
International Journal of Computer Trends and Technology Volume 68 Issue 3, 1-6, March 2020

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V68I3P101 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Autonomic Computing Architecture by Self-defined

URI

Nadir K. Salih
1
, Abdel-hafiz A. Khoudour

2
, Mawahib S. Adam

3
, Samar M. Hassen

4

1
College of Engineering, University of Buraimi, Oman

2
Faculty of Postgraduate, University of Science and technology, Sudan

3,4
 College of Computer Science and Information Technology, Jazan University, Saudi Arabia

Received Date: 25 January 2020

Revised Date: 07 March 2020

Accepted Date: 11 March 2020

Abstract – The problem arises when publishing information

on the Web by semantic web technologies, represented in

clash names, to avoid that and to realize the self-

management, we applied the self-defined URIs, which

identify a uniform way to retrieve information about the

resource being identified by the Uniform Resource Identifier

(URIs), which help to obtain a good result used to adding

self-management capabilities to a system. To achieve the

goal, five patient records with coronary artery disease

collected from the Statistic unit in Ahmed Gasim Hospital/

Khartoum contains 10 attributes based on the causes of the

disease. We have applied for that open-source application

(Protégé) to solve the problem statement and to obtain a

good result that reduced errors costs and improved

productivity with the possibility of editing reports and

querying data from anywhere.

Keywords – Autonomic Architecture, Self-defined, Uniform

resources identifier (URIS), Ontology Web Language

(OWL).

I. INTRODUCTION
On March 8, 2001, Paul Horn presented the importance

of these systems by introducing ACSs (Autonomic

Computing Systems) to the National Academy of

Engineering at Harvard University [1][13]. It is possible to

find some aspects of autonomic computing already in today’s

software products. For instance, Windows XP optimizes its

user interface (UI) by creating a list of the most often-used

programs in the start menu. Thus, it is self-configuring in

that it adapts the UI to the behaviour of the user. It can also

download and install new critical updates without user

intervention, sometimes without restarting the system [14].

Therefore, it also exhibits basic self-healing properties.

Dynamic host communication protocol (DHCP) and domain

name service (DNS) services allow devices to self-configure

to access a TCP/IP network [2].

Autonomic computing is a self-adaptive system [3][15].

Compose from autonomic elements, and are capable of

managing their behaviours and their relationships with other

systems/applications in accordance with high-level policies,

and exhibit eight defining characteristics: The four primary

aspects are (self-configuring, Self-optimizing, self-

protecting, self-healing). Self-configuring: Systems adapt

automatically to dynamically changing environments, such

as plug and play devices, configuration setup wizards, and

wireless server management. Self-healing: Systems

discover, diagnose, and react to disruptions. They must be

able to recover from a failed component by first detecting

and isolating the failed component, taking it offline, fixing or

isolating the failed component, and reintroducing the fixed or

replacement component into service without any apparent

application disruption. Self-optimizing: Systems monitor and

tune resources automatically, requiring hardware and

software systems to maximize efficient resource utilization to

meet end-user needs without human intervention.

Self-protecting: Systems anticipate, detect, identify, and

protect themselves from attacks from anywhere against

unauthorized resource access, to detect intrusions and report

and prevent these activities as they occur, and to provide

backup and recovery capabilities that are as secure as the

original resource management systems [4][16].

Self-defined URISA standard mechanism for identifying

resources on the Web by adding URI (Uniform Resource

Identifier) to resources it fits well into the Semantic Web for

the following two main reasons:

 It provides a mechanism to uniquely identify a given

resource.

 It specifies a uniform way to retrieve machine-readable

descriptions about the resource being identified by the

URI.

Another benefit of using URIs to represent subject and

object resources is related to their global uniqueness. In this

research, http://csrtahmedgasim.com/ only will create any

new URI that guarantees the global uniqueness of URIs and

certainly prevents name clashes. There are two different

types of URI we can use to identify a given resource, namely

Nadir K Salih et al. / IJCTT, 68(3), 1-6, 2020

2

hash URI and slash URI. A slash URI is simply a normal

URI that we are all familiar with, for

example:http://csrtahmedgasim.com//Patient/Man. A hash

URI that we use and consists of the following components:

normal URI + # + fragment-identifier-or http://

csrtahmedgasim. com/# Patient / Man [5].

