
International Journal of Computer Trends and Technology Volume 73 Issue 6, 82-88, June 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I6P110 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

 Original Article

Optimizing Cost and Performance in Cloud Data

Lakes

Dharanidhar Vuppu1, Mounica Achanta2

1Sr Data Engineer, SurveyMonkey, Texas, United States of America.

2Independent Research at IEE, Texas, United States of America.

1Corresponding Author : dharanidhar@ieee.org

Received: 30 April 2025 Revised: 01 June 2025 Accepted: 19 June 2025 Published: 30 June 2025

Abstract - As organizations increasingly shift towards cloud-native data platforms, balancing cost efficiency and query

performance has become a central challenge for data engineering teams. Cloud data lakes, especially those built using

Amazon S3 for storage and Snowflake for computing, offer immense scalability and flexibility—but at scale, they also expose

inefficiencies that can silently drive up operational costs and hinder performance.

This paper presents lessons learned from designing, maintaining, and optimizing large-scale data pipelines that process

billions of records across Amazon S3 and Snowflake. Drawing from real-world implementation experience, we explore

common pitfalls such as suboptimal file sizing, inefficient warehouse usage, and schema design flaws that directly impact cost

and performance. We detail practical strategies to address these challenges, including S3 lifecycle management, Snowflake

clustering, workload-aware warehouse sizing, and cost-conscious modeling in dbt. Beyond optimization techniques, this article

emphasizes the role of data engineers in making architectural decisions that balance performance with budget constraints. The

goal is to make pipelines faster or cheaper in isolation and to create sustainable, scalable data systems that deliver value to

technical and business stakeholders. Through this exploration, we contribute actionable insights to the data engineering

community navigating the evolving landscape of cloud data lakes.

Keywords - Cloud Data, Data Lakes, Query Performance, Data Pipelines, Resilience.

1. Introduction
Cloud data lakes are transforming how we manage and

organize information. They offer much flexibility and can

scale effortlessly as the business grows, making it easy to

handle different types and volumes of data. That is why

many companies choose tools like Amazon S3 for low-cost

storage and Snowflake for powerful, cloud-based computing.

It is a game-changer for managing data efficiently.

At a high level, the appeal is simple:

• Store raw and historical data cheaply in S3.

• Use Snowflake to run fast, on-demand queries without

managing infrastructure.

• Scale effortlessly as data grows.

However, this setup has real-world challenges in

practice, especially when operating at scale. As data

pipelines grow to process billions of records daily, even

small inefficiencies can lead to runaway costs or

unpredictable performance. A few common issues include:

• S3 accumulates unnecessary object versions and tiny

files that inflate storage bills.

• Poorly tuned Snowflake warehouses consume more

credits than necessary.

• Queries become slower over time due to a lack of

pruning or model sprawl.

This paper reflects lessons learned from managing such

systems, not in theory, but in production. Based on hands-on

experience across marketing analytics, behavioral data, and

large-scale reporting use cases, the goal is to:

• Highlight common pain points faced by data engineers

in cloud data lake environments.

• Share practical strategies that improved either cost or

performance, sometimes both.

• Offer actionable insights to help others make smarter

architecture and design decisions.

Ultimately, this is not just a “how-to” for S3 and

Snowflake. It is about contributing to the data engineering

community with patterns that scale, avoid waste, and help

teams build reliable, efficient data platforms in the cloud.
(Kim, 2009)

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(6), 82-88, 2025

83

2. System Architecture: S3 + Snowflake in a

Modern Data Lake
In most modern data lake implementations, separating

storage and computing is a guiding principle. In our setup,

we use Amazon S3 as a flexible data storage space, while

Snowflake is a powerful tool that helps us analyze that data.

This section will explain how these two parts work together

and the additional tools that keep everything running

smoothly and effectively. (Gray & Shenoy, 2000)

At a high level, the architecture follows a multi-zone

design pattern:

• Zone 1: Raw Layer (S3)

All raw data, including event logs, API extracts, and

third-party ingestions, lands in S3. This zone is append-

only and often includes nested folders by date or source

system. Compression formats like Parquet or gzip are

used to reduce the storage footprint. This layer can act as

a historical storage of data.

