(11,jj,i)=TableEF(2,nj+(i*2-

1),j);%<=,L

 comparing E(12,jj,i)=Table EF(2,nj+(i*2),j); %<=,D

%calculating Entropy values

L9jji=comparingE(9,jj,i)/((comparingE(9,jj,i)+comparingE(10,jj,i)));

D9jji=comparingE(10,jj,i)/((comparingE(9,jj,i)+comparingE(10,jj,i)));

%bug fixing

if is nan(L9jji)

L9jji=0;

end

if is nan(D9jji) D9jji=0;

end

%Entropy

Comparing E(13,jj,i)=-L9jji*log2(L9jji)-D9jji*log2(D9jji); %>,Entropy

if(L9jji==0)

comparing E(13,jj,i)=-D9jji*log2(D9jji); %>,Entropy end

if(D9jji==0) comparing E(13,jj,i)=-L9jji*log2(L9jji); %>,Entropy

end

if (L9jji==0 && D9jji==0)

comparing E(13,jj,i)=0;

end

L11jji=comparingE(11,jj,i)/((comparingE(11,jj,i)+comparingE(12,jj,i)));

D11jji=comparingE(12,jj,i)/((comparingE(11,jj,i)+comparingE(12,jj,i)));

%bug fixing

if is nan(L11jji) L11jji=0;

end

if is nan (D11jji) D11jji=0;

end %entropy

comparingE(14,jj,i)=-L11jji*log2(L11jji)-D11jji*log2(D11jji);%<=,L Entropy

if(L11jji==0) comparing E(14,jj,i)=-D11jji*log2(D11jji); %<=,Entropy

end

if(D11jji==0) comparing E(14,jj,i)=-L11jji*log2(L11jji); %<=,Entropy

end

if (L11jji==0 && D11jji==0)

comparing E(14,jj,i)=0;

end

Enalls=comparing E(9,jj,i)+comparing E(10,jj,i)+comparingE(11,jj,i)+comparingE(12,jj,i);

EnRs=comparing E(9,jj,i)+comparing E(10,jj,i);

EnLs=comparing E(11,jj,i)+comparing E(12,jj,i);

comparingE(15,jj,i)=EntropyS-((EnRs/Enalls*comparingE(13,jj,i))+(EnLs/Enalls*comparingE(

14,jj,i))); %>=,final total Entropy

end

end

jj=0;

signal=zeros(nj,4);

%comparing E 8and15 have the estimating value to decide relations for ix=1:nj, %<,>=,First

if (comparing E(8,1,ix)==0)

 I-HO Lee / IJCTT, 69(7), 58-69, 2021

67

signal(ix,1)=1; end

%>,<=,F

if (comparing E(15,1,ix)==0)

signal(ix,2)=1; end

%<,>=,Second

if (comparingE(8,2,ix)==0)

signal(ix,3)=1; end

%>,<=,S

if (comparingE(15,2,ix)==0)

signal(ix,4)=1; end

end

end

function[]=food()

%search

%flight

end

function[matries]=analysis(object1s,target1p)

[An,Ann]=size(object1s);

matries=zeros(Ann,5);

%1,distance between current predator and S.2, S and S. %3, mark a shortest neighbor 4,S(state=0) and P latest position.

5,S(state=0) and P latest second position.

for ix=1:Ann,

%1,distance between current predator and S if(object1s(3,ix)==100)

matries(ix,1)=abs(object1s(1,ix)-target1p(1))+abs(object1s(2,ix)-target1p(2));

else matries(ix,1)=300; end

%2, S and S.,shortest distance between S.

%3, mark a shortest neighbor shortestXY=200;

for ixx=1:Ann, if(ix~=ixx) distanceX=abs(object1s(1,ix)-

object1s(1,ixx)); distanceY=abs(object1s(2,ix)-object1s(2,ixx));

distanceXY=distanceX+distanceY;

if(distanceXY<shortestXY)

shortestXY=distanceXY; matries(ix,3)=ixx;

matries(ix,2)=shortestXY;

end end

end

%4,S(state=0) and P lastest position. 5,S(state=0) and P lastest second position. if(object1s(3,ix)==0)

matries(ix,4)=abs(object1s(1,ix)-object1s(5,ix))+abs(object1s(2,ix)-object1s(6,ix));

matries(ix,5)=abs(object1s(7,ix)-object1s(5,ix))+abs(object1s(8,ix)-object1s(6,ix)); else matries(ix,4)=300;

matries(ix,5)=300; end

end

%adjust arrary1 to arrarty 4 and 5 for i=4:5,

for j=1:Ann, if matries(j,i)==300

matries(j,i)=matries(j,1); end end end

end

%building a logical,relation1=s,2=predator function[EntropyTable]=EntropyProc(relation1,S1)