Autonomic elements (AEs) are the basic building blocks of

autonomic systems, and their interactions produce self-

managing behaviour [1][17]. We can consider AEs as

software agents and ACSs as multi-agent systems. Each AE

has two parts: Managed Element(ME) and Autonomic

Manager (AM).ACSs are established from Managed

Elements (MEs), whose behaviours are controlled by

Autonomic Managers (AMs). AMs execute according to the

administrative policies and implement self-managing. The

Managed Element is a component of the system. It can be

hardware, application software, or an entire system. The

Sensors retrieve information about the current state of the

ME and then compare it with expectations that are held in the

knowledge base by the AE, and the Effectors execute the

required action. Sensors and effectors are linked together and

create a control loop [18].Autonomic Managers (AMs): Is

the second part of an AE uses a manageability interface to

monitor and control the ME. It has four parts: monitor,

analyze, plan, and execute. The monitor part provides

mechanisms to collect information from a ME monitor and

manage it. Monitored data is analyzed. It helps the AM to

predict future states. The plan uses policy information (adds,

modifies, and deletes) and analyzes data to achieve goals.

Finally, the execute part controls the execution of a plan and

dispatches recommended actions into the ME. AMs can

change resource allocation to optimize performance

according to the policies [19].Policies: a set of administrator

ideas and are stored as knowledge to guide AM. These four

parts provide control loop functionality. The external

behaviour of AEs relates to relationships among them. AMs

can be linked together via an autonomic signal channel

Knowledge: the Standard data shared among the monitor,

analyze, plan, and execute functions of an autonomic

manager, such as topology information, historical logs,

metrics, symptoms, and policies [20]. It is an implementation

of a registry, dictionary, database, or another repository that

provides access to knowledge according to the interfaces

prescribed by the architecture. The knowledge used by an

autonomic manager is obtained in one of three ways: The

knowledge is passed to the autonomic manager. A policy

consists of a set of behavioural constraints or preferences that

influence the decisions made by an autonomic manager [21].

The knowledge is retrieved from an external knowledge

source. An autonomic manager might obtain symptom

definitions or resource-specific historical knowledge in this

manner. A knowledge source could store symptoms that

could be used by an autonomic manager; a log file may

contain a detailed history in the form of entries that signify

events that have occurred in a component or system [22].

The autonomic manager itself creates the knowledge [6].

Resource Description Framework (RDF) Recommend

by World Wide Web Consortium (W3C) in 2004 for the

semantic Web, is a framework for representing information

in the Web[7], contains 3 triples, a subject can be a (URIs or

a blank node), object (URIs, a literal or a blank node) and

predicate(URIs) [8][23].

Ontology Web Language (OWL) is to combine different

class entities and/or property entities to create new class

entities and property entities. The thing is the class of all

individuals and is a superclass of all OWL classes.

Nothing: is the class that has no instances and a subclass of

all OWL classes. Class: A class defines a group of

individuals that belong together because they share some

properties and can be organized in a specialization hierarchy

using a subclass of. Sub Class Of Class hierarchies may be

created by making one or more statements that a class is a

subclass of another class.

A. Property

Properties used to state relationships between

individuals (Object property) or from individuals to data

values (Data property). A Domain of property limits the

individuals to which the property can be applied. If a

property relates an individual to another individual, and the

property has a class as one of its domains, then the individual

must belong to the class. The range of property limits the

individuals that the property may have as its value. If a

property relates an individual to another individual, and the

property has a class as its range, then the other individual

must belong to the range class. Individual: are instances of

classes and properties that may be used to relate one

individual to another [8].An axiom: Is a basic statement that

OWL ontology has. It represents a basic piece of knowledge.

For example, a statement like “Man” is a sub-class of the

Patient class” is an axiom. The axiomatic semantic can use to

automate reasoning with RDF and RDF Schema.

