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Abstract - As organizations increasingly shift towards cloud-native data platforms, balancing cost efficiency and query 

performance has become a central challenge for data engineering teams. Cloud data lakes, especially those built using 

Amazon S3 for storage and Snowflake for computing, offer immense scalability and flexibility—but at scale, they also expose 

inefficiencies that can silently drive up operational costs and hinder performance. 

This paper presents lessons learned from designing, maintaining, and optimizing large-scale data pipelines that process 

billions of records across Amazon S3 and Snowflake. Drawing from real-world implementation experience, we explore 

common pitfalls such as suboptimal file sizing, inefficient warehouse usage, and schema design flaws that directly impact cost 

and performance. We detail practical strategies to address these challenges, including S3 lifecycle management, Snowflake 

clustering, workload-aware warehouse sizing, and cost-conscious modeling in dbt. Beyond optimization techniques, this article 

emphasizes the role of data engineers in making architectural decisions that balance performance with budget constraints. The 

goal is to make pipelines faster or cheaper in isolation and to create sustainable, scalable data systems that deliver value to 

technical and business stakeholders. Through this exploration, we contribute actionable insights to the data engineering 

community navigating the evolving landscape of cloud data lakes. 

Keywords - Cloud Data, Data Lakes, Query Performance, Data Pipelines, Resilience. 

1. Introduction  
Cloud data lakes are transforming how we manage and 

organize information. They offer much flexibility and can 

scale effortlessly as the business grows, making it easy to 

handle different types and volumes of data. That is why 

many companies choose tools like Amazon S3 for low-cost 

storage and Snowflake for powerful, cloud-based computing. 

It is a game-changer for managing data efficiently. 
 

At a high level, the appeal is simple: 

• Store raw and historical data cheaply in S3. 

• Use Snowflake to run fast, on-demand queries without 

managing infrastructure. 

• Scale effortlessly as data grows. 
 

However, this setup has real-world challenges in 

practice, especially when operating at scale. As data 

pipelines grow to process billions of records daily, even 

small inefficiencies can lead to runaway costs or 

unpredictable performance. A few common issues include: 

• S3 accumulates unnecessary object versions and tiny 

files that inflate storage bills. 

• Poorly tuned Snowflake warehouses consume more 

credits than necessary. 

• Queries become slower over time due to a lack of 

pruning or model sprawl. 
 

This paper reflects lessons learned from managing such 

systems, not in theory, but in production. Based on hands-on 

experience across marketing analytics, behavioral data, and 

large-scale reporting use cases, the goal is to: 

• Highlight common pain points faced by data engineers 

in cloud data lake environments. 

• Share practical strategies that improved either cost or 

performance, sometimes both. 

• Offer actionable insights to help others make smarter 

architecture and design decisions. 

 

Ultimately, this is not just a “how-to” for S3 and 

Snowflake. It is about contributing to the data engineering 

community with patterns that scale, avoid waste, and help 

teams build reliable, efficient data platforms in the cloud. 
(Kim, 2009) 

 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2.   System Architecture: S3 + Snowflake in a 

Modern Data Lake 
In most modern data lake implementations, separating 

storage and computing is a guiding principle. In our setup, 

we use Amazon S3 as a flexible data storage space, while 

Snowflake is a powerful tool that helps us analyze that data. 

This section will explain how these two parts work together 

and the additional tools that keep everything running 

smoothly and effectively. (Gray & Shenoy, 2000) 
 

At a high level, the architecture follows a multi-zone 

design pattern: 

• Zone 1: Raw Layer (S3) 

All raw data, including event logs, API extracts, and 

third-party ingestions, lands in S3. This zone is append-

only and often includes nested folders by date or source 

system. Compression formats like Parquet or gzip are 

used to reduce the storage footprint. This layer can act as 

a historical storage of data. 

• Zone 2: Structured Layer (Snowflake) 

Using external tables or batch loads, data from S3 is 

ingested into Snowflake. Here, transformations are 

applied using dbt (data build tool); at this point, we can 

build dimensions and fact tables. The structured layer 

includes staging tables, deduplication logic, and 

semantic standardization. 

• Zone 3: Reporting & Aggregations (Snowflake) 

This is the final consumer-facing layer. It includes fact 

and dimension models, aggregated metrics, and pre-

joined tables that power dashboards and self-serve 

queries. The zone is optimized for downstream tools like 

Tableau or Power BI. 

Supporting tools and orchestration: 

• Airflow handles the orchestration of ingestion and 

transformation tasks. Each step in the pipeline is 

scheduled, monitored, and retried if needed. 

• dbt is used extensively for managing transformation 

logic, version control, testing, and documentation of 

models. 

• Fivetran or other ingestion tools may be used for quick 

integration with platforms like Salesforce, Google Ads, 

or GA4. 

