
International Journal of Computer Trends and Technology Volume 73 Issue 7, 63-72, July 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I7P108 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Automation for the Future: Harnessing AI and ML to

Reshape Software Testing and Maintenance

Chandrasekhar Rao Katru1, Sandip J. Gami2, Kevin N. Shah3

1,2,3Independent Researcher, USA.

1Corresponding Author : raoch88@gmail.com

Received: 02 June 2025 Revised: 25 June 2025 Accepted: 17 July 2025 Published: 29 July 2025

Abstract - Within the software development lifecycle, software testing and maintenance form critical components that require

significant allocation of resources. Routine processes within this area often face challenges like automation, error detection,

and complex modern software systems. The automation of repetitive work processes, detection of failure patterns, and making

smart decisions based on available data is now possible due to the advances of Artificial Intelligence (AI) and Machine Learn ing

(ML). The purpose of this review is to revisit the methodologies, the available tools, and the challenges that AI and ML pose in

software testing and maintenance. It integrates known processes of testing and automation of AI, involving the accuracy of

defects, the generation of test cases, and regression optimization. The results of the study provide evidence of improvement in

the efficiency of software testing, accuracy of defect detection, and software maintenance turnaround time. AI ethics were

explained, in addition to the use of quality data from datasets to ensure the AI system is not biased, is non-discriminatory, and

reliable in the results of the tests.

Keywords - Artificial Intelligence, Machine Learning, Software Testing, Software Maintenance, Test Automation, Defect

Prediction, Natural Language Processing, Predictive Analytics, Continuous Integration, Reinforcement Learning, Test Case

Generation.

1. Introduction
Software testing and maintenance are critical components

of the Software Development Lifecycle (SDLC); however,

they are still repetitive and susceptible to mistakes, struggling

to keep pace with the intricacy of contemporary software

systems. Even with the increase in access to automation,

automation-focused on testing in documents has not been met

with the same flexibility, with older manual testing practices

still being implemented in fast-paced environments. Tools like

Selenium and QTP face limitations in automation, accuracy,

and precision, fundamentally struggling to keep pace with the

demands of fast and ever-evolving software systems. There

are still unaddressed automation concerns, such as ineffective

defect prediction, poor automation in iterative testing cycles,

and the need for automation in human-dependent processes.

Research Gap: Everything from test case generation to

defect prediction with the use of NLP and neural networks has

been done in silos, and no one has approached the problem of

automation as an AI/ML pipeline with test generation,

prioritization, execution and defect prediction in one system.

Almost every paper fails to provide credible evidence from the

practical environment, does not consider the integration of

automation with the continuous integration/continuous

development processes, adaptability norms of the software

after an extensive period of use, and the automation in the

reasoning of machine learning models.

Problem Statement: The primary challenge is to design an

AI/ML-enabled automated testing and maintenance system

that stitches together the gaps across the Software

Development Life Cycle (SDLC) and continuously learns

from the data at hand. This system should maintain the modern

requirements of the AI and DevOps world of bounded AI and

ethical AI by using the state-of-the-art techniques that

guarantee explainability alongside bounded test coverage

optimization and retrospective defect minimization.

1.1. Importance of Machine Learning in Software Testing

and Maintenance

AI/Machine Learning (ML) is gradually becoming

necessary in software testing and maintenance since it helps

improve efficiency in testing, defect prediction, and

minimizing the involvement of traditional methods. There is

always a problem of scalability, the inability to cover all test

cases, or high costs when using traditional software testing

techniques such as manual and automated testing based on

simple rules. Some of the benefits of ML include the

following: The following are some of the advantages ML

brings into play that try to solve these limitations, making it

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chandrasekhar Rao Katru et al. / IJCTT, 73(7), 63-72, 2025

64

one of the technologies that needs to be applied in testing to

improve the test and general software quality.

 1.1.1. Automation and Efficiency Improvement

Increased automation in software testing is the greatest

benefit of Machine Learning (ML) since it decreases the work

done manually. Otherwise, testing approaches involve high-

level manual testing, which is time-consuming, repetitive, and

requires much effort, particularly when working with large,

complex applications. It is possible to use ML for more than

one testing activity, such as test case generation, test case

prioritization, and test case execution. Using ML, these test

cases can be generated out of Natural language requirements,

and the execution of tests can be done with the help of

predicting risky areas in the code. This accelerates the entire

testing process, making it possible to release high-quality

software much faster.

 1.1.2. Defect Prediction and Prevention

ML is indispensable for predicting and preventing defects

before they appear in the product manufacturing process. As

we have seen, conventional quality assurance techniques only

come to light when it is too late in the development cycle, and

so the solutions are costly. Through training with historical

data as features, such as code change sets, bug reports, and

commit histories, ML models can predict patterns

characteristic of defects. These predictive techniques make it

easier for testers to identify high-risk areas early to avoid these

products being shipped with defects. In particular, ML can

determine that certain problems are recurrent and what caused

them, enabling development teams to address the root of the

problem.

 1.1.3. Improved Test Coverage

High test coverage is very important to ensure that most

of the application sector is tested so that those areas with

undetected defects are minimized. It can be a potent tool to

enhance the test coverage by analyzing the results of the

source code to the extent that they are poorly tested. It can also

generate new test cases for untapped areas it was not designed

for, hence providing better coverage. The testing tools based

on ML can be adaptive and improve along with the software

tested by introducing new coverage types gradually over

automatic testing cycles that will result in better control over

the software tested and higher overall quality.