B. Entities

These are the atomic constituents of axioms. Taxonomy:

is the science of classification. Thesaurus: An extension to

taxonomy [5].SPARQL to pull data from a growing

collection of public and private data, but to query data

conforming to the RDF data model [9], and consists of three

parts: The pattern matching part, which includes several

interesting features of pattern matching of graphs, like

optional parts, a union of patterns, nesting, filtering (or

restricting) values of possible matching, and the possibility

of choosing the data source to be matched by a pattern. The

solution modifiers, which once the output of the pattern is

ready (in the form of a table of values of variables), allows to

modify these values applying classical operators like

projection, distinct, order, limit, and offset. Finally, the

output of a SPARQL query can be of different types:

Yes/no queries, selections of values of the variables, which

match the patterns, construction of new triples from these

values, and descriptions about resources queries[10].In mid-

https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-blank-node
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-literal
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-blank-node

Nadir K Salih et al. / IJCTT, 68(3), 1-6, 2020

3

October 2001, IBM released a manifesto observing that the

main obstacle to further progress in the information

technology industry is a looming software complexity crisis.

The term autonomic computing is emblematic of a vast and

somewhat tangled hierarchy of natural self-governing

systems, many of which consist of myriad interacting, self-

governing components that in turn comprise large numbers

of interacting, autonomous, self-governing components at the

next level down[24][25]. It will be profitable to seek

inspiration in the self-governance of social and economic

systems as well as purely biological ones. An autonomic

element will typically consist of one or more managed

elements, coupled with a single autonomic manager that

controls and represents them. The autonomic manager will

relieve the human responsibility of directly managing the

managed element [26][29].IBM frequently cites four aspects

of self-management. Early autonomic systems may treat

these aspects as distinct, with different product teams

creating solutions that address each one separately [30].

Ultimately, these aspects will be emergent properties of

general architecture, and distinctions will blur into a more

general notion of self-maintenance [27][31]. System

administrators and end-users will take the benefits of

autonomic computing for granted. Self-managing systems

and devices will seem completely natural and unremarkable,

as will automated software and middleware upgrades.

Autonomic computing is a Grand Challenge that reaches far

beyond a single organization; its realization will take a

concerted, long-term, worldwide effort by researchers in a

diversity of fields [2][28]. The goal of an autonomic

computing architecture is to reduce intervention and carry

out administrative functions according to predefined policies.

A study shows that 25 to 50 percent of IT resources are spent

on problem determination, and almost half of the total budget

is spent on preventing and recovering systems from crashes.

All these issues have motivated researchers to investigate a

new idea to deal with the management of complexity in the

IT industry, and self-management systems have been

introduced [1].

In this paper, we describe the implementation of self-

managing systems through the framework build of semantic

web technology elements and can be organized as follows:

first, in section1, we have given an introduction and a

relevant background about autonomic computing. Section 2

includes the major work-related directly to the context of the

study. In section3, we have described the architectural

module of autonomic computing and how to realize self-

management. Section4 describes how to realize the self-

defined URIS. Then, all these sections are followed by

Result, evaluation, conclusion and further work.

II. RELATED WORK

A solution of spending long hours for short distances in

traffic represented by Aithal K and Dr Shantharam Nayak in

[11], implemented by automating the traffic signals using the

concept of “Autonomic Computing”-self-management,

which helps in effectively managing the traffic density in the

cities thus allowing smooth traffic flow. Through using three

types of Autonomic Computing characteristics (self-

configuring, self-optimization and self-healing), which are

used as the traffic signal characteristics. Therefore, to

achieve all these using a sensor and a sensor node are

connected with automatic Wireless Sensor Networks. Its

advantages such as help managing the traffic density

effectively and allowing smooth traffic flow, but its

disadvantages such as only the vehicles covered by the

sensors, leaving other space free, and the increasing fault,

confusing the state, protection issue and vice versa.

