
International Journal of Computer Trends and Technology                                                           Volume 73 Issue 7, 73-80, July 2025 

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I7P109                                                   © 2025 Seventh Sense Research Group®  

           

                   This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

 Original Article 
 

Serverless ETL: Leveraging AWS Glue and PySpark 

for Efficient Data Processing 

Dharanidhar Vuppu1, Mounica Achanta2 

 
1Sr Data Engineer, SurveyMonkey, Texas, United States of America. 

2Independent Research at IEE, Texas, United States of America. 

 
1Corresponding Author : dharanidhar@ieee.org 

 

Received: 03 June 2025                       Revised: 26 June 2025                       Accepted: 18 July 2025                        Published:  29 July 2025 
 

Abstract - In today’s cloud-native data landscape, data engineers are expected to build ETL pipelines that can scale 

effortlessly, remain easy to maintain, and stay within budget. With data volumes growing rapidly and business needs 

constantly evolving, traditional ETL setups—typically run on provisioned clusters—can become a bottleneck. They often 

bring challenges like over-provisioned resources, ongoing infrastructure upkeep, and complicated scaling mechanisms. This 

paper explores a serverless approach using AWS Glue and PySpark, aimed at simplifying ETL development while cutting 

down significantly on operational complexity. 

We share a hands-on implementation of a serverless ETL setup that takes advantage of AWS Glue’s built -in 

orchestration, Spark-based distributed processing, and tight integration with the AWS Data Catalog for managing schemas. 

This approach simplifies the process of ingesting and transforming data from sources like S3 and RDS, cuts down on setup 

time, and scales effortlessly without the need for manual tuning. 

Through a real-world case study, we benchmark AWS Glue's performance, scalability, and cost-efficiency against 

traditional Spark clusters hosted on EC2. The results show tangible benefits in terms of time -to-value, fault tolerance, and 

operational simplicity, particularly for mid-sized batch processing workloads. The paper concludes with practical 

considerations, limitations, and lessons learned from adopting serverless ETL, offering guidance for data engineers looking 

to modernize their pipelines using fully managed, cloud-native solutions. 

Keywords - Serverless ETL, PySpark, Big Data Processing, AWS Glue, Data Engineering. 

1. Introduction  
Modern data engineering has evolved beyond 

traditional ETL models, which were once tightly coupled to 

fixed infrastructure and required constant resource tuning 

and maintenance. As organizations accelerate their 

migration to the cloud and adopt real-time analytics, the 

demand for flexible, scalable, and low-maintenance data 

pipelines has grown significantly. In this landscape, 

serverless computing has emerged as a powerful paradigm, 

enabling engineers to focus on transformation logic and data 

modeling rather than provisioning and managing compute 

resources. (Pogiatzis & Samakovitis, 2020) 

ETL pipelines, which remain at the core of most data 

engineering workflows, have seen a major shift with the 

advent of serverless frameworks like AWS Glue. AWS Glue 

abstracts away infrastructure concerns by providing a fully 

managed, Spark-based environment for running distributed 

data processing jobs. It integrates tightly with the AWS 

ecosystem, allowing seamless access to object storage (S3), 

relational databases, and schema registries through the AWS 

Glue Data Catalog. Combined with PySpark, a widely 

adopted interface for Spark programming in Python, Glue 

presents an attractive solution for teams looking to build 

pipelines without the overhead of managing clusters. 

While the value proposition of serverless ETL is 

clear—reduced operational complexity, autoscaling, pay-as-

you-go pricing—its practical adoption raises questions 

about performance, cost-efficiency, debugging capabilities, 

and suitability for different workload patterns. These 

concerns are particularly relevant for data engineering teams 

working with semi-structured or evolving data formats, 

managing large-scale batch jobs, or integrating across 

multiple data systems. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(7), 73-80, 2025 

 

74 

This paper examines the architectural and operational 

benefits of using AWS Glue in combination with PySpark 

to implement robust serverless ETL pipelines. Drawing 

from hands-on experience, we walk through the design 

choices, transformation strategies, and optimization 

techniques that make Glue a viable alternative to traditional 

ETL setups. We also evaluate its strengths and limitations 

through a case study, benchmarking it against an EC2-

hosted Spark deployment. 