• Zone 2: Structured Layer (Snowflake)

Using external tables or batch loads, data from S3 is

ingested into Snowflake. Here, transformations are

applied using dbt (data build tool); at this point, we can

build dimensions and fact tables. The structured layer

includes staging tables, deduplication logic, and

semantic standardization.

• Zone 3: Reporting & Aggregations (Snowflake)

This is the final consumer-facing layer. It includes fact

and dimension models, aggregated metrics, and pre-

joined tables that power dashboards and self-serve

queries. The zone is optimized for downstream tools like

Tableau or Power BI.

Supporting tools and orchestration:

• Airflow handles the orchestration of ingestion and

transformation tasks. Each step in the pipeline is

scheduled, monitored, and retried if needed.

• dbt is used extensively for managing transformation

logic, version control, testing, and documentation of

models.

• Fivetran or other ingestion tools may be used for quick

integration with platforms like Salesforce, Google Ads,

or GA4.

A few architectural decisions that helped this setup scale:

• Avoid direct queries on external tables and instead load

them into Snowflake-managed storage.

• Using incremental dbt models to minimize compute

during daily refreshes.

• Structuring S3 folders by partition keys (like date or

source) to enable efficient data ingestion and lifecycle

management.

This system has been designed with both agility and

sustainability in mind. It allows for rapid iteration while

keeping cost and performance considerations front and

center. Over time, this architecture has evolved to support

new use cases, higher data volumes, and stricter SLA

expectations—all while avoiding major rework or downtime.

(Borra, 2022)

3. Cost and Performance Challenges at Scale
Cloud data lakes promise that they scale effortlessly.

Moreover, for the most part, they do—until they do not. As

data pipelines mature and volumes grow, subtle

inefficiencies begin to compound. What starts as a few

dollars here and a few seconds there can evolve into

thousands in unnecessary spending and long-running queries

that miss SLAs.

Here are some of the most common cost and

performance challenges observed when operating S3 and

Snowflake at scale:

3.1. Storage Cost Creep in S3

 While S3 is relatively cheap on a per-GB basis, costs can

add up quietly:

• Frequent object versioning without lifecycle policies

results in unnecessary storage.

• Small files—especially from streaming or micro-batch

jobs—lead to inefficient reads and higher overhead.

• Ingesting compressed JSON or CSV instead of columnar

formats like Parquet increases storage and query costs

downstream.

3.2. Warehouse Over-Provisioning in Snowflake

 In early stages, teams tend to overestimate computing

needs:

• Using large or XL warehouses for small transformations

leads to wasted credits.

• Developers often forget to set auto-suspend, causing

warehouses to stay idle but billed.

• Long running or poorly optimized queries block other

processes and trigger warehouse scaling without real

need.

3.3. Lack of Pruning or Partitioning

 As tables grow into hundreds of millions or billions of

rows, full table scans become expensive:

• Without clustering keys, Snowflake struggles to skip

irrelevant partitions.

• Queries on wide tables with many columns increase I/O

and degrade performance.

• Filters applied in downstream models cannot use

pruning if the upstream logic is not aligned.

3.4. Inefficient Transformation Logic

 Data models that are simple to write may not scale well:

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(6), 82-88, 2025

84

• Overuse of full refresh dbt models can spike compute

usage unnecessarily.

• JOINs without proper keys or filters lead to a data

explosion and memory issues.

• Caching assumptions often break down as more users or

dashboards hit the system simultaneously.

3.5. Operational Blind Spots

 Without observability, it is hard to trace where the

money is going:

• Teams lack visibility into which queries or users

consume the most resources.

• Query retries, failures, or suboptimal logic are

discovered too late, sometimes after billing cycles.

