
International Journal of Computer Trends and Technology Volume 73 Issue 7, 44-54, July 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I7P106 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Isolated Build Environments for Supply Chain Security:

Defending Against Insider Threats

Karthikeyan Thirumalaisamy

Independent Researcher, Washington, USA.

Corresponding Author : kathiru11@gmail.com

Received: 30 May 2025 Revised: 23 June 2025 Accepted: 15 July 2025 Published: 28 July 2025

Abstract - The rise in frequency and sophistication of software supply chain attacks has highlighted insider threats as a

significant vulnerability in the build process for software. Insiders likely have access and trust in the build system, whether as a

developer, administrator, or compromised CI/CD build infrastructure, to place malicious software, alter dependencies, or

modify outputs - typically without the owner's knowledge. This paper proposes isolated build environments using secure

enclaves, such as Intel SGX and AMD SEV, as a way to improve the integrity and confidentiality of the build process by executing

it in isolated hardware-protected environments. It outlines a secure build pipeline using enclaves for attesting build

environments, preventing data exfiltration, and isolating unauthorized code changes. This paper proposes a design that

integrates with existing DevOps tools, employs reproducible builds, supports artefact signing, and enable s secure key

management using enclaves. This paper conducts threat modeling, provides implementation techniques, and also provide

performance evaluation to claim that enclave-based isolated build systems can substantially reduce the attack surface while

blocking insider threats with low performance overhead. Enclaves offer a scalable and effective way to improve trust in the

software supply chain and are well-suited for high-assurance or regulated environments.

Keywords - Isolated Build, Secure Enclaves, Secure CI, Confidential Compute, Supply chain security, Insider Threats .

1. Introduction
The trustworthiness of the software supply chain has

become a top concern for organisations as software becomes

further integrated into critical infrastructure, financial

systems, healthcare systems, and defence. The build process

is the step in the workflow in which human-written code is

turned into development artifacts for production, and it is

particularly vulnerable to insider threats. Malicious insiders or

external adversaries who designate privileged systems or

accounts have the ability to modify source code: insert

backdoors and manipulate build tools, which typically go

unnoticed by their organization. The publicity surrounding

high-visibility attacks on well-known public organizations

(i.e., SolarWinds) can provide evidence of the damage that a

single attacker can do to targeted organizations, and their

downstream users. Access control, and equally as important,

effective audit logging are necessary security features, but

they may not be sufficient to protect against adversaries who

are legitimate users with real credentials, and who have a good

understanding of the organization's internal systems. This

issue raises concerns about the potential compromise of the

build process through insider and external threats. This paper

evaluates the effectiveness of the isolated environment using

secure enclaves - a hardware-based Trusted Execution

Environment (TEE) - as a foundational security level to better

secure the build process. Secure enclaves - such as Intel

Software Guard Extensions (SGX) or AMD Secured

Encrypted Virtualization (SEV) provide isolated execution
environments, where the enclaves protect both code and data

from access or tampering from privileged embedded systems

software - e.g., hypervisors and operating systems.

This paper presents a new system architecture that

securely integrates enclaves into a modern pipeline to provide

users with a means to confidentially verify and potentially

tamper-resistant software builds. Restricting critical

operations (source code decryption, dependencies resolution,

compiling, signing artifacts) to enclaves creates strong

cryptographic guarantees that the final build outputs could not

only be true to authenticity but also, due to the reliance on

other verification mechanisms, were not modified. The system

presents the foundation for how enclaves can plug into CI/CD

without violating the current developers workflow. In our

demonstration, the isolated enclave-based builds effectively

and strongly protected against insider threats with reasonable

performance impacts for any expected usage. Enclave-based

builds will serve high-security environments and

organizations desiring improved resilience in the supply

chain.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Karthikeyan Thirumalaisamy / IJCTT, 73(7), 44-54, 2025

45

2. Understanding Insider Threats
Before insiders become a threat, they are a risk, which is

defined as the potential for a person to use authorized access

to the organization’s assets - either maliciously or

unintentionally in a way that negatively affects the

organization. Access includes both physical and virtual

access, and assets include information, processes, systems,

and facilities.

2.1. What is an Insider?

An insider is a trusted individual who has been granted

access to, or possesses privileged knowledge of, an

organization's internal systems, resources, or data that are not

publicly available. This access may be part of their job

responsibilities or derived from their role within the company.

Insiders can include employees, contractors, third-party

vendors, or partners who are authorized to interact with

sensitive infrastructure. The types of information and systems

insiders may have access to include:

• People who have a badge or other device that allows them

to continuously access the company’s physical property,

such as a data center or corporate headquarters.

• People who have a company computer with network

access.

• People who have access to a company’s corporate

network, cloud resources, applications, or data.

• People who have knowledge about a company’s strategy

and knowledge of its financials.

• People who build the company’s products or services

2.2. Categories of Insider Threats

Insider risks present an even more difficult challenge in

detection than external threats due to the fact that insiders have

authorized access to an organization’s internal systems, data,

and processes.