 1.1.4. Reducing Human Intervention and Errors

Users sometimes make mistakes because of plain human

error, such as when drafting and redrafting documents; users

can make mistakes sometimes because they are tired or have

not concentrated. ML can potentially reduce human

involvement since it can automatically create test cases and

run them. Some of the tools that use ML, like Testing and

Selenium, can easily adapt to changes made in the interface of

the applications, and thus, they do not need regular upgrades.

Through the elimination of the human interfa ce in repetitive

testing, there is an increased certainty of the test and a

consequent enhancement of the reliability of the software.

1.2.1. Optimizing Regression Testing

Regression testing allows for the identification of new

code changes that have a negative impact on old code and its

functionality, though executing large full regression tests is

rather time-consuming and requires many resources. What is

regression testing? It is mentioned that ML helps predict what

parts of the application may be impacted by recent changes to

the code. This makes it easier for testers to work only through

the most typical areas rather than constantly running the test

suite. For that purpose, it can also order regression tests based

on the analyzed data regarding the number of defects and

ensure that the most important ones are run first, thereby

saving time.

 1.2.2. Continuous Integration and Continuous Delivery

(CI/CD) Support

Specifying machine learning in the CI/CD methodology:

The benefits and application of the technique are in improving

the testing phases of the build and delivery phases. Since

continuous delivery is the norm in agile and DevOps cultures,

testing is done more frequently and must be incorporated in

every release. ML models can set the tests depending on

previous results, so correct tests are conducted in each build

or deployment. Moreover, by having ML models, one can

identify any irregularity or a dip in performance in real-time

and gain real-time feedback, which would allow a developer

working on software to smooth out the problematic areas or

resolve such issues before they become deeply rooted issues

and might hamper the smooth and efficient delivery of the

software in question.

 1.2.3. Scalability and Adaptability

For large and complex software applications under test,

traditional testing tools are still needed to cope with the

increasing scale and complexity of contemporary software

systems. ML is a flexible approach suitable for large-scale

applications because of a large amount of code and numerous

feature dependencies. Automotive ML models integrate well

to manage and analyze massive data, such as code differences

and bug reports, and discover latent patterns and trends that

testers might not easily recognize. Furthermore, unlike other

testing methods, with software advancement, it can easily be

adjusted as a few code changes occur without much need for

reconfigurations, making it suitable for environments where

software changes frequently and extensively.

1.3. Evolution of AI and ML in Software Testing

Incorporating AI and ML into software testing is an

inventive solution compared to conventional cases by

answering various quandaries, such as the ability to perform

at optimum speed and increase the scale and precision of

testing.

Chandrasekhar Rao Katru et al. / IJCTT, 73(7), 63-72, 2025

65

Fig. 1 Evolution of AI and ML in Software Testing

[5,6] The development of AI and ML in software testing

can be divided into several phases using more refined and

advanced tools and methodologies oriented towards

automation, improving the efficiency and quality of the

software development cycle. Here, you will find a detailed

description of the development of AI and ML in relation to

software testing.

1.3.1. Early Stages: Traditional Testing and Basic Automation

When the software testing process started a few decades

ago, it was typical to be completely manual, where the testers

had to run the test cases, write the results, and report the issues

manually.

However, this was a very labour-intensive model, and the

mapping (and eventual conversion) of software systems could

contain errors and be time-consuming, especially with the

systems becoming larger and complex. Selenium and Quick

Test Pro were the tools introduced to automate the testing with

greater ease by automating the repetitive tasks, mainly for

regression testing as well as functional confirmation.

However, such tools were somewhat inflexible in their

application, causing high maintenance costs, so any change in

the GUI or business rules required integration with the test

scripts.

1.3.2. The Advent of Machine Learning in Testing

Integrating Machine Learning (ML) in software testing

proved to be smarter and more innovative testing mitigations.

In contrast to rule-based automation, the ML approach to

gradually adapt and become smarter provided an avenue for

escaping this pitfall.

Machine learning was initially used for test case

prioritization, where an algorithm could make tests on prior

data and code features that are most sensitive to testing. It led

to higher speed in testing cycles and better fault masking.

Moreover, it enhanced test automation in identifying test

data with various input angles and coverage for strongly

testing the given edge cases to improve content reliability and

robustness.

1.3.3. Natural Language Processing (NLP) for Test Case

Generation

The use of Natural Language Processing (NLP)

embedded in artificial intelligence and machine learning has

led to a revolution in test case generation. In this concept, the

idea of applying NLP algorithms goes through testing tools

that would import the human-written requirements, such as the

user stories and transform these requirements into more

structured formats of testing cases. This saved time in writing

the script for the programmer, whereas the testing process was

enhanced by covering all aspects of the software. In Agile and

DevOps settings where there is a dynamic change of

requirements, NLP could be made to constantly update and

develop new test cases so that software updates would be

tested continuously without the need for a human engineer.

1.3.4. Predictive Maintenance and Defect Detection Using

Deep Learning

One kind of software testing came in the form of ML in

general, and specifically through a sub-discipline called ‘deep

learning,’ predictive maintenance evaluated great volumes of

data like code changes, bug reports, and developer commit

histories, to mention but a few, to find patterns that could help

make a forecast. Using a deep learning approach, especially

the neural network one could predict which portion of the

software was likely to fail next. It lets testers be more

disruptive, going through high-risk regions in an effort to

reduce the number of defects that occur in a release. From the

point of view of defect detection, the approach used in the

work under consideration allowed for a decrease in the time

and resources needed for testing, as the critical sources of

difficulties were addressed at the early stages of development.

1.3.5. Reinforcement Learning in Test Optimization

Test optimization was much more dynamic and adaptive

with Reinforcement Learning (RL). RL algorithms are used to

find the best testing strategy for the subsequent phase by

testing different strategies and modifying the approach with

respect to the results of preceding tests.