Flaws in Snowflake or S3 themselves do not cause these

challenges. Instead, they stem from how the tools are used—

and often, from applying local, small-scale practices to

global, large-scale systems. Recognizing and proactively

addressing these issues becomes critical as data platforms

grow. The following sections will discuss the practical

techniques and design changes that helped tackle these

challenges head-on.

4. Performance Bottlenecks
As data grows and processes become more complex,

performance issues often creep in subtly. What runs

smoothly with a few million records can quickly break down

at scale. Here are some of the most common bottlenecks we

have run into:

4.1. Full Table Scans Due to a Lack of Clustering

• Without clustering keys, Snowflake struggles to prune

large datasets efficiently.

• Even filtered queries scan entire tables, increasing

latency and warehouse load.

4.2. Bloated Models and Wide Tables

• Models that include too many columns—especially

unused ones—slow down queries.

• Wide joins and SELECT * patterns increase memory

consumption and reduce cache efficiency.

4.3. Overuse of Full-Refresh Models

• Rebuilding large tables daily, instead of using

incremental logic, wastes compute and slows pipeline

execution.

• This also increases the load on downstream models that

depend on fresh upstream data.

4.4. Small File Inefficiencies in S3

• Ingesting thousands of tiny files leads to more metadata

reads and fragmented performance.

• Batch loading suffers when files are not properly

consolidated or compressed.

4.5. Unoptimized Joins and Filters

• JOINs without indexed keys or filter pushdown slow

down query execution.

• Nested or multi-step CTEs can become black boxes if

not periodically reviewed.

4.6. Concurrent user Load on Shared Warehouses

• Dashboards and ETL jobs running on the same

warehouse compete for resources.

• Without isolation, heavy workloads can throttle or delay

each other.

4.7. Lack of Monitoring and Feedback Loops

• Without visibility into query plans, slowdowns often go

unnoticed until users complain.

• Missed opportunities to cache results, rewrite queries, or

optimize model structure.

Addressing these bottlenecks early helps prevent long-

term scalability issues. The following sections will explore

how many challenges can be addressed through architectural

refinements, adherence to modeling best practices, and

enhanced resource allocation strategies.

5. Strategies for Cost Optimization
One key takeaway from working with cloud data

platforms is that costs are not just about how much storage or

compute you use—they heavily depend on your choices

when designing your architecture. How you structure your

data, how often you refresh models, and how efficiently you

use computing resources can all greatly impact your overall

spending.

Here are several cost-saving strategies that proved

effective when working with Amazon S3 and Snowflake at

scale:

5.1. Enforce Auto-Suspend and Right-Size Warehouses

 It is tempting to default to medium or large Snowflake

warehouses "just to be safe." However, that often leads to

wasted credits. Instead:

• Use auto-suspend aggressively (e.g., 60 seconds).

• Assign different warehouse sizes for different

workloads. Not everything needs a large warehouse—

ELT jobs, audits, and test runs can often run on an x-

small or small warehouse.

• Run performance benchmarking periodically to validate

sizing. (Lee, 2020)

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(6), 82-88, 2025

85

5.2. Adopt Incremental Models in dbt

 Running a complete refresh daily might work when the

data is small but it is unnecessary and expensive at scale.

• Leverage is_incremental() logic in dbt to process only

new or updated records.

• Use merge or insert overwrite patterns to avoid

redundant computation.

• Track refresh cost trends using dbt artifacts and query

history.

5.3. Manage S3 Lifecycle Policies

 Storage costs in S3 may look low, but they balloon over

time without governance.

• Apply lifecycle rules to transition older data to lower-

cost storage classes like Glacier or S3 Infrequent Access.

• Enable version expiration for buckets that do not need to

retain all object versions.

• Consolidate small files into larger batches where

possible to reduce metadata overhead.

5.4. Limit Materializations to what is Needed

Not every dbt model needs to be a table. Consider:

• Using ephemeral models for lightweight logic that can

be compiled into downstream models.

• Switching from tables to views for low-frequency

lookups or dimension models.