Due to their insider status, they are trusted by default and

are also familiar with an organization’s operations, such as

security tools, workflows, and infrastructure. This gives them

the ability to blend into their organization's systems without

triggering the same types of alerts that would be generated

while performing unsanctioned outside activity.

Moreover, they can misuse their access in a less visible

way than an external attacker, who would have to physically

break into any system. The actions taken by insiders can

appear legitimate on the surface, they may access sensitive

source code repositories or modify build configuration - even

raise the alert threshold for automatic alerts in some instances,

this would be necessary given the actions taken by the insider,

or simply because they were in the correct role with the proper

credentials at the time. When considering these examples, it

can be incredibly difficult to distinguish between behavior that

is either normal or a potential risk.

Insider threats also tend to occur over an extended period

of time, so organizations will discover them much more

slowly through security monitoring or normal anomaly

detection monitoring. Furthermore, because of normal

operational complacency, insiders could put the

organizations’ assets at risk for many weeks, months, or even

years undetected before realizing they had taken an action that

is harmful (data leaks, code tampering, and intellectual

property theft are all examples of actions occurring after the

fact).

Most importantly, it’s critical that companies understand

the types of insider risks, such as intentionally doing harm or

damage, simple carelessness or mistakes, and/or compromised

credentials. Each insider risk should be identified and

characterized so companies can have a clear understanding of

how threats can emerge from the inside. By identifying and

characterizing these risks, organizations may understand the

vulnerabilities posed by their insider environments and

prepare effectively for trusted insiders and the challenge of

monitoring them.

The following section examines the various categories of

insider threats:

2.2.1. Accidental Insider Threats

Accidental insider threats, also called inadvertent or

unintentional insider threats, occur when people compromise

security by accident, usually by a person misunderstanding

something or simply being negligent, or lacking in training.

These incidents have no intent to harm but can come with

serious consequences related to data compromise, system

compromise, or compliance obligations.

Accidental insider threats arise when individuals

misunderstand or ignore their security limitations, often due to

misplaced trust or access within an organization. These threats

can be hard to detect because such behaviors may appear

harmless or go unnoticed until damage occurs. Common

examples are:

Misdirected Communication

A business partner or employee mistakenly sends

confidential documents (customer data, source code,

confidential financials) to the wrong person, who assumes

they were authorized.

Phishing/Social Engineering

An employee gets an email that appears normal and clicks

a link, and somehow downloads malware and provides

credentials to an attacker.

Mishandling Data

An individual stores sensitive files on unencrypted USB

drives, uploads them to unauthorized cloud services, or

shares them over insecure channels like personal email.

Karthikeyan Thirumalaisamy / IJCTT, 73(7), 44-54, 2025

46

2.2.2. Negligent Insider Threats

Negligent insiders represent a specific type of insider

threat. Like accidental insiders, they do not act out of malice.

However, negligent insider actions are distinct from truly

accidental because negligence by standard definition means to

act with knowledge, they are violating a policy or best

practice. Negligent insiders usually know their actions violate

company policy or security rules, but act against them

anyway. The most common drivers of negligent insider

actions are certainty due to experience, complacency, time

pressure, habit, convenience, or a false sense of security.

Negligent actions may become evident in environments

that view security policies as a hindrance to operational

performance or in places where individuals are unaware of the

negative impact their activities can create. Negligent actions

may not appear to be dangerous by themselves, but when you

combine negligent acts, they may create vulnerabilities or

allow data leaks or unauthorized access.

Common types of negligent insider actions include:

Lack of Physical Security

Allowing a visitor or coworker to “tailgate” into a secure

building or area without verifying credentials, and just

assuming they belong there.

Bad Policy Choices for Convenience

Deactivating endpoint protection, agreeing to log in and

access resources without a VPN, or removing multi-factor

authentication (MFA) to troubleshoot an issue or speed access.

Accessing your Sensitive Corporate Information/Network on

an Insecure Network

Authorizing access to sensitive corporate resources

(dashboard, dev environment, and/or email) over an unsecured

public WiFi without a secure channel such as a VPN.

2.2.3. Malicious Insider Threats

Malicious insider threats are one of the more dangerous

and difficult to detect forms of internal risks that organizations

can face. While accidental or negligent insiders may cause

issues through oversight or carelessness, malicious insiders

act with intent; they purposely abuse their authorized access

to an organization, either to harm it, steal sensitive

information,/or disrupt its ability to function. These

individuals are often trusted employees, contractors, or third-

party partners who understand internal systems and security

controls, making their actions more calculated and harder to

discover.

Malicious insiders may operate individually or

collaborate with external threat actors. The reasons for insider

threats are diverse, including personal circumstances as well

as ideological motivations. Additionally, there are typically

some financial, political, or competitive advantage or gain

factors that also have a role in the desires of malicious insiders.