Described an architecture of stable autonomic systems,

consist of main characteristics of autonomic systems (Self-

healing, Self-optimizing, Self-protecting and Self-

configuring) which they are to be achieved. A generic

architecture of the autonomic approach recommended

contains two entities. Autonomic Element, which is

considered the heart and comprises managed resources and

distributes services to humans or other autonomic elements,

also contains sensors, effectors, and five-component

(Monitor, Analyzer, Plan, Execute, and shared knowledge)

And Autonomic Manager. Its basic objectives are to preserve

correct software architecture and consists of an adaptable and

malleable infrastructure for all basic components of any self-

managed system. Also contains autonomic control loops,

which consist of collecting, analyzing, deciding, and acting,

that to domineer the flow of work done between sub

constituents of autonomic elements and its task. Finally,

some open problems pervading for designing autonomic

system architecture, such as lack of open standards and rules,

but there are still many challenges that need to be solved

because systems become autonomous by nature, and most of

the existing systems provide solutions for specific problems,

but not unified refinement for full adaptation to a random

environment.

 Kramer and Magee in [13] focus on the use of an

architectural approach to self-management to provide

systems that are scalable, support dynamic composition,

rigorous analysis, flexible and robust in the presence of

change, and the objective is to minimize the degree of

explicit management, a three-layer reference model proposed

as a following: The goal management layer, which needs to

encompass both application and system goals concerned with

self-management, its challenge, is to achieve goal

specification both, comprehensible by human users and

machine-readable and the solution by designing a set of plans

offline, either by construction, or verification process to

satisfy system constraints for a range of possible system

states. The change layer, responsible for executing changes

in response either to changes in the state reported from the

lower layer to goal changes, its challenges deal with

distribution and decentralization in addition to finding

change management algorithms that can tolerate

inconsistency and which eventually terminate in a system

that satisfies constraints. The component control layer,

Nadir K Salih et al. / IJCTT, 68(3), 1-6, 2020

4

consisting of a setoff interconnected components, may be

collocated and/or distributed over a network of

communicating computer nodes. Its main challenge is to

provide change management, which reconfigures the

software components. To ensure application consistency and

avoid undesirable transient behaviour, the solutions have

focused on dealing as far as is possible with planning by

designing a set of plans offline that can be shown either by

construction or by a verification process to satisfy system

constraints for a range of possible system states. Describe an

architectural approach by creating two prototype autonomic

systems that explore the use of autonomic systems for data

centre management and resource allocation. For creating

autonomic elements (self-managing components), using

required behaviour, which must be self-management, capable

of establishing, maintaining relationships with them and

manage its behaviour and relationships to meet its

obligations, focusing on policy-based self-management,

relationships and integrity. To achieve the goals, they need to

accomplish two fundamental goals. First, it must describe the

external interfaces and behaviours required to make an

individual component autonomic. Second, it must describe

how to compose systems out of these autonomic components

in such a way that the system as a whole is self-managing.

An autonomic system requires a collection of autonomic

elements that implement the desired function, system-level

behaviours, and design patterns of self-management.

III. SELF-MANAGEMENT ARCHITECTURE MODEL

The main architecture of self-management represents

two principle parts: Managed element involve (RDF, OWL,

SPARQL), and AM involved of (Monitor, Analyze, Plan,

and Execute).

Fig. 1 Autonomic computing architecture

IV. SELF-DEFINED URIS

The illustrated architecture explains our new approach to

realizing the objective, using steps and lifecycle of

autonomic computing systems.

Fig. 2 Self-defined implementation architecture

 Firstly, data is collected from managed element (OWL)

via the sensor interface, which allows AM to monitor the

managed element (Creating classes, property,

Individual…etc.), then, the Monitor part use a mechanism to

collect data aggregate them, and send a detailed report. After

collecting all relevant contexts, Analyze process is performed

by making a queueing model for sorting data (Ascending

order). And Plan adapts and applies the system management

behaviour by adding the URI to resources. In addition,

execute control the execution of a plan with considerations

for dynamic update through the effectors, which carry out

changes to the managed element (output).

V. SELF-DEFINED LAYER(DEPLOYMENT)

 The AC architecture is essentially a two-layered

architecture consisting of a hierarchy of:

Nadir K Salih et al. / IJCTT, 68(3), 1-6, 2020

5

 Managed elements

 Autonomic Manager

This hierarchy, where the higher level is the Autonomic

Manager and the lower level is the Managed element or

resources.