Embedding RL could identify the finest order for

conducting test cases and the probable detection of the defects.

Early Stages:

Traditional

 Testing and Basic

Automation

The Advent of

Machine Learning in

Testing

Natural Language

Processing (NLP)

for Test Case

Generation

Predictive

Maintenance and

Defect Detection

Using Deep

Learning

Reinforcement

Learning in Test

Optimization

AI-Powered Tools

for Visual Testing

and Anomaly

Detection

AI and ML in

Continuous Testing

and DevOps

Future Trends and

Challenges

Chandrasekhar Rao Katru et al. / IJCTT, 73(7), 63-72, 2025

66

In subsequent test cycles, the testing strategy of RL systems is

better defined and oriented towards areas that are more likely

to provide failure; this makes the ascertainment of test

execution more efficient.

1.3.6. AI-Powered Tools for Visual Testing and Anomaly

Detection

With the help of AI in visual testing and anomaly

detection, interfaces and performance of software solutions

are tested differently. Those tools, including Applitools, rely

on AI to detect visual differences across different screen sizes

and resolutions. These tools analyse the expected and real end-

user interfaces to conform to the same appearance across

devices. Furthermore, anomaly detection algorithms using AI

can run simultaneously when testing or deploying the system

to check for abnormalities that may indicate symptoms of poor

performance or hacker incursion within the CI/CD

environments.

1.3.7. AI and ML in Continuous Testing and DevOps

As more organizations adopted DevOps and Agile, the

need for testing began to happen at each stage of development.

In such environments, AI and ML are used to automate and

manage the testing process effectively. ML models can be

used in a fashion where tests are to be scheduled, prioritized ,

and performed in a fully automated manner during each build

cycle. These systems are flexible, allowing changes of scoring

mechanisms according to prior scores and dynamic software

to allow testing to progress continuously with changing code

speeds, thereby minimizing the chance of a defect occurring

in a live environment.

1.3.8. Future Trends and Challenges

In the future, AI and ML are expected to make more

projections in software testing, which will lead to more

automation in software testing. Another emerging trend will

be the rise of XAI, the concept that assumes the

interpretability of AI-based solution-making to reduce the

black-box nature of deep learning. The other trend is self-

healing test systems, where the change in the software can also

change the test script without much human intervention.

However, for AI and ML to reach their full potential in

software testing, there is more work to be done: There are

questions about data quality, algorithmic bias, and how to

integrate the tools into existing systems smoothly.

2. Literature Survey
2.1. Evolution of Software Testing and Maintenance

2.1.1. Manual Testing: Traditional Practices: A Review

Manual testing has been the foundation of software

quality assurance for years, and it implies the tester’s activity,

which includes the execution of test cases, defect

identification, and reporting of results. This process is usually

lengthy and intricate, and more often becomes vulnerable to

extensive human interference when handling complicated

structures. Although it can be good in identifying certain sorts

of bugs, the technique of manual testing fails to expand as

adroitly as software applications become large and

complicated. [7-11] In addition, mundane exercises such as

regression testing can be very tiresome for the testers, and this

elevates the probability of real defects being overlooked. As

we moved from the first generation of software to others, there

was an increased need for faster, more accurate, and more

consistent tests, hence the adoption of automation testing.

2.1.2. Automated Testing Tools: Selenium and QTP together

and Their Interface in a Dynamic Environment and Their

Flaws

Today, with tools such as Selenium and Quick Test

Professional, also known as UFT, functional and integration

testing processes have become much faster than before.

Selenium is an open-source tool for testing that is mostly

preferred for web applications, while QTP (UFT) is preferred

for functional / regression testing on various types of software.

These operating tools minimize manual work, such as running

test cases and checking the results, while enhancing the

execution of tests. But they are not without their problems,

especially where conditions are volatile or changing with a

high degree of complexity. For instance, changes in the UI

usually take time to feed into automated scripts in the system.

However, it is cumbersome when dealing with elaborate User

interaction or changing Business rules; it often calls for

constant review of Test Scripts and, at times, there is a need to

fix it manually to get the right results.

2.2. AI and ML in Software Engineering

2.2.1. Natural Language Processing (NLP) in Test Case

Generation

NLP or Natural Language Processing, which can also be

referred to as natural language understanding, is essentially a

computer analysis technique that enables machines to process

natural language. NLP can be applied in software testing,

where it functions to derive test cases from natural language

requirements or user stories(exports). This is about

transforming the natural language descriptions of

characteristics that software has or should have into a

programmable form that the system can execute. NLP use

prevents test case generation from being time-consuming

while at the same time guaranteeing 100% coverage of all the

functional specifications. However, the following issues

occur, especially when considering ambiguous or poorly

written requirements. Such issues can lead to incomplete or

inaccurate test case generation, emphasizing the fact that

better approaches are needed for natural language processing

of complex or ambiguous text.

2.2.2. Deep Learning for Defect Prediction

To be more precise, deep learning, which is a type of

machine learning approach, has also been reported to

investigate a large set of data to predict instances where

software defects are likely to occur. In exploring the code

change history, commit histories, bug reports, and other

Chandrasekhar Rao Katru et al. / IJCTT, 73(7), 63-72, 2025

67

comparable and system-level data, deep learning models can

analyze consistently hitherto undetectable patterns that lead up

to defects. This unique feature makes it possible for testers to

concentrate on risky areas of the software to enhance the

efficiency of the testers. However, general deep learning

models have the weakness of depending on large datasets to

be trained, and it may take considerable computing power to

advance these models. These difficulties may hinder the

ability of deep learning-based defect prediction systems,

which will be more pronounced in organizations with

restricted access to big historical data.