Some common motivations of malicious insiders are:

Financial Gains

Selling proprietary data, customer records, source code,

or intellectual property to rivals or on black markets.

Revenge or Personal Grievance

An unhappy employee leaks sensitive documents or

destroys systems, processes, and/or data after being demoted

or let go, or after a longstanding dispute or conflict.

Surveillance

Stealing confidential information for another

organization on behalf of a foreign government, competitor,

or activist group.

Career Advancement or Recognition

Stealing trade secrets to obtain an advantage at a future

job, and/or to discredit former colleagues or organizational

leadership.

2.2.4. Collusion-Based Insider Threats

Collusion-based insider threats occur when a trusted

person inside an organization engages external threat actors

such as cybercriminal syndicates, nation-state operatives, or

competitors to perpetrate harm. Collusion-based insider

threats are more sophisticated and dangerous insider risks that

combine internal trust and external capability to execute

sophisticated attacks. Rather than malicious insiders who

operate autonomously, colluding insiders are generally

recruited, forced or motivated by external actors to misuse

access for some operational goal such as corporate espionage,

intellectual property theft, disruption of operations, or

establishing long-term persistence in the organization.

Some common motivations of insider collusion are:

Monetary Gain

Receiving payment to provide credentials, system access

or confidential information

Coercion or Blackmail

Being compelled to comply under threat to a person or

exposure of compromising information

Ideological

Partnering among like-minded individuals with shared

goals in pursuing damage to the organization (e.g., hacktivists,

nation-states)

Career or Personal Advancement

Working with competitors to gain favor or employment

by sharing trade secrets.

3. How Insider Threats Occur at the Build Stage
The build stage in a software supply chain is where the

source code, dependencies, and configurations get combined

and built into deployable artifacts such as containers,

Karthikeyan Thirumalaisamy / IJCTT, 73(7), 44-54, 2025

47

executables, or libraries. The build occurs within an automated

CI/CD pipeline, usually leveraging tools like Jenkins, GitHub

Actions, GitLab CI, or Azure DevOps. This stage of software

supply chains is uniquely susceptible to insider threats, as it

has an extremely high level of automation and trust implicit

within the environment. Insider actors can be accidental,

negligent, malicious, colluding, or compromised individuals

who can exploit their access or errors made during the build

phase to introduce vulnerabilities, manipulate build outputs,

or weaken security controls.

The diagram below shows the details of how insider

threats occur at the build stage.

Fig. 1 Illustration of Insider threats at build stage

3.1. Insider Threats at the Source Code Stage

The source code stage is the building block for the

software development life cycle, where a programmer,

DevOps engineer, and software architect can all work together

while writing, reviewing, and maintaining code. The source

code phase is primarily via version control products such as

GitHub, GitLab, and Azure Repos, which allow for code

commits, branching options, pull requests, merge reviews,

and audit trails. However, this trust-based ecosystem can be

exploited by insiders whose access is legitimate and who, to

some degree, have an understanding of the organization and

the process they support. Insider threats can frequently inject

malicious logic or vulnerabilities into an application's build

from this phase onward in a covert and nefarious manner.

One of the most significant transitions in this pipeline is

the code-completed to CI trigger pivot. Lots of the time, the

transition from code to job is automatic, meaning that once

code is merged into a tracked branch, it automatically triggers

a CI/CD job via git hooks and runs your job builds, tests,

packages, and possibly deploys your software without

additional human verification. Job automation provides

opportunities for blind spots if unvetted, malicious,

vulnerable, or sub-standard code is merged into a trusted

branch where more trusted, unassorted artifacts can be

deployed without a human having to trust another

instance/human to validate the artifacts.

3.1.1. Complex Code Obfuscation

Insiders can introduce malicious logic in a hidden way

that is physically challenging to detect in code reviews - i.e.

payloads hidden in programming language string

comparisons, nested functions, or dynamic dependencies.

3.1.2. Credentials & Secrets

Leaks or exposure of sensitive information or secrets can

be metered in a commit, or configuration files, such as: .env,

settings.py, or .yaml files for which any of these when they are

committed even temporarily, it transparently scrape sensitive

information when enacted from either internally or externally

(e.g., if these activities are migrated to a public repo at some

later point in time).

3.1.3. Dependency Disorder

Insiders can warp dependency files like: package.json,

requirements.txt, or pom.xml, to include any number of

Karthikeyan Thirumalaisamy / IJCTT, 73(7), 44-54, 2025

48

malicious packages either via dependency confusion,

typographical-decoy tampering, or utilizing already

compromised and public dependency registries.

Once hostile code is merged into the CI/CD system, there

is no real friction keeping hostile code from ever becoming a

production artifact. Once a persistent backdoor, endpoint

exploit, or leak is present in the code of a hosted application,

there is a significant risk that the vulnerability may propagate

throughout the build and deployment pipeline, potentially

resulting in widespread compromise.