%setting logic layers

[Cn,Cnn]=size(relation1);%10,5

%There are 5 logic layers and 10 for entropy boolean,which were set by authour,EntropyTable(5 logic

%layers,5Elements,10=S numbers),

EntropyTable=zeros(5,3*Cn,Cnn);%5X30X5,3*Cn=30 for ij=1:Cnn, for

ijj=1:Cn,

%comparing each others

for ijjj=1:Cn

%excluding self

if relation1(ijj,ij)~=300

if (ijj~=ijjj)

% compared results accumulate 5 logic layers,run (Cn-1) times

%first logic layer,">" ,smaller

if relation1(ijj,ij)>relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)

 I-HO Lee / IJCTT, 69(7), 58-69, 2021

68

EntropyTable(1,ijj,ij)=EntropyTable(1,ijj,ij)+1; %adjusting the

state for entropy if S1(3,ijjj)==100

EntropyTable(1,(Cn+(ijj*2)-1),ij)=EntropyTable(1,(Cn+(ijj*2)-1),ij)+1; else

EntropyTable(1,(Cn+(ijj*2)),ij)=EntropyTable(1,(Cn+(ijj*2)),ij)+1; end

end

%second logic layers,">="

if relation1(ijj,ij)>=relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)

EntropyTable(2,ijj,ij)=EntropyTable(2,ijj,ij)+1; if S1(3,ijjj)==100

EntropyTable(2,(Cn+(ijj*2)-1),ij)=EntropyTable(2,(Cn+(ijj*2)-1),ij)+1; else

EntropyTable(2,(Cn+(ijj*2)),ij)=EntropyTable(2,(Cn+(ijj*2)),ij)+1; end

end

%Third logic layers."="

if (relation1(ijj,ij)==relation1(ijjj,ij)&(relation1(ijjj,ij)~=300))

EntropyTable(3,ijj,ij)=EntropyTable(3,ijj,ij)+1; if S1(3,ijjj)==100

EntropyTable(3,(Cn+(ijj*2)-1),ij)=EntropyTable(3,(Cn+(ijj*2)-1),ij)+1; else

EntropyTable(3,(Cn+(ijj*2)),ij)=EntropyTable(3,(Cn+(ijj*2)),ij)+1; end

end

%Fourth logic layers."<"

if (relation1(ijj,ij)<relation1(ijjj,ij)&(relation1(ijjj,ij)~=300))

EntropyTable(4,ijj,ij)=EntropyTable(4,ijj,ij)+1; if S1(3,ijjj)==100

EntropyTable(4,(Cn+(ijj*2)-1),ij)=EntropyTable(4,(Cn+(ijj*2)-1),ij)+1; else

EntropyTable(4,(Cn+(ijj*2)),ij)=EntropyTable(4,(Cn+(ijj*2)),ij)+1; end

end

%Fifth logic layers."<="

if (relation1(ijj,ij)<=relation1(ijjj,ij)&(relation1(ijjj,ij)~=300))

EntropyTable(5,ijj,ij)=EntropyTable(5,ijj,ij)+1; if S1(3,ijjj)==100

EntropyTable(5,(Cn+(ijj*2)-1),ij)=EntropyTable(5,(Cn+(ijj*2)-1),ij)+1; else

EntropyTable(5,(Cn+(ijj*2)),ij)=EntropyTable(5,(Cn+(ijj*2)),ij)+1; end

end

else

%fix(ijj~=ijjj) cause problems of entropy %firt logic layer,">" ,smaller if

relation1(ijj,ij)>relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)