We aim to give data engineers practical, hands-on 

insights into adopting serverless ETL—showing where 

AWS Glue shines, its limitations, and how it fits into a 

modern data stack. By focusing on real-world use cases and 

the trade-offs engineers face in practice, we hope to share 

knowledge that’s directly applicable to today’s data 

workflows. Plale, B., & Kouper, I. (2017) 

2. Evolution of ETL Architectures 
As data pipelines become more complex and data 

volumes continue to grow, the ETL ecosystem has evolved 

rapidly. Innovations in cloud-native and serverless 

technologies have reshaped how teams think about data 

processing. Much of this area 's recent work has centred on 

simplifying pipeline development, improving performance, 

cutting costs, and reducing maintenance effort. This section 

covers the foundational ideas and technologies that laid the 

groundwork for serverless ETL and looks at how AWS 

Glue fits into this evolving space.  (Bussa & Hegde, 2024) 

 

2.1. Traditional ETL with Spark and Hadoop Ecosystems 

Apache Spark has long been a cornerstone for 

distributed data processing, valued for its speed and 

flexibility. Its in-memory execution model and support for 

both batch and streaming workloads made it a  top choice for 

many ETL use cases. Traditionally, Spark was deployed on 

self-managed clusters using tools like Hadoop YARN, 

Apache Mesos, or Kubernetes. While these setups are 

powerful, they often come with a high operational burden—

teams need to provision infrastructure, manage scaling, 

monitor performance, and handle failures, all of which can 

be time-consuming and resource-intensive. Traditionally, 

data engineers have deployed Spark on self -managed 

clusters using resource managers like Hadoop YARN, 

Apache Mesos, or Kubernetes. While this approach is 

powerful, it often comes with challenges such as: 

 

• Manual resource tuning 

• Cluster provisioning and autoscaling logic 

• High DevOps overhead 

Research such as Zaharia et al. (2016) emphasized 

Spark’s performance advantages but  acknowledged that 

operational complexity limits accessibility to smaller teams 

or projects with limited DevOps support. 

2.2. Emergence of Cloud-Managed ETL Services 

Cloud providers have attempted to abstract cluster 

management through managed services like: 

• Amazon EMR (Elastic MapReduce): Offers Spark with 

simplified cluster provisioning but still requires node 

configuration and scaling strategies. 

• Google Cloud Dataflow: Focuses on stream and batch 

processing with autoscaling, but introduces a learning 

curve with Apache Beam. 

• Azure Data Factory: Provides a GUI-based 

orchestration layer, with some native data 

transformation capabilities, though lacking the 

flexibility of Spark for complex logic. 

These platforms represent significant steps forward, but 

still fall short of a fully serverless experience, particularly 

when Spark-based transformations are involved. 

(Kriushanth, Arockiam, & Mirobi, 2013) 

2.3. AWS Glue and Serverless ETL 

AWS Glue was introduced to bridge this gap—offering 

a Spark-based environment that: (Sudhakar, 2018) 

• Runs on demand with no cluster setup 

• Integrates natively with S3, RDS, Redshift, and 

DynamoDB 

• Provides schema management via the Glue Data 

Catalog 

• Supports PySpark and dynamic frames for schema 

evolution and nested data handling 

 

Recent whitepapers and AWS case studies have 

demonstrated Glue's effectiveness for handling large-scale 

batch jobs, especially when combined with features like job 

bookmarking, partition pruning, and DPU (Data Processing 

Unit) auto-allocation. However, Glue has also been 

critiqued for: 

• Longer cold start times 

• Limited job customization compared to EC2-based 

Spark 

• Debugging complexity due to reliance on CloudWatch 

logs and lack of an interactive UI 

 

2.4. Academic and Industry Insights into Serverless ETL 

Academic literature on serverless ETL remains 

relatively sparse, though industry-driven evaluations are 

growing. For example: 

• Netflix and Expedia have discussed moving to 

serverless pipelines using Glue and Lambda to reduce 

infrastructure friction. 