To address these vulnerabilities, governance, trust, and

transparency are promoted through tools that enable the

following:

• Code reviews with two or three people's approval

• Protected branches and merge gates that restrict

deployments to builds from designated branches (e.g., the

main branch) only

• Static code analysis and linting

• Scanning, Audit logging, and commit attribution

3.2. Insider Threats at the Build Automation Stage

The build automation stage is when the source code is

converted into executable artifacts using automated platforms

such as Azure Pipelines, GitHub Actions, GitLab CI, and

other CI/CD orchestration platforms. These automated

platforms compile and validate code by running tests, while

packaging and publishing outputs often without human

intervention. This stage is a high-value target for insider

threats, because CI/CD systems generally run with elevated

credentials and have access to:

• Secrets and credentials (e.g., API keys, signing

certificates)

• Production-like build environments

• Sensitive scripts and deployment hooks

• Infrastructure provisioning logic

A malicious, negligent, or compromised insider can

interact with CI/CD systems to introduce silent and trusted

compromises that persist for the entire lifecycle of the

software.

3.2.1. Tampered Scripts

Tampered scripts are a major insider threat during the

automation build process. A trusted insider may intentionally

or otherwise modify CI/CD configuration files or build scripts,

changing the behavior of the pipeline. These scripts are

contained in various files (kernel to the build process)

representing common CI/CD examples: azure-pipelines.yml,

.gitlab-ci.yml, GitHub Actions workflows, Jenkins files,

and/or shell scripts. The build scripts themselves determine

how code is built, tested, scanned, and deployed as a product

artifact. Having an insider change the build scripts means that

an insider can overwrite critical security checks, skip

automated tests, and/or insert malicious command scripts that

execute as part of the build process. For example, an insider

may comment out or remove unit tests and static analysis steps

so that code with vulnerabilities leaks past these checks.

Another example is to insert a command that downloads an

obfuscated payload from an external server and executes it.

Malicious insiders may also manipulate environment

variables and output variables to leak secrets (e.g., API keys

or credentials) or redirect the final build artifacts to their own

repository or location on the file system that they control. The

build system is usually set up under a level of high trust with

little or no manual review; therefore, the changes typically will

not be noticed until it is too late. The result? The organization

finds itself creating compromised artifacts and moves through

the software development lifecycle. Tampering at this point is

especially dangerous because it is not just manipulating the

contents of the product; it is manipulating the process of how

the software gets built. This enables a deep compromise, often

with little visibility, into the end product delivered to the

customer.

3.2.2. Dependency Poisoning

Dependency poisoning is an insider threat that takes

advantage of trusted individuals who can manipulate a build

process by introducing or replacing previously trusted

software dependencies with malicious, compromised or

unauthorized packages. Today, softwa re projects typically

incorporate heavy reliance on third-party libraries from either

public or internal repositories (examples include: npm, PyPI,

Maven, NuGet); during a build process, any listed

dependencies are automatically pulled in based on the

requirements defined in a dependency file (e.g. package.json,

requirements.txt, pom.xml, etc.). The single insider

(malicious, negligent, or forced) can modify the dependency

files or alter the registry configuration for the software

development project to introduce a poison dependency that

contains unforeseen and inadvertent back doors, surveillance

code or logic bombs. The means from which an insider may

use to add or replace malicious dependencies can include

typosquatting (adding a dependency with almost an identical

name, or similar spelling to a legitimate dependency and then

subsequently replacing with malware), dependency confusion

(exploiting an unexpected name collision of internal packages

and public packages), or modifying a hash value in a lock file

for that dependency that substitutes for the trojanize version

of a dependency. After a malicious package has been added to

the dependency install, it is part of the build and will exist as

part of the compiled product artifact. Attackers can leverage

this approach for remote access or the ability to exfiltrate data

from a production environment.

3.2.3. Bypassing Security Controls

The insider threat of bypassing security controls involves

a trusted user disabling or manipulating security mechanisms

that protect the CI/CD pipeline through deliberate actions. The

Karthikeyan Thirumalaisamy / IJCTT, 73(7), 44-54, 2025

49

modern build systems implement various automated tools to

enforce code quality and security through Static analysis,

container scanning and policy-as-code checks. The insider

who controls pipeline configurations or build scripts possesses

the ability to modify these controls for vulnerability detection

evasion. The insider can achieve this by disabling test or scan

stages in YAML pipeline files, by setting failure conditions to

always succeed or by filtering output logs to conceal alerts.

Insiders sometimes disable dependency check results and set

build tools to bypass signing and verification operations. Such

actions present a significant threat because they produce

misleading security indicators which make builds appear clean

and compliant even though they contain vulnerabilities.

Insiders who bypass security controls enable vulnerable non-

compliant or malicious code to enter production deployment.

The post-factum detection of this threat becomes challenging

because the artifacts appear valid without alerts, yet essential

security gates remain disabled. The tampering of security

controls in regulated industries or zero-trust environments

leads to compliance violations and exposes customers, and

creates supply chain vulnerabilities.