Fig. 3 layer deployment

VI. IMPLEMENTATION

 Figure 5 shows the applicability of self-defined by

providing Protégé application.

Fig. 4 self-defined interface

Fig. 5 Self-defined elements graph

This graph contains classes, subclasses and individuals,

which is the output of the implementation (execute), and in

terms of the autonomic system, describe the self-defined

elements and their robustness.

VII. RESULT AND DISCUSSION

In this part, we describe the use of General techniques

for autonomic systems to satisfy the objective. And what is

realized by self-defined we have taken, in executing, the

important evaluation results of the working demonstrate as

the following:

The degree of autonomic is the Managed level. The system

presents flexibility and elements robustness while changing.

In addition, reusing the knowledge-based is possible.

VIII. CONCLUSION AND FUTURE WORK

This paper presented autonomic computing architecture

by self-defined, a faithful implementation applied to use the

semantic web technologies features to make the health care

system self-defined, which could result from reducing the

human involvement, and we summarize our contribution as a

follow:

 Improve the hospital’s ability to use patient data for

generating new knowledge and future patient care

through outcomes (Reports).

 Build a repository that collects and stores various data

to help doctors, users, and patients to provide ad hoc

queries to published data on the Web from anywhere.

 Help the clinical research centre to collect data.

This work can be followed further in a number of directions:

 Using semantic web rule language to provide the ability

to write rules expressed in terms of OWL concepts.

 Design a self-defined application based on the

architecture.

 Development of a system with object-oriented

methodology.

REFERENCES
[1] Mohammad Reza Nami and Mohsen Sharifi. A Survey of

Autonomic Computing Systems, (2006) 1-10

[2] Jeffrey O.Kephart and David M. Chess. The Vision of Autonomic
Computing. Computer, (2003) 1-10

[3] Julie A. McCann, MarkusHuebscher. Evaluation issues in

Autonomic Computing, (2004) 1-12

[4] Manish Parashar and Salim Hariri. Autonomic Computing: An

Overview, (2005) 1-13.

[5] Liyangyu. A Developer’s Guide to the Semantic Web, (2011) 1-
621.

[6] IBM Autonomic computing white paper.An architectural blueprint

for autonomic computing, (2005) 1-34.
[7] Eric Miller.An introduction to the Resource Description

Framework, (1998) 1-5.

[8] OWL Web Ontology Language Overview,
http://www.w3.org/TR/2004/REC-owl-features-20040210/<[

06/04/2005].

[9] Bob Ducharme. Learning SPARQL-second edition, (2013) 1-386.
[10] Ian Horrocks. Ontologies and the Semantic Web, (2008) 1-10.

[11] UllasAithal K and Dr ShantharamNayak.Smart Traffic Signals

using Autonomic Computing, 1 (2014) 1-3.
[12] Payal Mittal, AbhishekSinghal and AbhayBansal. A Study on

Architecture of Autonomic Computing-Self Managed Systems, 92

(6) (2014) 1-4, 2014.
[13] Jeff Kramer and Jeff Magee.Self-Managed Systems: an

Architectural Challenge, (2014) 1-1, 2014.

http://www.w3.org/TR/2004/REC-owl-features-20040210/%3c
http://www.w3.org/TR/2004/REC-owl-features-20040210/%3c

Nadir K Salih et al. / IJCTT, 68(3), 1-6, 2020

6

[14] Steve R. White, James E. Hanson, Ian Whalley, David

 M. Chess, and Jeffrey Kephart. An Architectural
Approach to Autonomic Computing, (2014) 1-8.

[15] Nadir K Salih, TianyiZang. Variable service process for SaaS

Application. Research Journal of Applied Sciences, Engineering
and Technology. 4(22) (2012) 4787-4790

[16] Nadir K Salih, TianyiZang, Mingrui Sun. Multi-database in the

healthcare network. International Journal of Computer Science
Issues, 8(6) (2011) 210-214.