• Avoiding excessive layers of intermediate materialized

tables—each adds storage and refresh cost.

5.5. Apply Cost Tagging and Monitoring

Snowflake and AWS both support resource tagging.

• Use tags to track cost by project, team, or environment

(e.g., dev, staging, prod).

• Monitor usage in Snowflake’s ACCOUNT_USAGE

views to find the top queries and users consuming

resources.

• Establish dashboards that show warehouse usage trends,

credit burn rate, and unused models.

5.6. Archive and Separate Cold Data

Not all data needs to be in your main fact tables.

• Move older, rarely accessed data to an archive table or

keep it in S3 with external table access.

• Split high-volume tables by period (e.g., current quarter

vs. history) to reduce scan size.

These strategies helped reduce cloud spend while

keeping the platform flexible and responsive. The key is not

just reducing costs blindly but doing so in a way that

supports performance and usability for the data teams and

analysts downstream.

Next, we will explore tackling performance tuning

without compromising cost efficiency.

6. Strategies for Performance Optimization
While cost optimization is important, performance

tuning is equally critical, especially when working with large

datasets and tight SLAs. Long-running queries, delayed

dashboards, or sluggish data loads can frustrate teams and

block decision-making. Fortunately, many performance

issues are solvable with better modeling, smarter design

choices, and a few tweaks in using Snowflake and S3.

(Chang, 2015)

Here are the strategies that helped improve performance

across various workloads:

6.1. Use Clustering Keys Wisely

 Snowflake does not use partitions like traditional

databases, but clustering keys can guide how data is

organized on disk.

• Apply clustering on high-cardinality columns frequently

used in filters, like event_date, user_id, or account_id.

• Monitor clustering depth and re-cluster only when the

benefits outweigh the cost.

• Do not over-cluster—too many keys or aggressive re-

clustering can hurt more than help.

6.2. Optimize File Formats and Sizes in S3

When ingesting data from S3, file characteristics matter:

• Prefer columnar formats like Parquet or ORC over row-

based formats like CSV or JSON.

• Avoid large numbers of small files, especially for batch

loads—group them into larger chunks to reduce

metadata operations.

• Ensure files are compressed appropriately (e.g., Snappy

for Parquet) to speed up reads.

6.3. Minimize Unnecessary Columns and Joins

 Wide tables and heavy joins are common performance

killers:

• Trim unused columns in staging and final models. Even

a few extra columns can significantly increase query

time.

• Push filtering logic as early as possible in the

transformation pipeline.

• Where possible, denormalize data models used for

reporting to avoid runtime joins.

6.4. Leverage Result Caching and Task Chaining

 Snowflake supports automatic result caching for repeat

queries:

• Schedule pre-aggregation models ahead of business

hours so analysts hit cached results.

• Use task chaining in Snowflake to sequence

transformations efficiently and predictably.

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(6), 82-88, 2025

86

6.5. Build Dashboard-Specific Tables

Generic, one-size-fits-all models tend to underperform

when used in multiple reporting tools.

• Create purpose-built tables tailored to the needs of each

dashboard or reporting layer.

• Aggregate metrics ahead of time where real-time

granularity is not required.

6.6. Use Query History and EXPLAIN Plans

 Snowflake’s query history is a goldmine for debugging

slow queries:

• Use EXPLAIN plans to identify full scans, excessive

I/O, or unnecessary sorting.

• Check if queries use filters as expected or scan entire

tables due to missed optimizations.

• Regularly review the slowest queries and batch jobs to

identify recurring patterns.

6.7. Isolate Workloads with Separate Warehouses

 Performance suffers when competing jobs run on the

same compute resources.

• Allocate separate warehouses for ETL pipelines, ad-hoc

analysis, and dashboard refreshes.

• This avoids contention and ensures critical processes do

not get throttled.

These techniques do not require massive re-

engineering—they are often small changes that compound

into meaningful gains. Shaving even a few seconds off

queries or reducing warehouse load can make a big

difference in user experience and team productivity in fast-

moving data environments.