3.2.4. Leakage of secrets

The exposure of sensitive credentials represents a major

insider threat because it happens when API keys, passwords

and tokens, signing certificates and cloud access credentials

become visible through accidental or intentional disclosure

within the build environment. The build automation process

requires these secrets to enter pipelines through environment

variables and secure files, and secret management systems,

including Azure Key Vault, HashiCorp Vault and GitHub

Secrets. Insiders who are negligent or ma licious can reveal

these secrets through modifications made to build scripts,

which result in secret exposure through console output

logging, compiled artifact inclusion or insecure intermediate

file storage. Developers who mean well sometimes make

mistakes by adding .env files or configuration files containing

secrets to the source repository because scanning and

validation controls are not present. Secrets can be revealed

during testing and debugging operations without awareness

that CI/CD logs will be stored for extended periods and

accessible to other team members. The discovery of accidental

secret leaks proves challenging in real-time operations until

the exposed secrets lead to more serious security breaches,

such as unauthorized access to production systems or cloud

resources. Build pipelines face increased risk because their

automated nature and trusted environment allow exposed

secrets to persist across multiple builds and environments. The

risk of insider exposure requires strict access controls together

with automated secret scanning and log masking, and least

privilege access in CI/CD environments to minimize

accidental secret exposure.

3.2.5. Data Exfiltration

The unauthorized transfer of sensitive information, such

as source code and configuration files, credentials, build logs,

and compiled artifacts, occurs during the build automation

stage through data exfiltration by insiders to external systems

or unauthorized internal destinations. The threat poses a

significant danger to CI/CD environments because these

systems manage large volumes of proprietary code and

production-grade secrets while maintaining elevated access to

internal repositories, build artifacts, and cloud services. A

malicious insider can embed custom pipeline steps that

secretly extract data , which gets transmitted to servers

controlled by attackers through cloud storage buckets or

messaging platforms. The insider adds scripts to transfer

compiled binaries to external FTP servers, sends environment

variables to webhooks, and uploads log files to third-party

storage services. Insiders sometimes use legitimate

integrations such as Slack, email, and artifact mirrors to hide

their data exfiltration a ctivities within normal pipeline

operations. Such activities remain undetected for extended

periods because CI/CD systems are trusted, and log audits are

not performed in detail, especially when malicious code exists

within operational builds. Successful data exfiltration leads to

severe consequences that include intellectual property theft

and credential exposure, and enables additional attacks

throughout the software supply chain. The prevention of this

threat demands implementing least-privilege access a longside

build script immutability, outbound traffic restrictions and

continuous pipeline behavior monitoring for anomaly

detection.

4. Investigate Confidential Computing and

Secure Enclave Technologies
The traditional CI/CD systems operate with extensive

privileges on common infrastructure, which enables both

trusted users and compromised accounts to modify source

code and introduce malicious dependencies and leak sensitive

data during the build process. The Secure Enclave concept

presents an Isolated Build Environment solution that uses

hardware-enforced execution environments to deliver

confidentiality and integrity, and verifiability for build

pipelines. The build process executes inside a

cryptographically isolated zone through confidential

computing technologies, including Intel SGX and AMD SEV

and cloud-native solutions like Azure Confidential VMs and

AWS Nitro Enclaves, which remain invisible to the host OS,

hypervisor and other users.

The isolation model implements zero trust at runtime to

defend against insider threats even when operating within

trusted infrastructure. The enclave protects code and secrets

and builds logic from insider access to view, modify, or

intercept them. The build process can be verified through

remote attestation, which allows external systems to confirm

that the hardware was not tampered with and the code was

approved before accepting the resulting artifacts. The

combination of hardware-based isolation with minimal trusted

compute base and verifiable integrity transforms the build

Karthikeyan Thirumalaisamy / IJCTT, 73(7), 44-54, 2025

50

system into a hardened supply chain component. The system

minimizes insider threats while enforcing strict role separation

and providing trusted build output regardless of who controls

the infrastructure.

4.1. Intel SGX Enclaves

Intel SGX operates as a hardware-based security

technology from Intel that produces processor-based isolated

execution environments called enclaves. Enclaves protect

sensitive code and data through full encryption of RAM

memory, which remains inaccessible to operating systems,

hypervisors and firmware and elevated administrative users.

The architectural isolation of SGX functions as a potent

security mechanism that protects against insider threats during

software supply chain operations by defending source code

and preventing backdoor injections and secret exposures

during build operations.

Fig. 2 Illustration of Insider threats in Intel SGX Enclaves Enclaves

Secure build environments leverage SGX to create trusted

hardware-isolated enclaves that protect all vital build pipeline

operations, including source code compilation, dependency

verification, credential injection, and artifact signing.

Once the enclave initializes, it becomes impossible for

any user, including those with complete system access, to

modify or observe its contents.

The enclave contains all secrets and signing keys, which

stay inside without appearing in logs, memory, or disk storage.