• Research by Zhang et al. (2020) on “Serverless 

Dataflow Systems” evaluates performance trade-offs in 

serverless orchestration models, highlighting latency, 

cold starts, and cost granularity. 



Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(7), 73-80, 2025 

 

75 

• Papers on "Function-as-a-Service" paradigms and "Data 

Engineering at Scale" provide foundational context for 

understanding the evolution of ETL architectures. 

 

2.5. Positioning this Work 

This paper builds on existing work by: 

• Taking a hands-on engineering perspective to validate 

Glue's capabilities with real-world data flows. 

• Benchmarking performance, cost, and operability 

against traditional Spark clusters. 

• Providing a practical framework for other data 

engineering teams evaluating the move to serverless 

Spark ETL. 

 

Rather than proposing a theoretical model, our goal is 

to add practitioner-level depth to the serverless ETL 

conversation—grounded in practical usage, architectural 

trade-offs, and lessons learned. 

3. System Architecture 
The architecture behind this serverless ETL pipeline is 

built with scalability, maintainability, and minimal 

operational overhead in mind—hallmarks of an efficient, 

modern data engineering setup. At its core, the pipeline uses 

AWS Glue to manage and run distributed data 

transformations written in PySpark, all within a fully 

serverless environment.  

 

The design is modular and event-driven, and it 

integrates seamlessly with other AWS services for storage, 

schema management, and monitoring. (Mehmood & Anees, 

2022) 

3.1. Data Ingestion and Storage 

The pipeline ingests raw data from a variety of sources: 

• Amazon S3 serves as the primary storage for 

clickstream logs, CSV and Parquet files, and data 

exports from third-party systems. 

• Amazon RDS and other JDBC-compatible sources are 

used to capture structured, transactional data. 

All incoming data is staged in S3 buckets that are 

partitioned by event date. This approach helps optimize 

performance for downstream processing and querying. 

3.2. Glue Data Catalog 

The AWS Glue Data Catalog serves as the central hub 

for managing schemas. It supports schema discovery, 

validation, and versioning. Tables are either automatically 

registered using Glue crawlers or defined manually through 

job configurations. This ensures that all downstream jobs 

interact with consistent, well-documented metadata, 

reducing the chances of schema -related errors and 

improving pipeline reliability. 

3.3. ETL Jobs (PySpark on Glue) 

The heart of the architecture is the Glue job, which: 

• Reads from the catalog using dynamic frames (useful 

for semi-structured or evolving schemas). 

• Applies transformation logic in PySpark (e.g., joins, 

filters, column derivations). 

• Writes the output to target destinations (e.g., S3, 

Snowflake, Redshift) in optimized formats such as 

Parquet or Delta . 

 

Jobs are configured with appropriate DPUs (Data 

Processing Units) and leverage features like: 

• Job bookmarking for incremental loads 

• Partition pushdown for performance optimization 

• Retry policies and CloudWatch logging for 

observability 

3.4. Orchestration and Scheduling 

Orchestration is handled via: 

• AWS Glue Workflows for DAG-like execution with 

dependencies. 

• Optionally, Amazon MWAA (Airflow) or Step 

Functions for cross-system orchestration. 

3.5. Monitoring and Alerts 

Operational telemetry is captured using the following: 

• AWS CloudWatch Logs and Metrics 

• Glue job metrics dashboard for DPU usage and job 

durations 

• Custom alerts for job failures or SLA breaches 

 

This architecture enables data engineers to build robust 

pipelines without worrying about infrastructure 

provisioning, while still retaining the power and flexibility 

of Apache Spark. 