With cost and performance under control, the next

section will explore broader takeaways from running this

architecture at scale.

7. Lessons from Operating at Scale
 Building a cloud data lake is one thing—scaling it to

serve a growing organization with increasing data demands is

another. Over time, how we build, monitor, and think about

data pipelines must evolve.

Many lessons are only learned the hard way—through

performance incidents, unexpected cost spikes, or

inconsistent data quality surfacing in stakeholder meetings.

Here are some of the most important lessons that

emerged from managing S3 and Snowflake at scale:

7.1. Simplicity Scales Better than Cleverness

 It is easy to over-engineer early on, adding too many

layers, abstractions, or custom logic. However, at scale,

simplicity wins.

• A well-documented incremental model is better than a

“smart” one that’s hard to debug.

• Easy-to-understand pipelines are easier to maintain,

optimize, and onboard others into.

7.2. The Most Expensive Queries often do not Look

Dangerous at First

Some of the worst credit-burning queries were ad-hoc

dashboards running wide queries on massive datasets with no

filters.

• It is not always the big pipelines—sometimes a slow,

repeated report runs every hour.

• Educating business users on query design and working

with analysts on data access patterns made a surprising

difference.

7.3. Monitoring Needs to Evolve with Growth

 On a small scale, you can get away with checking job

status manually. At scale, that is no longer feasible.

• Invest early in automated alerts, lineage tracking, and

usage dashboards.

• Set up cost monitors—not just for billing, but to catch

usage spikes before they become issues.

7.4. Not All Data Needs to be Immediately Available

 There is pressure to make everything fresh and real-time,

but that is not always necessary.

• Breaking out “cold” vs. “hot” data or summarizing older

records kept query performance high and costs low.

• Understanding what business users need—versus what

they ask for—helped avoid over-engineering.

7.5. Collaboration with Stakeholders is a Form of

Optimization

 Some performance issues were not technical—they

came from unclear expectations.

• Frequent check-ins with analytics teams and dashboard

users helped prioritize optimizations that mattered.

• Collaborating on SLAs and refresh timings helped align

data freshness with actual business needs.

7.6. Build for Flexibility, not just Speed

 In fast-paced teams, requirements change quickly. The

architecture needs to support agility.

• Keeping raw data in S3 allowed us to reprocess

historical data when upstream logic changed.

• Avoiding tight coupling between stages (like dbt models

chained too tightly) allowed us to independently rerun or

tweak pipeline parts.

7.7. Always Validate Assumptions at Higher Volumes

 A query that works fine on 10 million rows may not

behave the same on 1 billion.

• Test with production-like volumes before rolling out

optimizations.

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(6), 82-88, 2025

87

• Small design decisions—like sort order, filter pushdown,

or column pruning—behave differently under load.

Scaling is not just about handling more data—it is about

building smarter systems that adapt to change, manage

complexity, and support users without constant firefighting.

These lessons shaped how we think about long-term

sustainability in our data lake and continue influencing how

new pipelines are designed.

Next, we will look at emerging trends that may further

reshape how data teams think about cloud data lake

optimization. (Ravi & Musunuri, 2020)

8. Future Trends and Opportunities in Cloud

Data Lake Optimization
 The cloud data lake landscape is evolving quickly. What

was considered advanced a few years ago, separating storage

and compute, leveraging auto-scaling warehouses, or

adopting columnar formats, is now table stakes. As teams

aim to handle even more data with tighter budgets and faster

turnaround, new tools and approaches are emerging to help

data engineers stay ahead.

Here are some trends and opportunities likely to shape

the future of cost and performance optimization in data lakes:

8.1. Open Table Formats (Iceberg, Delta Lake, Hudi) are

Gaining Traction

 The rise of open table formats brings powerful features

like time travel, schema evolution, and ACID transactions to

data lakes.

• These formats allow for better partition management and

faster queries directly on S3, reducing the need to ingest

everything into Snowflake.