SGX technology provides remote attestation capabilities,

which enable downstream systems to authenticate that the

build occurred in a genuine SGX enclave through trusted code

verification. The build stage becomes tamperproof through

SGX technology because it creates a trustworthy link from

source code to artifact, which prevents insider interference.

SGX delivers robust security features, yet its deployment

faces significant resource-related challenges. SGX enclaves

operate with restricted memory capabilities because they have

only 128 MB of EPC (Encrypted Page Cache) available for

use by default. Using paging as a memory expansion

technique leads to substantial performance losses that prevent

the practical execution of extensive processing operations.

SGX enclaves need to perform disk operations through

untrusted components located outside their secure

environment because they lack direct disk access, which adds

complexity to development while restricting its usability.

Large source code bases and artifacts measuring between 2

and 5 GB in size become difficult to handle inside the enclave

because the available memory space remains limited, which

prevents direct repository retrieval into the enclave unless

developers implement specific chunking strategies, buffering

mechanisms and validation protocols.

Karthikeyan Thirumalaisamy / IJCTT, 73(7), 44-54, 2025

51

4.2. AWS Nitro Enclaves

AWS Nitro Enclaves established a secure hardware-based

execution environment inside EC2 instances, which protects

sensitive data through tamperproof operation even when

privileged users attempt to access it. The AWS Nitro

Hypervisor enables Nitro Enclaves to allocate specific CPU

and memory resources from the parent instance for creating

isolated enclaves without storage or network connectivity and

interactive login capabilities. The isolation mechanism

prevents all users with root or admin privileges, including

tenant admins, portal admins and CI/CD pipeline operators,

from accessing or modifying the enclave contents. After

enclave launch, the software becomes immutable, so attackers

cannot add spyware, modify code or disrupt enclave

operations.

AWS Nitro Enclaves serve to protect the most sensitive

parts of CI/CD pipeline operations through artifact signing

and cryptographic hashing and build attestation. The lack of

network and disk access prevents full-scale compilers and

package managers from running inside these environments,

but they excel at processing small security-critical build

components. The enclave accepts compiled binaries and

source hashes through a virtual socket (vsock) before

processing or signing them with enclave secrets that remain

inside the enclave, and then returns the results to the parent

instance for distribution. The architectural design protects all

secrets from interception and internal logic inspection and

builds outcome tampering for all users, including system

administrators with complete privileges.

4.3. AMD Secure Encrypted Virtualization (SEV-SNP)

The AMD SEV (Secure Encrypted Virtualization) feature

operates as a virtual machine-based security mechanism that

protects VM memory data by encrypting it against

unauthorized access, including hypervisor and host operating

system and cloud provider administrator access. The AMD

Secure Processor securely manages encryption keys, which it

distributes to each virtual machine to establish their unique

cryptographic access. The hardware performs encryption and

decryption of VM memory data automatically through its

CPU during memory access without interfering with

applications or the guest operating system. The memory

contents of a virtual machine remain protected from

unauthorized access through VM memory encryption because

the underlying infrastructure cannot access them, even with

root access, hypervisor bugs or insider activities.

The security features of SEV align perfectly with

software supply chain practices since they protect important

operations like source code building and artifact signing,

which require trusted execution environments. The cloud-

based CI/CD pipelines benefit from AMD SEV because this

technology allows developers to perform safe builds inside

VMs that protect against infrastructure threats. Source code

compilation, along with dependency validation and secret

handling, can be performed in build VMs on cloud provider

infrastructure without fear of unauthorized data access

because the data remains protected inside the VM. The

security of SEV reaches new heights through its variants SEV-

ES and SEV-SNP, which provide encrypted CPU register state

protection along with memory mapping attack defense.

Fig. 3 Illustration of Insider threats in AMD SEV-SNP

The VM-level protection provided by SEV does not

extend to application-level isolation that Intel SGX and AWS

Nitro Enclaves offer. Other security measures, such as secure

coding practices and restricted access policies, together with

runtime controls, are needed to defend against insider threats

that arise from compromised users or malicious code

possessing OS-level privileges within the VM. The encryption

of disk data through SEV requires additional configuration

and network communications must be secured independently.

The power of AMD SEV serves to protect confidential

computing in shared cloud infrastructure by providing

workload-level protection against infrastructure threats

without requiring application code modifications.

4.4. Confidential Containers on Azure Container Instances

(ACI)

ACI uses AMD SEV-SNP to create Confidential

Containers which provide totally isolated build environments

to stop insider threats during all phases of the software supply

chain. The main principle of this solution depends on

Confidential Virtual Machines (CVMs), which use AMD

SEV-SNP for hardware-based memory protection and

verification. The confidential workload contents that include

source code credentials and runtime data remain completely

protected against unauthorized access and modifications by

Azure cloud administrators and compromised host systems.