2.2.3. Reinforcement Learning in Test-Path Optimization

Test path optimization is being investigated with

Reinforcement Learning (RL), an approach within the

machine learning subcategory. However, in software testing,

RL can be used to decide the proper sequence of test cases so

that the maximum number of faults can be identified while

consuming the least execution time. It has tongue memory

feedback after the test run is conducted, and provides a smarter

way to optimize testing. However, as discussed in this paper,

the use of RL in software testing has not yet been fully

developed. While using RL, it is possible to encounter

problems with its scaling up as the actualization of the method

necessitates great computational resources and large amounts

of testing data. However, the ability to generalize the RL

model for new unseen cases has continued to prove to be a

challenge.

2.3. Existing Tools and Techniques

2.3.1. AI Tools: IBM Watson AIOps, Testim, and Applitools

Many tools have been developed in the field of AI to

support the testing of software to increase automation speed,

stochasticity, and reliability. IBM Watson AIOps employs

artificial intelligence to identify and resolve issues in IT, and

anything that can be used to analyze and enhance the

technique of software testing can be considered valuable.

Testim is another tool based on artificial intelligence, and it

makes use of machine learning algorithms to ensure that the

integration of change is made smoothly and automatically

without necessitating constant remake of test scripts. While

Applitools is focused on visual testing, it leverages AI to

identify defects in GUI across different resolutions and

devices. The AI tools contribute towards fast-tracking this

process and increasing accuracy, though implementing these

tools within the current project development paradigms and

tuning them to project requirements is rather difficult. Further,

fully mature tools with high purchase costs and time to

generate value can act as a deterrent to broad usage.

2.3.2. ML Models: Decision Trees, Neural Networks, and

Ensemble Methods for Predictive Maintenance

There are many machine learning models that have been

applied to predictive maintenance and defect detection, such

as decision trees, neural networks, and even ensemble

methods. As an application in the software development

process, decision trees are effective tools for classifying data

into separate categories, useful in detecting potential defects

at the beginning of the process. Deep learning models are

perfect in identifying non-linear or convoluted patterns, given

that they are exceptional in determining when software may

be due for failure or require some maintenance. Cross-

validation methods are improvement methods in an ensemble

where several models are built, and their results are combined

to give a better and more reliable result. Used in testing and

maintenance data of any organizational software, such models

help predict the areas that might likely fail, a fact that

ultimately increases the reliability of the software and

decreases the need for maintenance.

2.4. Challenges in Adopting AI and ML

2.4.1. Data Quality: Garbage in, Garbage Out

This paper points out that the quality of the data fed to the

AI and ML systems for training is important. Both AI and ML

depend massively on well-labelled datasets to extract

reasonable and sound patterns. It clearly means that if the

training data used in building the model is inappropriate or

contains some biases, then the results, such as the predictions

and recommendations that are made using the model, will also

contain some bias, a situation that is referred to as GIGO. It is

crucial that accurate and uncontaminated data is collected

from different phases of the software development process for

AI testing systems to succeed. This challenge is especially

critical in industries where there is often little data, or the data

collected may be low quality, difficult to obtain, or, in some

cases, nonexistent.

2.4.2. Integration Complexities: Compatibility with Legacy

Systems

The world is still filled with organizations that still rely

on frameworks and tools that lack compatibility with AI and

ML workloads. This creates potentially vast levels of

incompatibility when attempting to integrate AI-driven tools

in currently popular testing frameworks. Problems of

mismatching may relate to dissimilar data structures,

interfaces to tools, and systems architectures, which make it

hard to incorporate new AI solutions. Also, retrofitting legacy

systems to interplay with AI technologies, in most scenarios,

demands alterations to organizational design and architectural

assumptions that can be both time and resource-intensive. To

this effect, organizations must consider the costs associated

with artificial intelligence test tools as well as the return on

investment when implementing them in their organization,

especially when dealing with the company’s heritage systems.

2.4.3. Ethical Concerns: Bias in Algorithms and

Interpretability

As AI and ML systems are incorporated into software

testing, ethical issues like bias in the guiding algorithms and

the explanation of the AI models used are considered. Training

data bias can be risky at times due to its capability of

replicating bias in decision-making or business execution,

ultimately giving credit to unequal practices. For example, if

Chandrasekhar Rao Katru et al. / IJCTT, 73(7), 63-72, 2025

68

a model used an outdated, defective training dataset, it might

classify the program’s features or components as critical,

which is not true when prioritizing tests. Moreover, most of

the machine learning models, especially deep learning

algorithms, are ‘‘black boxes,’’ meaning that there is difficulty

in explaining the thought process. If there is no insight or

understanding of the nature and purpose of the decision-

making process, then testers and developers may not be able

to confidently rely on artificia l intelligence results within

siloed applications. That is why there is a need to create new

ML models that are more interpretable by humans and the

exact set of rules for using AI-based automated testing tools

that will prevent biases and ensure fair testing.

3. Methodology
3.1. Framework Design

3.1.1 Data Collection

At the core of creating an AI/ML-driven testing and

maintenance environment is the collection of high-quality data

that describes the operational environment of the software.

The more crucial and first-hand sources of data are system

logs, which record the events and errors that occur during

software execution; defective databases, in which previously

encountered bugs and how they were addressed are noted; and

feedback from users of the software in question may point to

problems with either the program’s speed or its interface. It is

this different data that can allow the models to look for such

patterns and predict such issues. [12-16] Such raw data must

be preprocessed, which means the data has to be cleaned from

random data, forms must be standardized, and data must be

enriched through the integration of data from various sources.