4. Implementation and Methodology  
The decision to deploy a serverless ETL pipeline with 

AWS Glue and PySpark was driven by the need for 

simplified orchestration, scalable compute, and flexible 

transformation logic. This section explores the core design 

principles, the technology stack used, and the practical steps 

taken to build and optimize the ETL workflow efficiently.  

(Warneke & Kao, 2009) 

4.1. Job Configuration and Environment Setup 

AWS Glue jobs were built using version 3.0 or higher, 

which supports Spark 3.x and Python 3. Writing the jobs in 

PySpark allowed the team to take advantage of Spark’s 

distributed processing while also benefiting from Python’s 

clean syntax and rich ecosystem.  (Batmaci, 2022) 

Here are some key configuration choices that helped 

tailor performance to the workload: 



Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(7), 73-80, 2025 

 

76 

• Worker Type: G.1X was used for standard workloads, 

while G.2X was chosen for jobs that required more 

memory. 

• Number of DPUs: Adjusted depending on the size and 

complexity of the data to balance cost and performance. 

• Job Bookmarks: Enabled to support incremental 

processing, ensuring only new or updated data was 

picked up in each run. 

Jobs were version-controlled via Git and deployed 

using AWS Glue’s script editor or through automated 

CI/CD pipelines using AWS CLI and boto3. 

4.2. Data Ingestion Strategy 

Data ingestion was source-dependent: 

• For batch files on Amazon S3, the job used 

glueContext.create_dynamic_frame.from_catalog() to 

load data registered in the Glue Data Catalog. 

• JDBC connections were established using connection 

objects defined within Glue for RDS and external 

systems. Credentials were managed via AWS Secrets 

Manager. 

The ingestion logic included schema validation, null-

handling, and deduplication steps using dynamic frame and 

Data Frame operations. 

 

4.3. Transformation Logic in PySpark 

The transformation layer was written in PySpark, 

incorporating: 

• Joins between multiple datasets (e.g., user logs with 

metadata) 

• Derivation of new columns based on business logic 

• Conditional filtering, grouping, and aggregations 

• Schema normalization (flattening nested fields, 

resolving schema drift) 

Where schema evolution was expected, dynamic frames 

were used for flexibility. In other cases, data was cast into 

static Spark Data Frames to leverage stricter typing and 

better performance. 

4.4. Output Handling and Storage 

Transformed data was written back to Amazon S3 in 

columnar formats (Parquet or ORC), partitioned by date and 

other relevant keys. Data was optionally pushed to 

Snowflake or Amazon Redshift for analytical querying or 

BI reporting using external connectors. 

To avoid redundant writes, job outputs were idempotent 

and often included: 

• Overwrite modes for daily partitions 

• Upserts are simulated using Spark’s window functions 

and deduplication before writing 

4.5. Optimization Techniques 

To improve runtime and reduce cost: 

• Partition pruning was applied during reads to limit scan 

size 

• Predicate pushdown and .repartition() calls were used 

judiciously 

• Glue job metrics were monitored regularly to tune DPU 

usage 

• Logging was instrumented using print() statements and 

CloudWatch custom metrics 

Jobs were profiled with sample datasets before scaling 

up to full runs, ensuring transformations were logically 

correct and performant. 

4.6. Resilience and Monitoring 

Error handling was implemented through: 

• Try-catch blocks around transformation logic 

• Job parameters for rerun flexibility 

• Retry policies configured at the Glue job level 

 

Glue job logs were streamed to CloudWatch, and alerts 

were set up for failures or SLA breaches. For production 

pipelines, job state and run metadata were stored in audit 

logs to track lineage and detect anomalies. This 

methodology reflects a balance between leveraging Glue’s 

serverless advantages and applying Spark-native 

optimization practices. It enables repeatable, reliable data 

transformations without the burden of managing 

infrastructure, allowing data engineers to focus on business 

logic and data quality. (Singh P. , 2021) 

 

5. Case Study / Experiment  
To evaluate the effectiveness of a serverless ETL 

approach in real-world data engineering scenarios, we 

developed and benchmarked a generic pipeline using AWS 

Glue and PySpark. The objective was to assess 

performance, scalability, and operational simplicity when 

handling large-scale batch data processing tasks without 

provisioning or managing infrastructure. 