The Child Utility Virtual Machine (Child UVM) functions as

a lightweight virtual machine that creates a secure boundary

for container execution. Azure launches confidential

containers within a Child UVM, which runs with AMD SEV-

SNP to create complete isolation from the host OS and other

tenants. The Child UVM is:

Karthikeyan Thirumalaisamy / IJCTT, 73(7), 44-54, 2025

52

Fig. 4 Illustration of Insider threats in Confidential Containers in ACI

4.1.1. Dedicated and Ephemeral System

It starts only for container workloads and is destroyed

when the container stops.

4.1.2. Measured and Attested

Child UVM receives verification from container owners

to prove its genuine AMD SEV-SNP firmware alongside its

correct container image.

4.1.3. Immutable at Runtime

After deployment, the runtime environment remains

completely immutable because Azure staff and tenant

administrators cannot access the system hardware-based

protection for code execution, even when attackers control the

hypervisor and management plane. The Child UVM interacts

exclusively with the container runtime system while being

completely inaccessible to host-level logging tools and

debuggers.

The container inside the Child UVM obtains large source

repositories by using pre-provisioned time-limited credentials

(such as short-lived GitHub tokens or signed URLs). The

container can then:

• Build software using standard tool chains.

• Run security and quality tests.

• Package and sign artifacts.

• Push outputs to external registries or storage.

Child UVM provides complete confidentiality for all

source code, intermediate artifacts, secrets and signing keys

during both high-throughput and long-running build

operations. After completing its task, the system

automatically deletes the container together with its Child

UVM to eliminate any remaining data traces as part of

ephemeral security. Confidential Containers deployed on ACI

use AMD SEV-SNP together with Child UVMs to create a

protected temporary build environment with complete

isolation. The system allows secure source code downloads

and protected builds while enabling safe artifact publishing to

create a complete insider threat defense for secure software

supply chains.

5. Proposed Approach: Ephemeral, Isolated

Secure Build Environments
Organizations can establish completely secure build

processes that prevent insider threats by using Azure

Container Instances (ACI) with Confidential Containers

supported by AMD SEV-SNP to create ephemeral, isolated

build environments. The entire software build lifecycle, from

source code retrieval through compilation, testing, signing and

artifact distribution, runs inside an encrypted runtime which

protects the environment from both cloud administrators and

privileged tenant users. A confidential container starts running

when the CI/CD pipeline initiates the build process with 50

GB of ephemeral disk space for pulling source code and

running compilations and tests. The container starts by

conducting remote attestation to check both its hardware

integrity and its container image state. The system releases

sensitive assets, including Git access tokens and cryptographic

signing keys, after attestation verification, which uses Azure

Key Vault or Managed HSM to enforce access control with

attestation awareness. Refer to the diagram below for the

proposed build pipeline approach.

Karthikeyan Thirumalaisamy / IJCTT, 73(7), 44-54, 2025

53

Fig. 5 Illustration of Proposed Build Pipeline using Confidential Containers in ACI

The enclave (Confidential Containers) performs secure

source code retrieval using attested credentials before

executing an immutable build and test process inside a

network-restricted environment. The signing keys perform

cryptographic signatures on build artifacts while all secrets

stay encrypted in memory, where external processes cannot

access them. After the build process finishes, the final artifacts

get transferred to trusted storage locations such as Storage or

Container Registry before the container shuts down. The

system removes all source code, secrets and logs before the

hardware automatically clears the memory.

The architecture implements AMD SEV-SNP

confidential computing technology, which encrypts memory

and CPU state at the hardware level, thus preventing any

physical, root or administrative access to inspect or tamper

with or exfiltrate runtime data from the container. No user,

including tenant admins, CI/CD operators, cloud

administrators and even infrastructure root accounts, can log

in or attach a debugger or modify the container behavior when

execution takes place in the sealed non-interactive container

runtime.

All forms of insider threats are mitigated by design. The

container image stays immutable after deployment, which

prevents malicious developers from embedding backdoors or

changing build scripts. The container prevents any form of

external access or custom script execution by its design, while

ensuring that negligent insiders cannot leak secrets through

logs, because the system requires remote attestation for all

actions. The encrypted and isolated memory and CPU

registers prevent cloud platform engineers, along with

DevOps staff who have elevated access to VMs, from gaining

any insight into the contents or behavior of the container. After

a successful attestation process, secrets along with source code

and artifacts enter the container but are destroyed when the

container exits. The confidential container provides protection

against both host and CI/CD pipeline compromises by

preventing any build process ma nipulation or observation by

insiders.

All build-related secrets, such as signing keys and source

tokens, remain in memory during processing while Azure Key

Vault services perform secure attestation-based gating to

prevent insiders from accessing secrets even when the parent

pipeline is compromised. The container's ephemeral nature

deletes all memory after completing the build process so that

no build-related information, including source code

intermediates or secrets, remains. This design provides

complete protection against insider threats through interactive

access restrictions and locked-down networking, together with

sealed execution environments and attestation-backed trust

mechanisms.