 3.1.2. Feature Engineering

Feature engineering converts the raw data into better

input that the AI/ML model can understand and provides

feature importance to the software algorithms. The high

priorities are equally important and consist of test case

priority, which indicates the most important, critical and

potentially affecting testing plan; defect occurrence, which

examines how often, severe, and recurrent certain types of

defects are to determine the riskiest components; and code

complexity is cyclomatic complexity and code churn rates that

provide information about areas of the code base prone to

contain defects. Optimized design features are critical in

determining model performance, with the aim of improving

the accuracy of the predictions as well as the efficiency of the

resulting decision-making, thus making this step important for

any introduction of AI/ML into a system.

3.2. AI/ML Model Selection

3.2.1. Supervised Learning Models

Support Vector Machines for Defect Classification:

Supervised Learning Models work on data that has been

tagged to identify patterns that reach distinct results. Based on

these, the usage of Support Vector Machines (SVM) is

particularly spectacular for the classification of defect types

because it can work with high-dimensional datasets and

guarantee the classes a correct margin of separation. SVMs

involve the division of data into hyperplanes in an n -

dimensional space for the classification of a given defect

depending on past data, including the characteristics of bugs,

the modules that are impacted, and previous solutions. Their

resistance to overfitting, especially with small data sets, makes

them suitable for use in identifying and categorizing software

defects, therefore preventing the occurrence and improving

resource allocation.

3.2.2. Unsupervised Learning Models

Clustering Algorithms for Anomaly Detection: Some of

the key applications of unsupervised learning models, which

are as follows, are adopted in situations where there is no

provision for labeled data, for instance, clustering algorithms.

In software testing, these models find patterns and cluster

similar objects. They can be easily examined for outliers. K-

Means or DBSCAN, for example, can be used to find outliers

within a system log, execution traces, or performance metrics,

comparing areas where there are issues to places that are

normal. These outliers can be used to point out anomalies

possibly concealed in testing processes or unusual operations

of a system that would otherwise have been ignored by the

normal approaches to testing. This proactive anomaly

detection is of great significance in reducing risks within

software maintenance and production domains.

3.3. Test Automation Pipeline

Fig. 2 Test automation pipeline

z

Test Case Generation:

Leveraging NLP Models

to Convert Requirements

into Test Cases

Execution and

Monitoring: AI-Based

Systems Automatically
Prioritize and Execute

Critical Test Cases

Defect Prediction: Using

Historical Data to Predict

Potential Failures

Chandrasekhar Rao Katru et al. / IJCTT, 73(7), 63-72, 2025

69

3.3.1. Test Case Generation

Leveraging NLP Models to Convert Requirements into

Test Cases: NLP models are critical in translating human

language to forms easily understandable by machines, so this

scholarly work is relevant for the automatic generation of test

cases based on software requirements. NLP models take text

descriptions of function or user stories and distil from them

the elements of testing, including inputs, outputs and corner

cases and express them as test cases. Not only does this mean

it provides a faster technique for developing more

comprehensive test suites, but it also requires less human

graphical input, thus decreasing the error ratio connected with

the manual development of test cases. Derived test case

generators that use transformers with better functional NLP

guarantee enhanced coverage and non-functional

requirements for generated test cases.

3.3.2. Execution and Monitoring

AI-Based Systems Automatically Prioritize and Execute

Critical Test Cases: Based on the AI-based methods for

execution and monitoring, testing Phase 3 determines the most

important test cases that have the greatest effect on the system

test. Based on historical defect data and real-time feedback,

these systems feed the test cases where the riskiest area of the

software is tested first. These prioritized test cases are

conducted through automation frameworks where monitoring

tools are used to capture the results, the behaviors of the

system and the resources used. This closes the testing loop and

is convenient for supplying feedback to modify the test

strategies, decreasing the time taken in conducting regression

testing and increasing the chances of early high-priority

problem detection.

3.3.3. Defect Prediction

Using Historical Data to Predict Potential Failures:

Defect prediction uses previous notes such as past bug reports,

code revisions and testing results, and other features to predict

future failures in software systems. In the machine learning

paradigm, some models identify risks and potential defects in

frequently problematic modules and tendencies that show

where a new defect may be expected. By applying testing

efforts to these higher-risk parts, the defect prediction reduces

the likelihood of wastage of resources while improving

software quality. These techniques are also helpful in letting

maintenance teams know ahead of time which components

may very soon need an update or a patch to ensure system

stability, thus avoiding a system breakdown that often results

in inconveniences.

3.4. Validation Techniques

3.4.1. Cross-Validation for ML Models

Cross-validation is a basic procedure applied and used to

assess the accuracy and applicability of the machine learning

models. The process widely used in machine learning practice

is based on dividing the dataset into multiple subsets or ‘folds’

and training the model on some of these folds. At the same

time, the test is performed on the remaining part of this

dataset. The process is repeated several times, with different

splits of data taken as the test set for each round of the run.

Such approaches are k-fold cross-validation in which the data

set is divided into k equal segments, and each segment is used

in turn for testing; that is, while the remaining segments form

the training set, the other form of cross-validation leaves one

out of cross-validation in which a single data point is used for

testing while the rest of the data from the training set. [17,18]

This approach assists in finding overfitting or underfitting,

checking the model’s performance on data it has never seen,

and testing its reliability for real-life cases.