 

5.1. Objective 

• Build a resilient, serverless ETL pipeline capable of 

ingesting structured and semi-structured data from 

cloud-based sources. 

• Apply common transformation logic, including joins, 

aggregations, and type casting. 

• Deliver clean, partitioned output ready for downstream 

analytics consumption. 

 

5.2. Input and Output Characteristics 

• Input Data: 

• Simulated daily batch of log and transaction data 

(~300–500 million records) 



Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(7), 73-80, 2025 

 

77 

• Stored in Amazon S3 in CSV and JSON formats 
 

• Output Data: 

• Transformed and normalized 

• Written back to S3 in partitioned Parquet format 

for efficient querying 

5.3. Implementation Details 

• Ingestion 

• Glue DynamicFrames are used to read schema-

flexible data from the Glue Catalog 

• JDBC connectors are employed to pull structured 

reference data from cloud-based relational 

databases 
 

• Transformation Logic: 

• Conversion from dynamic frames to Spark Data  

Frames for performance-critical operations 

• Applied transformations such as: 

▪ Complex joins across datasets 

▪ Type casting and schema enforcement 

▪ Row-level filtering, aggregations, and 

calculated columns 

 

• Job Configuration: 

• Glue 3.0 environment with Spark 3.x and Python 

3.x 

• Worker Type: G.1X for baseline testing; G.2X for 

larger loads 

• DPU allocation: 10–15 for moderate-volume test 

runs 

• Job bookmarks are enabled to support incremental 

data loads 

 

5.4. Orchestration and Scheduling 

• Glue Workflows are used for chaining multiple ETL 

jobs 

• Triggered daily on a fixed schedule 

• Optional integration tested with Amazon EventBridge 

and Airflow (MWAA) for custom orchestration logic 

5.5. Observations and Insights 

• Performance: 

• Daily batch processing (~400M records) completed 

within 10–12 minutes on average 

• Autoscaling and memory optimization are handled 

transparently by Glue 
 
 

• Scalability: 

• Easily scaled up by adjusting DPU allocation 

without architectural changes 
 

• Operational Simplicity: 

• No cluster setup or tuning required 

• Schema evolution is handled gracefully using 

Glue's dynamic frames 

 

• Cost Management: 

• The pay-per-second billing model made it cost-

effective for intermittent workloads 

• Monitoring 

• CloudWatch provided job-level visibility, though 

deeper Spark-level diagnostics were more limited 

than in traditional Spark setups 

5.6. EMR Comparison Snapshot 

To contextualize the benefits and limitations of AWS 

Glue, a high-level comparison was made against a typical 

self-managed Spark setup on Amazon EMR. The 

comparison reflects commonly observed characteristics 

across similar batch ETL use cases: 

Factor 

AWS Glue 

(Serverless 

Spark) 

Amazon EMR 

(Self-managed 

Spark) 

Setup & 

Provisioning 

Fully managed, 

no infrastructure 

Manual cluster 

provisioning is 

required 

Autoscaling 
Native and 

automatic 

Configurable, but 

requires tuning 

Cold Start 

Latency 

Moderate (30–60 

sec) 

High (5–10 min for 

cluster spin-up) 

Cost Model 
Pay-per-second 

for job runtime 

Pay-per-instance, 

even when idle 

Performance 

Tuning 

Abstracted from 

the user 

Full control over 

Spark configs 

Debugging & 

Logs 

CloudWatch + 

basic logs 

Spark UI, SSH 

access, full logs 

Operational 

Overhead 
Minimal 

High (maintenance, 

patching, scaling) 

Use Case Fit 
Best for batch, 

periodic jobs 

Better for 

persistent, fine-

tuned jobs 

 

5.7. Key Takeaways 

• For batch ETL workloads that prioritize rapid 

development and minimal infrastructure management, 

AWS Glue with PySpark offers a highly efficient 

solution. 