• As Snowflake expands support for Iceberg tables, we

will see tighter integration between raw data and

compute layers, potentially reducing duplication and

load times.

8.2. Increased Focus on FinOps and Chargeback Models

 Cost transparency is becoming a priority, especially in

larger organizations where multiple teams share the same

Snowflake or S3 environment.

• FinOps practices push for granular cost attribution,

resource tagging, and usage dashboards.

• Data engineers may partner more closely with finance

teams to build usage-aware architectures and align data

freshness with business value.

8.3. AI-Assisted Optimization and Observability

 AI is making its way into query tuning and monitoring:

• Some platforms now offer AI-driven warehouse

autoscaling, anomaly detection, and query rewrite

suggestions.

• This opens up opportunities to catch inefficient patterns

earlier and reduce the manual overhead of tuning and

diagnostics.

8.4. Unified Data Pipelines Across Batch and Streaming

 Traditionally, teams separated batch and real-time

workloads. However, the tools are starting to converge.

• Frameworks that support both (e.g., Apache Iceberg +

Snowpipe Streaming) allow for more flexible data

ingestion and lower latency.

• This can reduce pipeline complexity and duplication

while keeping costs in check by choosing the right

compute mode at the right time.

8.5. Serverless and Pay-Per-Query Compute Models

 For infrequent or unpredictable workloads, serverless

query engines (like AWS Athena or Snowflake's automatic

scaling options) are becoming more attractive.

• These models eliminate the need to pre-provision

warehouses and can be cost-effective for teams with

irregular usage patterns.

• As more teams adopt these options, architectural

patterns may shift away from long-running, always-on

compute setups.

8.6. Better Metadata and Data Quality Tooling

 As optimization grows more complex, metadata

becomes critical.

• Expect stronger adoption of data catalogues, column-

level lineage, and automated documentation tools.

• Metadata can power more intelligent decisions, like

skipping unneeded data, pruning historical segments, or

flagging redundant models.

8.7. Shift from Raw Performance to Sustainable

Performance

 Instead of just trying to make things fast, teams are

starting to ask: “What is fast enough for our users, and how

do we maintain it over time?”

• This mindset pushes toward performance baselines,

refreshes SLAs, and monitoring dashboards as part of

the development lifecycle.

• It is a shift from firefighting to engineering for resilience

and predictability.

These trends suggest a maturing of the data engineering

space. It is no longer just about building pipelines—it is

about building smart, transparent, and adaptable systems that

can grow with the business.

As new tools and paradigms emerge, the role of the data

engineer will continue to evolve—from just writing SQL to

making architecture and cost-impact decisions that directly

affect organizational agility.

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(6), 82-88, 2025

88

Next, we conclude with key insights and reflections

from our experience scaling cloud data lakes. (Kriushanth,

Arockiam, & Mirobi, 2013)

9. Conclusion
 Running data lakes at scale requires solid architecture,

consistent discipline, and iterative refinement. The

combination of Amazon S3 and Snowflake offers incredible

flexibility, but that flexibility comes with responsibility,

especially when controlling costs and maintaining

performance. (Plale & Kouper, 2017)

Throughout this article, we have explored practical

challenges and real-world strategies that emerged from

building and operating large-scale pipelines. A few key

takeaways that stand out:

• Cost and performance problems usually do not come

from one bad query—they build up from many small,

often overlooked design choices made over time.

• Optimization is not just about tweaking code. It means

understanding how people use the data, staying aligned

with business goals, and helping teams see how their

work affects the bigger picture.

• Tools like dbt, Airflow, and Snowflake’s native features

offer a strong foundation, but how you use them makes

all the difference. Incremental models, warehouse

tuning, and smart S3 policies often outperform fancy

architectural overhauls.

• Monitoring and feedback loops are essential. As

scale increases, problems become harder to detect

and more expensive to fix if left untracked.

Ultimately, cost and performance optimization is not a

one-time project—it is a mindset. It means designing

pipelines for what works today and what will hold up under

heavier load, stricter SLAs, or tighter budgets tomorrow.