[17] Nadir K Salih, TianyiZang, G.K. Viju, A Mohamed. Autonomic

management for the multi-agent system. IJCSI, 8(5) (2011)338-341.
[18] Nadir K Salih, TianyiZang. Need of Autonomic Management SaaS

Application. International Journal of Computer Science Issues,

(2016).
[19] Nadir K Salih, TianyiZang. Survey and comparison for Open and

closed sources in Cloud Computing. International Journal of

Computer Science Issues, 9(3) (2012) 118-123.

[20] Eman.M-Fageer, Nadir K.Salih. Self-configuring Booking SaaS

Application. Red Sea University Journal of Basic and Applied

Science. 2(3) (2017).
[21] Amin, Fatima M H, Nadir K.Salih. New Model to Achieve Software

Quality Assurance in E-Learning Application. (IJCSI); Mahebourg ,

14(3) (2017) 65-69.
[22] Eshtiag A AbdElrhman, Nadir K Salih. Modelling Variation in SaaS

Application. (IJCSI).15(3) (2018) 22-30.

[23] SalihNK, H.Elbashier , ZangT,Eshtiag A AbdElrhman. Self-
Diagnosis of Diabetes Using CBR Algorithm. Journal of Computer

Science & Systems Biology. 11(3) (2018) 235-239.
[24] Amin, Fatima M H, Nadir K.Salih. Implementing the System,

Instructor and Student Model to Achieve Required Software Quality

Assurance. Research Journal of Applied Sciences, Engineering and
Technology; (2019) 30-42.

[25] Nadir K Salih, TianyiZang. Variable service process by feature

meta-model for SaaS Application. IEEE International Conference in

Green and Ubiquitous Technology, IEEE, (2012) 102 – 105.

[26] Nadir K Salih, TianyiZang. Autonomic and cloud computing:

Management Services for Healthcare. IEEE International
Symposium on Industrial Electronics and Applications (2012).

[27] Nadir K Salih, TianyiZang. Modelling and Self-Configuring SaaS

Application. International conference on software engineering
research and practice (SERP14), held on July 21-24 Las Vegas,

USA., (2014)

[28] Nadir K Salih, TianyiZang. Autonomic Management for
Applicability and Performance in SaaS Model. International

conference on parallel and distributed processing techniques and

applications (PDPTA'14), held on July Las Vegas, USA., (2014).
[29] Nadir K Salih, TianyiZang. Self-management SaaS Application by

CBR Algorithm. International conference on parallel and distributed

processing techniques and applications (PDPTA'17), held on July
21-24 Las Vegas, USA, (2017).

[30] Nadir K Salih, TianyiZang. Implementation of Autonomic

Management SaaSSystem .conference on software engineering

research and practice, held on July 21-24 Las Vegas, USA, (2017).

[31] GK Viju, Nadir K Salih, TianyiZang. A novel approach to iris

recognition for personal authentication. International Conference of
Computer Applications and Industrial Electronics (ICCAIE), IEEE,

(2011) 350-354.

[32] G.K.Viju, Nadir K.Salih. A secure multicast protocol for ownership
rights. International Conference of Computing and Information

Technology (ICCIT), (2012) 788-793.

[33] Sheima S. El-hwaij, Nadir K.Salih. Autonomic management by self-
optimization for WEINMANN. IEEE, International Conference on

communication, Control, Computing and Electronics Engineering
(ICCCCEE), (2017).

[34] S.Shanmugapriya, Dr. K. Alagarsamy, A.Saranya. Android

Platform for the Mobile Application Security System, SSRG
International Journal of Mobile Computing & Application, 5(1)

(2018).

[35] Marjan Farsi, Analyzing Tagging Behavior in Clustering Similar

Web Resources through Interactive Visual Demonstration, SSRG

International Journal of Computer Science and Engineering, 1(10)

(2014).

http://repository.rsu.edu.sd/handle/123456789/2413
http://repository.rsu.edu.sd/handle/123456789/2413
http://search.proquest.com/openview/c0aa83d7d1078fe905110448a49c52d3/1?pq-origsite=gscholar&cbl=55228
http://search.proquest.com/openview/c0aa83d7d1078fe905110448a49c52d3/1?pq-origsite=gscholar&cbl=55228
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sheima%20S.%20El-hwaij.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7862366
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7862366
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7862366
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7862366