• The managed nature of Glue helps reduce engineering 

overhead while retaining the flexibility and power of 

Spark for data transformation. 

• While less suitable for streaming or ultra -low latency 

use cases, it excels in scheduled data prep tasks where 

schema flexibility and operational agility are essential. 



Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(7), 73-80, 2025 

 

78 

This experiment validates serverless ETL as a practical 

and scalable option for modern data engineering pipelines, 

particularly when time-to-delivery, maintenance effort, and 

cost control are key considerations. 

6. Results and Discussion 
The evaluation of AWS Glue with PySpark for 

serverless ETL highlighted several strengths and a few 

limitations when applied to large-scale batch processing in a 

real-world data engineering context. Lee, D. (2020) 

 

6.1. Key Observations 

6.1.1. Execution Time 

• Daily batch jobs (processing ~400M records) 

consistently completed in 9–12 minutes. 

• Performance scaled linearly with data volume when 

DPU allocation was increased appropriately. 

6.1.2. Scalability and Flexibility 

• Jobs scaled seamlessly by adjusting DPUs or switching 

worker types—no infrastructure changes were needed. 

• Schema changes in upstream data were handled 

gracefully using dynamic frames, reducing breakage 

risk. 

6.1.3. Cost Efficiency 

• Pay-per-second pricing led to lower costs for infrequent 

or bursty workloads compared to EMR. 

• No charges incurred when jobs were idle, unlike 

provisioned clusters. 

6.1.4. Operational Overhead 

• No cluster setup, patching, or autoscaling configuration 

required. 

• Integration with CloudWatch provided sufficient 

monitoring for most use cases. 

 

6.1.5. Limitations 

• Cold start latency (~30–60 seconds) introduced slight 

delays but was acceptable for batch workloads. 

• Debugging was less interactive than traditional Spark 

environments—limited visibility into execution plans or 

memory usage. 

6.2. Overall Assessment 

AWS Glue turned out to be a solid, low-maintenance 

choice for running batch ETL jobs—especially in cases 

where fast development, cost efficiency, and tight 

integration with the AWS ecosystem are bigger priorities 

than fine-tuning Spark internals.  

For teams that want the power of Spark without the 

hassle of managing infrastructure, Glue strikes a good 

balance. 

7.   Challenges and Lessons Learned 
        While AWS Glue simplifies many aspects of ETL 

development, working with it in a production-like 

environment surfaced several important challenges and 

practical lessons for data engineering teams considering 

serverless ETL. 

7.1. Challenges Encountered 

7.1.1. Cold Start Latency 

• Initial job startup time ranged from 30 to 60 seconds, 

adding overhead to short-duration tasks. 

• Not ideal for low-latency or on-demand, user-triggered 

pipelines. 

 

7.1.2. Limited Debugging Visibility 

• CloudWatch logs were useful for basic error tracking 

but lacked the granularity of Spark UI or cluster-level 

metrics. 

• Diagnosing memory pressure, skewed joins, or shuffles 

required additional instrumentation in code. 

7.1.3. Schema Evolution Management 

• Dynamic frames are flexible but can silently 

accommodate upstream changes, making it easy to miss 

critical schema shifts. 

• Requires explicit validation logic or version control on 

schema definitions. 

7.1.4. Job Configuration Nuances 

• Optimal DPU settings, worker types, and partitioning 

strategies were not always intuitive. 

• Performance tuning often requires trial and error due to 

limited documentation on edge cases. 