As the cloud ecosystem continues to evolve, data

engineers have a growing opportunity to shape data systems

and the efficiency and sustainability of entire analytics

platforms. By sharing lessons, patterns, and missteps, we can

help each other navigate the complexity and build smarter,

more resilient data lakes for the future. (Hlupić, Oreščanin,

Ružak, & Baranović, 2022).

References
[1] Tomislav Hlupić et al., “An Overview of Current Data Lake Architecture Models,” Jubilee International Convention on Information,

Communication and Electronic Technology, Opatija, Croatia, pp. 1082-1087, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[2] Beth Plale, and Inna Kouper, “The Centrality of Data: Data Lifecycle and Data Pipelines,” Data Analytics for Intelligent Transportation

Systems, pp. 91-111, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[3] Victor Chang, “Towards a Big Data System Disaster Recovery in a Private Cloud,” Ad Hoc Networks, vol. 35, pp. 65-82, 2015.

[CrossRef] [Google Scholar] [Publisher Link]

[4] J. Gray, and P. Shenoy, “Rules of Thumb in Data Engineering,” Proceedings of 16th International Conference on Data Engineering, San

Diego, CA, USA, pp. 3-10, 2000. [CrossRef] [Google Scholar] [Publisher Link]

[5] Dong Kyu Lee, “Data Transformation: A Focus on the Interpretation,” Korean Journal, vol. 73, no. 6, pp. 503-508, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[6] Won Kim, “Cloud Computing: Today and Tomorrow,” Journal of Object Technology, vol. 8, no. 1, pp. 65-72, 2009. [Google Scholar]

[Publisher Link]

[7] Praveen Borra, “Snowflake: A Comprehensive Review of a Modern Data Warehousing Platform,” International Journal of Computer

Science and Information Technology Research, vol. 3, no. 1, pp. 11-16, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] M. Kriushanth, L. Arockiam, and G. Justy Mirobi, “Auto Scaling in Cloud Computing: An Overview,” International Journal of

Advanced Research in Computer and Communication Engineering, pp. 2278-1021, 2013. [Google Scholar] [Publisher Link]

[9] Vamsee Krishna Ravi, and Aravindsundeep Musunuri, Cloud Cost Optimization Techniques in Data Engineering, SSRN, vol. 7, no. 2,

pp. 861-874, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.23919/MIPRO55190.2022.9803717
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+overview+of+current+data+lake+architecture+models&btnG=
https://ieeexplore.ieee.org/abstract/document/9803717
https://doi.org/10.1016/B978-0-12-809715-1.00004-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+centrality+of+data%3A+data+lifecycle+and+data+pipelines&btnG=
https://www.sciencedirect.com/science/article/abs/pii/B9780128097151000043
https://doi.org/10.1016/j.adhoc.2015.07.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+a+big+data+system+disaster+recovery+in+a+private+cloud&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S157087051500147X
https://doi.org/10.1109/ICDE.2000.839382
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rules+of+thumb+in+data+engineering&btnG=
https://ieeexplore.ieee.org/abstract/document/839382
https://doi.org/10.4097/kja.20137
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Data+transformation%3A+a+focus+on+the+interpretation.+Korean+journal+of+anesthesiology&btnG=
https://synapse.koreamed.org/articles/1156419
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cloud+computing%3A+Today+and+tomorrow&btnG=
https://www.jot.fm/issues/issue_2009_01/column4/
https://dx.doi.org/10.2139/ssrn.4914191
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Snowflake%3A+A+Comprehensive+Review+of+a+Modern+Data+Warehousing+Platform&btnG=
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4914191
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Auto+scaling+in+Cloud+Computing%3A+an+overview&btnG=
https://sjctni.edu/SSR_Report/HTML/QNM/Collaboration/KIM_3.7.1_QNM_2013-14_58.pdf
https://dx.doi.org/10.2139/ssrn.5068539
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cloud+cost+optimization+techniques+in+data+engineering&btnG=
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5068539