3.4.2. Metrics for Evaluation: Precision, Recall, F1-Score,

and AUC-ROC

Fig. 3 Metrics for Evaluation: Precision, Recall, F1-Score, and AUC-

ROC

3.4.3. Precision

Accuracy specifically measures the quality of positive

predictions given by an ML model, that is, how many of the

predicted positives are actually positive. In the context of

defect prediction, it refers to the degree of recovery of the

defects that had been detected out of the total number of such

defects reported. Low false positives again means that

authentic defects are offered for attention, as the model has

high precision and can exclude those types of mistakes.

Accuracy is most important when the number of false

positives is costly, for example, in sophisticated or time-

consuming debugging.

3.4.4. Recall

Recall also measures the model’s accuracy in deciphering

all the defects in the dataset. It is the ratio of the number of

times the prediction was correct, and it is actually a defect to

the total number of actual defects. Low False labels show that

Precision

AUC-ROC (Area
Under the Receiver

Operating
Characteristic

Curve)

Recall

Ft-Score

Chandrasekhar Rao Katru et al. / IJCTT, 73(7), 63-72, 2025

70

the model is very efficient in reducing the number of missing

defects, most of which are captured during the analysis. This

metric is useful in safety/mission-critical environments, where

the absence of even a single defect may cause system failure

or security breaches.

 3.4.5. F1-Score

The F1-Score is an average of the precision and recall and

is generally known as the harmonic mean of the two

measurements. It is especially helpful when there is a shift in

classes or when the cost of both false positives and false

negatives is comparable. The F1-score is valuable because it

makes evaluating the model’s accuracy easy , since it

combines both precision and recall while providing a means

of adjusting for any imbalance between the two in specific

areas that may exist depending on error distribution.

 3.4.6. AUC-ROC (Area Under the Receiver Operating

Characteristic Curve)

AUC-ROC estimates a model’s performance in different

decision thresholds of classes. The ROC diagram depicts the

true positive rate, also called the recall and the false positive

rate, and the extent under the curve is another measure of the

classification ability of the model. It was observed that an

AUC value near 1 meant excellent discriminant ability,

whereas a value near 0.5 meant random accuracy. This gives

a full view of how well the model will probably perform as far

as prediction is concerned, up to a certain threshold, which is

a must for efficient defect classification and anomaly

detection.

4. Results and Discussion
4.1. Efficiency Gains

In this case, structured AI-supported frameworks have

made many improvements to make software testing more

efficient. These improvements are quantified in terms of time

savings and accuracy enhancements:

 4.1.1. Reduction in Testing Time

Test automation using AI-driven frameworks is best

suited for carrying out mechanized functions where large

chunks of human effort are involved, such as the execution of

tests, the validation of data, and the preparation of reports.

These automated processes bring down the total time needed

for testing by about 40%. With the help of such bottlenecks

and fastened test cycles, organizations obtain the feedback

loops needed for the new work paradigms of agile and

DevOps. That means that a high number of updates can be

delivered with short response times to changes and good

quality of delivery in a changing development environment.

4.1.2. Increase in Defect Detection Accuracy

Traditional methods of detecting defects on a newly

manufactured product have been replaced by machine

learning models due to the ability to recognize common

patterns and correlations. These models, trained with the

previous data, can predict the areas that easily develop defects,

adding to the detection precision by 35%. This improvement

means that problems are unearthed and worked on while

development is still ongoing, thus preventing costly failures

after the product is deployed. Through testing susceptible

elements, AI reduces uncaptured defects while efficiently

using the available resources to make software systems more

reliable.

Efficiency Metrics Before and After AI Integration

Fig. 4 Graph representing Efficiency Metrics Before and After AI

Integration

4.2. Case Study: AI-Driven Testing at a Multinational IT

Firm

One of the leading multinational IT firms used AI testing

A framework for regression testing and defect prediction.

4.2.1. Regression Testing Cycle

The multinational IT firm had problems with big

regression testing covering a lot of time, which then resulted

in software releases and market response delay. When the firm

adopted an AI testing framework, the time spent in regression

testing was cut from 14 to 3 days. This was done by using key

parameters that helped identify particularly important test

cases, automating the process of their launching and removing

the tests that were ineffective. This efficiency not only helped

Metric
Traditional

Approach

AI-Driven

Approach

Improvement

(%)

Testing

Time

(Average)

10% 6% 40%

Defect

Detection

Accuracy

70% 95% 35%

Critical

Defects

Identified

80% 98% 18%

0%

20%

40%

60%

80%

100%

120%

Testing Time

(Average)

Defect Detection

Accuracy

Critical Defects

Identified

Chandrasekhar Rao Katru et al. / IJCTT, 73(7), 63-72, 2025

71

save time concerning the deployment schedules but also in

terms of the agile methodologies that some of the services

used, which stipulated that the pace of making necessary

changes and delivering updates should be faster.

 4.2.2. Critical Defect Detection

An AI-based self-audit integrated framework was

highlighted to have a high level of precision in identifying

such areas of significant defects, based on the following:

Retrieving before the firm implemented AI into its production,

the above organization could only identify 85% of the vital

defects at the testing phases. After using the AI framework,

the above figure improved tremendously to an average of

98%. Past defect data fed to the machine learning algorithms

alleviated the task of estimating the risk-prone areas to test and

planning the testing strategy. Thus, this improvement lowered

the possibility of getting vital defects to production, thus

increasing customer corrosion and minimizing time.

 4.2.3. Post-Release Defects

Defect rates after the release of a software program are

usually good predictors of the quality of software. Before

adopting AI, the firm had a rate of 50 defects post-deployment

for each release charted. Before and after using the AI system,

this attendance rate was reduced to only 12, thus showing an

improvement of 76 percent. This way, the AI framework

helped to minimize the post-release maintenance because

possible problems were accounted for during the previous

testing phases. The enhancement that was observed because

of these practical approaches entails cost reduction, high

levels of system dependability and a stronger belief in the

quality of the software.