7.1.5. Resource Quotas and Limits 

• Default Glue limits (e.g., max DPUs per account, 

concurrent job runs) require adjustment via AWS 

support for scaling use cases. 

7.2. Lessons Learned 

• Build transformation logic to be idempotent and 

partition-aware from day one to avoid reprocessing 

issues. 

• Use Data  Frames over DynamicFrames for better 

performance and more predictable schema handling 

where possible. 

• Custom logging and metric tracking should be added to 

supplement CloudWatch, especially for critical 

production jobs. 

• Maintain a versioned schema registry or enforce data 

contracts to catch breaking changes early. 

• Treat Glue as part of a larger architecture—use tools 

like Airflow (MWAA), Step Functions, or EventBridge 

for orchestration and alerting. 



Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(7), 73-80, 2025 

 

79 

Overall, while Glue reduces operational overhead 

significantly, teams still need to apply solid engineering 

practices around monitoring, schema governance, and 

performance tuning to ensure reliable and maintainable 

pipelines. 

8. Future Trend 
While AWS Glue with PySpark has proven effective 

for batch ETL at scale, several areas remain open for further 

exploration to enhance its utility and address current 

limitations. 

Areas for Expansion: 

• Real-time and Streaming ETL 

• Investigate the use of AWS Glue Streaming for 

near real-time ingestion of event-based data (e.g., 

clickstreams, logs). 

• Evaluate how it compares with alternatives like 

Kinesis Data Analytics or Apache Flink in terms of 

latency and cost. 

 

• Advanced Orchestration 

• Integrate Glue jobs more deeply with Amazon 

MWAA (Airflow) or Step Functions for complex 

dependency management and conditional 

execution logic. 

• Enable dynamic job chaining, retries, and 

notification hooks using external orchestration 

layers. 

• Observability Enhancements 

• Implement custom metrics and structured logging 

for deeper visibility into job internals (e.g., row 

counts, partition stats, memory usage). 

• Explore the feasibility of proxying Spark UI data to 

improve debugging and performance insights. 

• Data Quality and Validation Frameworks 

• Embed validation layers using tools like Deequ or 

custom PySpark checks to enforce schema 

conformity, null checks, and distribution rules. 

• Automate alerts for anomalies in data volume or 

processing time. 

• Integration with ML Pipelines 

• Extend Glue’s output to serve as a clean data layer 

for SageMaker or other ML workflows, enabling 

end-to-end feature pipelines. 

• Explore automated feature extraction and model 

scoring using the same serverless stack. 

• Cross-cloud and Multi-region Strategies 

• Evaluate Glue's role in multi-region data 

replication and hybrid-cloud ETL, especially for 

organizations operating in regulated environments. 

As data architectures become more modular and event-

driven, the role of serverless ETL will likely expand beyond 

batch processing. Future exploration will focus on how Glue 

can evolve into a central data transformation backbone 

across streaming, ML, and multi-cloud ecosystems. 

9. Conclusion 
       Using AWS Glue with PySpark shows that serverless 

ETL is not just hype but a practical and reliable approach 

that works in real-world data engineering workflows. Glue 

takes care of the heavy lifting of infrastructure while still 

giving you the power and flexibility of Spark.  

 This makes it a  great fit for teams looking to speed up 

pipeline development while minimizing the burden of 

managing infrastructure. 

Key takeaways 

• AWS Glue handles large-scale batch ETL workflows 

well, offering solid performance and scalability across 

various data volumes. 

• Serverless design enables rapid iteration, lower cost of 

ownership, and minimal platform maintenance—

benefits especially valuable to lean data teams. 

• While some limitations exist (e.g., cold starts and 

limited debugging depth), these are manageable within 

most batch-oriented contexts. 

• Best results are achieved when Glue is integrated into a 

broader architecture that includes robust orchestration, 

monitoring, and schema validation. 