6. Conclusion
The growing complexity of software supply chains

creates a major security problem because insiders represent a

difficult challenge to protect against, whether their actions

stem from malicious intent, negligence or external

compromise. Security models that establish trust based on

internal roles and infrastructure introduce a significant

Karthikeyan Thirumalaisamy / IJCTT, 73(7), 44-54, 2025

54

vulnerability when these trusted roles are compromised. This

paper introduces a practical solution that uses Isolated Build

Environments within Secure Enclaves to protect public cloud

build processes through hardware-enforced runtime isolation

and cryptographic attestation.

The paper proposes a solution that uses Confidential

Containers on Azure Container Instances (ACI) to create

sealed ephemeral environments that protect runtime

operations from human interaction regardless of privilege

level. The containers function without shell privileges while

preventing unauthorized network access and accepting

sensitive data like source code, secrets and signing keys only

after completing remote attestation. The build process ends

with the complete destruction of the container and all runtime

memory, which removes any potential attack surfaces that

could persist.

The proposed build pipeline architecture eliminates trust-

based assumptions through its design, which targets all

fundamental insider threat categories. All personnel with

developer or administrator privileges or cloud infrastructure

operator roles have no access to the build process or any

means of observing it. The build process becomes entirely

automated through an immutable, auditable runtime that

removes all negligent behavior, including skipped scans,

secret leaks and unsafe dependency usage. The

implementation of zero-trust build systems achieves both

insider threat defense and regulatory compliance while

maintaining best practices for software integrity and high-

assurance security.

Ensuring confidentiality and integrity in the build process

has become critical, as software supply chains are increasingly

targeted by external attackers. The isolated build

environments presented in this paper provide a cloud-native,

scalable solution that helps organizations safeguard their

software pipelines from internal as well as external threats.

References
[1] Microsoft, What is an Insider Threat?, 2022. [Online]. Available: https://www.microsoft.com/en-us/security/business/security-101/what-

is-insider-threat

[2] Microsoft, Learn about Insider Risk Management, 2025. [Online]. Available: https://learn.microsoft.com/en-us/purview/insider-risk-

management

[3] IBM, What are Insider Threats?, 2021. [Online]. Available: https://www.ibm.com/think/topics/insider-threats

[4] Narendan Vaideeswaran, Insider Threats Explained, 2025. [Online]. Available: https://www.crowdstrike.com/en-us/cybersecurity-

101/identity-protection/insider-threat/

[5] Matt Heusser, CI/CD Pipeline Security: Know the Risks and Best Practices, 2024. [Online]. Available:

https://www.techtarget.com/searchitoperations/tip/9-ways-to-infuse-security-in-your-CI-CD-pipeline

[6] Martin Hermannsen, Intel SGX Enclave Instructions — Explained, 2020. [Online]. Available: https://medium.com/magicofc/establish-

an-intel-sgx-enclave-c6208f820ff9

[7] Microsoft, Confidential Containers on Azure Container Instances, 2024. [Online]. Available:

https://learn.microsoft.com/en-us/azure/container-instances/container-instances-confidential-overview

[8] AWS, What is Nitro Enclaves?. [Online]. Available: https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave.html

[9] CNCF, Securing Build Pipelines. [Online]. Available: https://tag-security.cncf.io/community/publications/supply-chain-security-

tools/securing-build-pipelines/

[10] Ron Powell, How to Secure Your CI Pipeline, 2024. [Online]. Available: https://circleci.com/blog/secure-ci-pipeline/

[11] Fortinet, What Is An Insider Threat?. [Online]. Available: https://www.fortinet.com/resources/cyberglossary/insider-threats
[12] Sentinelone, What are Insider Threats? Types, Prevention & Risks, 2025. [Online]. Available:

https://www.sentinelone.com/cybersecurity-101/threat-intelligence/insider-threats/

[13] Robert C. Swanson et al., “Method to Increase Cloud Availability and Silicon Isolation Using Secure Enclaves,” US9798641B2, 2017.

[Google Scholar] [Publisher Link]

[14] Pradipta Banerjee, and Samuel Ortiz, Understanding the Confidential Containers Attestation Flow, 2022. [Online]. Available:

https://www.redhat.com/en/blog/understanding-confidential-containers-attestation-flow

[15] Microsoft, Confidential Containers on Azure, 2023. [Online]. Available: https://learn.microsoft.com/en-us/azure/confidenti al-

computing/confidential-containers

[16] Matthew A. Johnson et al., “Confidential Container Groups: Implementing Confidential Computing on Azure Container Instances,”

Queue, vol. 22, no. 2, pp. 57-86, 2024. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Method+to+increase+cloud+availability+and+silicon+isolation+using+secure+enclaves&btnG=
https://patents.google.com/patent/US9798641B2/en
https://doi.org/10.1145/3664293
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Confidential+Container+Groups%3A+Implementing+Confidential+Computing+on+Azure+Container+Instances&btnG=
https://dl.acm.org/doi/10.1145/3664293