Table 2. Results of AI Framework Implementation at IT Firm

Metric

Pre-AI

Implementat

ion

Post-AI

Implementat

ion

Improvem

ent (%)

Regressi

on

Testing

Duration

14 Days 3 Days 78%

Critical

Defects

Detected

85% 98% 13%

Post-

Release

Defects

50% 12% 76%

4.3. Key Findings

4.3.1. ML Models in Defect Pattern Identification

ML algorithms have been found to be powerful tools in

the detection of defect patterns, particularly in large, complex

systems. Through a form of forecasting where the defects are

taken as outcome variables and bug reports, code changes,

cyclomatic complexity, and additional code churn measures as

predictor variables, the ML models can identify which parts of

the software are most likely to be defective. This enables the

testing teams to test the risk components with a high degree of

precision while leaving out stable and less risky sections that,

most of the time, would have incurred extra testing time. By

using ML, the reassessment of defects has proven to be more

effective in identifying previously recurring patterns that

System test teams may not normally detect, such as some code

structures or dependencies that are more likely to cause issues

and therefore, the detection of defects is more efficient and

accurate when compared to Random Testing, leading to an

increase in the effectiveness of testing strategies.

 4.3.2. Reduced Human Intervention

Current AI approaches have effectively applied

automation techniques to activities that were initially more or

less fully manual in nature, including test case design,

identification of high-risk testing, test running, and reporting.

This automation minimizes the use of other human testers

performing routine and monotonous tasks that, in turn, allows

them to focus on other tasks such as strategic thinking,

regulation testing, and discovery, among others. This makes

the testing cycle faster and more consistent, as Impaired

Intelligence takes care of most of the monotonous work.

Second, due to automation, testing teams can extend the scope

of their work without hiring new people, and thus, they can

efficiently work with large software systems or constant

alterations in the code. In conclusion, human testers can now

be more effective as they spend their time on activities that

depend on their domain knowledge rather than the mechanical

execution of the testing procedure. This reduction in man-

hours boosts the speed and quality of the testing.

5. Conclusion
AI, ML, and automation have added great value in the

software testing and maintenance phase and have made a new

level of testing importance. Conventional testing procedures,

which include test generation, test running, and defect

logging, are very costly, labor-consuming, and sensitive to

human errors. On the other hand, these technologies help

reduce processes such as automation, defect prediction, and

priority of test cases through ways that follow the record. This

not only accelerates the testing processes but also increases the

efficiency of defect identification, allowing critical problems

to be detected at the beginning of the testing phase and

avoiding potential failures after product deployment. There

are machine learning models that continue to learn and update

themselves based on the new patterns of system behavior.

Therefore, testing frameworks built using such models will be

more dynamic and capable of dealing with a dynamic

environment that characterizes software systems.

However, there are still some difficulties when it comes

to the integration of AI and ML in software testing. The first

of the challenges is the need for massive, high-quality datasets

with which to train machine learning algorithms. Inaccurate or

limited information will negatively affect the model's

Chandrasekhar Rao Katru et al. / IJCTT, 73(7), 63-72, 2025

72

condition to test and may delay the validity of the testing

process. In addition, overhearing, the situation where created

models fit the training data set but perform poorly in other

unknown situations, is a major issue. Solving these problems

presents research activities aimed at identifying approaches

that would lead to the development of stable and generalizable

models for application to various and varying testing

conditions. Also, the requirement for interpretability is

emerging, specifically in safety-critical applications, when

human testers should know why specific types of defects are

predicted.

However, despite these challenges, AI and ML have a

clear and significant role in software testing; their benefits far

outweigh the challenges. Over time, new AI technologies

present the capability of enhanced efficiency, scalability, and

accuracy in regenerative software testing. More research

should be conducted on enhancing the explainability of AI to

increase the possibility of both designers’ and technical

testers’ ability to comprehend the reasoning behind AI

systems.

Furthermore, ethical issues like data privacy and biases in

the algorithms used in AI testing solutions should be looked

into. Finally, with AI and ML improving in the future,

software testing will be more automated, accurate, and capable

of meeting the needs of modern software development.

References
[1] Houssem Ben Braiek, and Foutse Khomh, “On Testing Machine Learning Programs,” Journal of Systems and Software, vol. 164, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[2] Naresh Chauhan Vedpal, “Role of Machine Learning in Software Testing,” 5th International Conference on Information Systems and

Computer Networks, Mathura, India, pp. 1-5, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[3] Cuauhtémoc López-Martín, “Machine Learning Techniques for Software Testing Effort Prediction,” Software Quality Journal, vol. 30,

no. 1, pp. 65-100, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[4] Ankitkumar Tejani et al., “Achieving Net-Zero Energy Buildings: The Strategic Role of HVAC Systems in Design and Implementation ,”

ESP Journal of Engineering & Technology Advancements, vol. 2, no. 1, pp. 39-55, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[5] Rex Black, Managing the Testing Process, John Wiley & Sons, 2002. [Google Scholar] [Publisher Link]

[6] Mohammad Rizky Pratama, and Dana Sulistiyo Kusumo, “Implementing Continuous Integration and Continuous Delivery (CI/CD) on

Automatic Performance Testing,” 9th International Conference on Information and Communication Technology, Yogyakarta, Indonesia,

pp. 230-235, 2021. [CrossRef] [Publisher Link]

[7] Boris Beizer, Software Testing Techniques, Dreamtech Press, 2003. [Google Scholar] [Publisher Link]