%adjusting the state for entropy if S1(3,ijjj)==100

EntropyTable(1,(Cn+(ijj*2)-1),ij)=EntropyTable(1,(Cn+(ijj*2)-1),ij)+1; else

EntropyTable(1,(Cn+(ijj*2)),ij)=EntropyTable(1,(Cn+(ijj*2)),ij)+1; end

end

%second logic layers,">="

if relation1(ijj,ij)>=relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)

if S1(3,ijjj)==100

EntropyTable(2,(Cn+(ijj*2)-1),ij)=EntropyTable(2,(Cn+(ijj*2)-1),ij)+1; else

EntropyTable(2,(Cn+(ijj*2)),ij)=EntropyTable(2,(Cn+(ijj*2)),ij)+1; end end

%Third logic layers."=" if

(relation1(ijj,ij)==relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)) if S1(3,ijjj)==100

EntropyTable(3,(Cn+(ijj*2)-1),ij)=EntropyTable(3,(Cn+(ijj*2)-1),ij)+1; else

EntropyTable(3,(Cn+(ijj*2)),ij)=EntropyTable(3,(Cn+(ijj*2)),ij)+1; end

end

%Fourth logic layers."<"

if (relation1(ijj,ij)<relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)) if S1(3,ijjj)==100

EntropyTable(4,(Cn+(ijj*2)-1),ij)=EntropyTable(4,(Cn+(ijj*2)-1),ij)+1; else

EntropyTable(4,(Cn+(ijj*2)),ij)=EntropyTable(4,(Cn+(ijj*2)),ij)+1; end

end

%Fifth logic layers."<=" if

(relation1(ijj,ij)<=relation1(ijjj,ij)&(relation1(ijjj,ij)~=300)) if S1(3,ijjj)==100

EntropyTable(5,(Cn+(ijj*2)-1),ij)=EntropyTable(5,(Cn+(ijj*2)-1),ij)+1; else

EntropyTable(5,(Cn+(ijj*2)),ij)=EntropyTable(5,(Cn+(ijj*2)),ij)+1; end

end end

% if(relation1(ijj,ij~=300)) else

EntropyTable(1,ijj,ij)=300; EntropyTable(2,ijj,ij)=300;

EntropyTable(3,ijj,ij)=300; EntropyTable(4,ijj,ij)=300;

EntropyTable(5,ijj,ij)=300;

 I-HO Lee / IJCTT, 69(7), 58-69, 2021

69

%adjusting the state for entropy

end

end

end

end

end

function[object,others]=shortestdistancePS(object,others)

[N,NN]=size(others);

%selected a target for predator Tempj=1;

if others(3,1)>0 shortX=others(1,1); shortY=others(2,1); totalD=abs(object(1)-

others(1,1))+abs(object(2)-others(2,1)); else shortX=100; shortY=100; totalD=200;

end

%searching shortest targets for j=2:N,

if others(3,j)>0 totalT=abs(object(1)-others(1,j))+abs(object(2)-others(2,j));

if totalD>totalT

shortX=others(1,j);

shortY=others(2,j); totalD=totalT;

Tempj=j; end end

end

%moving direction updown=object(2)-

shortY; rightleft=object(1)-shortX;

tempC=1; tempOldX=object(1);

tempOldY=object(2); if updown<0

object(2)=object(2)+1; tempC=0;

end if updown>0

object(2)=object(2)-1;

tempC=0;

end

if rightleft<0&tempC

object(1)=object(1)+1;

end

if rightleft>0&tempC

object(1)=object(1)-1; end %catch one if

object(2)==others(2,Tempj)&object(1)==others(1,Tempj) others(3,Tempj)=0;

others(5,Tempj)=tempOldX; others(6,Tempj)=tempOldY; object(4)=object(4)+1;

end

end function[objec]=randomwalk(objec)

direction=floor(rand*5); switch direction case 0

%dont move objec(4)=0; %do nothing case 1

%move up objec(2)=objec(2)+1; objec(4)=1; case 2

%move down objec(2)=objec(2)-1; objec(4)=2; case 3

%move right objec(1)=objec(1)+1; objec(4)=3; case 4

%move left objec(1)=objec(1)-1; objec(4)=4;

otherwise %not decide end% end switch direction

if objec(1)>100 objec(1)=100;

end

if objec(2)>100 objec(2)=100;

end

if objec(1)<0

objec(1)=0; end

if objec(2)<0 objec(2)=0;

end end end