In short, AWS Glue strikes a good balance between 

ease of use and robust capabilities. It is a  solid choice for 

teams that value agility, want to keep costs in check, and are 

already working within the AWS ecosystem.  

As serverless technology advances, Glue is well-

positioned to play an even bigger role in building scalable, 

event-driven, machine learning–ready data platforms. 

 

References 
[1] Plale, B., & Kouper, I. (2017). The centrality of data: data lifecycle and data pipelines. In Data analytics for intelligent transportation 

systems. Elsevier, 91-111. [Google Scholar] [Publisher Link] 

[2] Lee, D. (2020). Data transformation: a focus on the interpretation. Korean journal, 503-508. [Google Scholar] [Publisher Link] 

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=The+centrality+of+data%3A+data+lifecycle+and+data+pipelines&btnG=
https://www.sciencedirect.com/science/article/abs/pii/B9780128097151000043
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Data+transformation%3A+a+focus+on+the+interpretation.+Korean+journal+of+anesthesiology&btnG=
https://synapse.koreamed.org/articles/1156419


Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(7), 73-80, 2025 

 

80 

[3] Kriushanth, M., Arockiam, L., & Mirobi, G. (2013). Auto scaling in Cloud Computing: an overview. IJARCC, 2278-1021. [Google 

Scholar] [Publisher Link] 

[4] Pogiatzis, A., & Samakovitis, G. (2020). An event-driven serverless ETL pipeline on AWS. Applied Sciences, 191. [Google Scholar] 

[Publisher Link] 

[5] Sudhakar, K. (2018). Amazon web services (aws) Glue. International Journal of Management, IT and Engineering, 108-122 [Google 

Scholar] [Publisher Link] 

[6] Singh, P. (2021). Manage data with PySpark. In Machine Learning with PySpark. 15-37. [Google Scholar] [Publisher Link] 

[7] Batmaci, G. (2022). Etl Data Pipelines Configurations in Spark. [Google Scholar] [Publisher Link] 

[8] Mehmood, E., & Anees, T. (2022). Distributed real-time ETL architecture for unstructured big data, 3419-3445. [Google Scholar] 

[Publisher Link] 

[9] Warneke, D., & Kao, O. (2009). Efficient parallel data processing in the cloud. 1-10. [Google Scholar] [Publisher Link] 

[10] Bussa, S., & Hegde, E. (2024). Evolution of Data Engineering in Modern Software Development. Journal of Sustainable Solutions , 116-

130. [Google Scholar] [Publisher Link] 

 

 

 

 

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Auto+scaling+in+Cloud+Computing%3A+an+overview&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Auto+scaling+in+Cloud+Computing%3A+an+overview&btnG=
https://sjctni.edu/SSR_Report/HTML/QNM/Collaboration/KIM_3.7.1_QNM_2013-14_58.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=An+event-driven+serverless+ETL+pipeline+on+AWS&btnG=
https://www.mdpi.com/2076-3417/11/1/191
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Amazon+web+services+%28aws%29+glue&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Amazon+web+services+%28aws%29+glue&btnG=
https://www.indianjournals.com/ijor.aspx?target=ijor:ijmie&volume=8&issue=9&article=007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Manage+data+with+pyspark&btnG=
https://link.springer.com/chapter/10.1007/978-1-4842-7777-5_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Etl+Data+Pipelines+Configurations+in+Spark&btnG=
https://oss.cs.fau.de/wp-content/uploads/2022/09/batmaci_2022.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Distributed+real-time+ETL+architecture+for+unstructured+big+data&btnG=
https://link.springer.com/article/10.1007/s10115-022-01757-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Nephele%3A+efficient+parallel+data+processing+in+the+cloud&btnG=
https://dl.acm.org/doi/abs/10.1145/1646468.1646476
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Evolution+of+Data+Engineering+in+Modern+Software+Development&btnG=
https://pdfs.semanticscholar.org/0103/179bfc37357c77ce545edd455f3538a3538c.pdf