[8] Rui Lima; António Miguel Rosado da Cruz; Jorge Ribeiro, “Artificial Intelligence Applied to Software Testing: A Literature Review ,”

15th Iberian Conference on Information Systems and Technologies, Seville, Spain, pp. 1-6, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[9] Jayanna Hallur, “Social Determinants of Health: Importance, Benefits to Communites, and Best Practices for Data Collection and

Utilization,” International Journal of Science and Research, vol. 13, no. 10, pp. 846-852, 2024. [Google Scholar] [Publisher Link]

[10] Md. Abul Hayat, Sunriz Islam, and Md. Fokhray Hossain, “The Evolving Role of Artificial Intelligence in Software Testing: Prospects

and Challenges,” International Journal For Multidisciplinary Research, vol. 6, no. 2, pp. 1-16, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[11] Václav Rajlich, “Software Evolution and Maintenance,” Future of Software Engineering Proceedings, pp. 133-144, 2014. [CrossRef]

[Google Scholar] [Publisher Link]

[12] Ned Chapin et al., “Types of Software Evolution and Software Maintenance,” Journal of Software Maintenance and Evolution: Research

and Practice, vol. 13, no. 1, pp. 3-30, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[13] Mark Fewster, and Dorothy Graham, Software Test Automation, 1999. [Google Scholar]

[14] Shashidhar Kaparthi, and Daniel Bumblauskas, “Designing Predictive Maintenance Systems Using Decision Tree-Based Machine

Learning Techniques,” International Journal of Quality & Reliability Management, vol. 37, no. 4, pp. 659-686, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[15] Thyago P. Carvalho et al., “A Systematic Literature Review of Machine Learning Methods Applied to Predictive Maintenance,”

Computers & Industrial Engineering, vol. 137, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[16] M. Alaa, “Artificial Intelligence: Explainability, Ethical Issues and Bias,” PeerTechz, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[17] Markos Viggiato et al., “Identifying Similar Test Cases that are Specified in Natural Language,” IEEE Transactions on Software

Engineering, vol. 49, no. 3, pp. 1027-1043, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[18] Luke A. Yates et al., “Cross-Validation for Model Selection: A Review with Examples from Ecology,” Ecological Monographs, vol. 93,

no. 1, pp. 1-24, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.jss.2020.110542
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+testing+machine+learning+programs&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121220300248
https://doi.org/10.1109/ISCON52037.2021.9702427
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Role+of+machine+learning+in+software+testing&btnG=
https://ieeexplore.ieee.org/abstract/document/9702427
https://doi.org/10.1007/s11219-020-09545-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+Techniques+for+Software+Testing+Effort+Prediction&btnG=
https://link.springer.com/article/10.1007/s11219-020-09545-8
https://doi.org/10.56472/25832646/ESP-V2I1P107
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Achieving+Net-Zero+Energy+Buildings%3A+The+Strategic+Role+of+HVAC+Systems+in+Design+and+Implementation&btnG=
https://www.espjeta.org/jeta-v2i1p107
https://www.google.co.in/books/edition/Managing_The_Testing_Process_2Nd_Ed/XN0izRhGylYC?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Managing+the+testing+process&btnG=
https://doi.org/10.1109/ICoICT52021.2021.9527496
https://ieeexplore.ieee.org/document/9527496
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+testing+techniques&btnG=
https://www.google.co.in/books/edition/Software_Testing_Techniques/Ixf97h356zcC?hl=en
https://doi.org/10.23919/CISTI49556.2020.9141124
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+intelligence+applied+to+software+testing%3A+A+literature+review&btnG=
https://ieeexplore.ieee.org/abstract/document/9141124
https://ieeexplore.ieee.org/abstract/document/9141124
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Social+Determinants+of+Health%3A+Importance%2C+Benefits+to+communites%2C+and+Best+practices+for+data+collection+and+utilization&btnG=
https://www.ijsr.net/getabstract.php?paperid=SR241009065652
https://doi.org/10.36948/ijfmr.2024.v06i02.14783
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+evolving+role+of+Artificial+Intelligence+in+software+testing%3A+Prospects+and+challenges&btnG=
https://www.ijfmr.com/research-paper.php?id=14783
https://doi.org/10.1145/2593882.2593893
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+evolution+and+maintenance&btnG=
https://dl.acm.org/doi/abs/10.1145/2593882.2593893
https://doi.org/10.1002/smr.220
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Types+of+software+evolution+and+software+maintenance&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.220
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Test+automation&btnG=
https://doi.org/10.1108/IJQRM-04-2019-0131
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designing+predictive+maintenance+systems+using+decision+tree-based+machine+learning+techniques&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designing+predictive+maintenance+systems+using+decision+tree-based+machine+learning+techniques&btnG=
https://www.emerald.com/ijqrm/article-abstract/37/4/659/314044/Designing-predictive-maintenance-systems-using?redirectedFrom=fulltext
https://doi.org/10.1016/j.cie.2019.106024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+literature+review+of+machine+learning+methods+applied+to+predictive+maintenance&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0360835219304838
https://doi.org/10.17352/ara.000011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+intelligence%3A+Explainability%2C+ethical+issues+and+bias&btnG=
https://www.engineegroup.us/articles/ARA-5-111.php
https://doi.org/10.1109/TSE.2022.3170272
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identifying+similar+test+cases+that+are+specified+in+natural+language&btnG=
https://ieeexplore.ieee.org/abstract/document/9763328
https://doi.org/10.1002/ecm.1557
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cross-validation+for+model+selection%3A+a+review+with+examples+from+ecology&btnG=
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecm.1557