A few architectural decisions that helped this setup scale: 

• Avoid direct queries on external tables and instead load 

them into Snowflake-managed storage. 

• Using incremental dbt models to minimize compute 

during daily refreshes. 

• Structuring S3 folders by partition keys (like date or 

source) to enable efficient data ingestion and lifecycle 

management. 

This system has been designed with both agility and 

sustainability in mind. It allows for rapid iteration while 

keeping cost and performance considerations front and 

center. Over time, this architecture has evolved to support 

new use cases, higher data volumes, and stricter SLA 

expectations—all while avoiding major rework or downtime. 

(Borra, 2022) 

3. Cost and Performance Challenges at Scale  
Cloud data lakes promise that they scale effortlessly. 

Moreover, for the most part, they do—until they do not. As 

data pipelines mature and volumes grow, subtle 

inefficiencies begin to compound. What starts as a few 

dollars here and a few seconds there can evolve into 

thousands in unnecessary spending and long-running queries 

that miss SLAs. 

Here are some of the most common cost and 

performance challenges observed when operating S3 and 

Snowflake at scale: 

3.1. Storage Cost Creep in S3 

       While S3 is relatively cheap on a per-GB basis, costs can 

add up quietly: 

• Frequent object versioning without lifecycle policies 

results in unnecessary storage. 

• Small files—especially from streaming or micro-batch 

jobs—lead to inefficient reads and higher overhead. 

• Ingesting compressed JSON or CSV instead of columnar 

formats like Parquet increases storage and query costs 

downstream. 

 

3.2. Warehouse Over-Provisioning in Snowflake 

       In early stages, teams tend to overestimate computing 

needs: 

• Using large or XL warehouses for small transformations 

leads to wasted credits. 

• Developers often forget to set auto-suspend, causing 

warehouses to stay idle but billed. 

• Long running or poorly optimized queries block other 

processes and trigger warehouse scaling without real 

need. 

3.3. Lack of Pruning or Partitioning 

       As tables grow into hundreds of millions or billions of 

rows, full table scans become expensive: 

• Without clustering keys, Snowflake struggles to skip 

irrelevant partitions. 

• Queries on wide tables with many columns increase I/O 

and degrade performance. 

• Filters applied in downstream models cannot use 

pruning if the upstream logic is not aligned. 

3.4. Inefficient Transformation Logic 

       Data models that are simple to write may not scale well: 
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• Overuse of full refresh dbt models can spike compute 

usage unnecessarily. 

• JOINs without proper keys or filters lead to a data 

explosion and memory issues. 

• Caching assumptions often break down as more users or 

dashboards hit the system simultaneously. 

3.5. Operational Blind Spots 

       Without observability, it is hard to trace where the 

money is going: 

• Teams lack visibility into which queries or users 

consume the most resources. 

• Query retries, failures, or suboptimal logic are 

discovered too late, sometimes after billing cycles. 

Flaws in Snowflake or S3 themselves do not cause these 

challenges. Instead, they stem from how the tools are used—

and often, from applying local, small-scale practices to 

global, large-scale systems. Recognizing and proactively 

addressing these issues becomes critical as data platforms 

grow. The following sections will discuss the practical 

techniques and design changes that helped tackle these 

challenges head-on. 

4. Performance Bottlenecks  
As data grows and processes become more complex, 

performance issues often creep in subtly. What runs 

smoothly with a few million records can quickly break down 

at scale. Here are some of the most common bottlenecks we 

have run into: 

4.1. Full Table Scans Due to a Lack of Clustering 

• Without clustering keys, Snowflake struggles to prune 

large datasets efficiently. 

• Even filtered queries scan entire tables, increasing 

latency and warehouse load. 

 

4.2. Bloated Models and Wide Tables 

• Models that include too many columns—especially 

unused ones—slow down queries. 

• Wide joins and SELECT * patterns increase memory 

consumption and reduce cache efficiency. 

4.3. Overuse of Full-Refresh Models 

• Rebuilding large tables daily, instead of using 

incremental logic, wastes compute and slows pipeline 

execution. 

• This also increases the load on downstream models that 

depend on fresh upstream data. 

 

4.4. Small File Inefficiencies in S3 

• Ingesting thousands of tiny files leads to more metadata 

reads and fragmented performance. 

• Batch loading suffers when files are not properly 

consolidated or compressed. 

4.5. Unoptimized Joins and Filters 

• JOINs without indexed keys or filter pushdown slow 

down query execution. 

• Nested or multi-step CTEs can become black boxes if 

not periodically reviewed. 

4.6. Concurrent user Load on Shared Warehouses 

• Dashboards and ETL jobs running on the same 

warehouse compete for resources. 

• Without isolation, heavy workloads can throttle or delay 

each other. 

4.7. Lack of Monitoring and Feedback Loops 

• Without visibility into query plans, slowdowns often go 

unnoticed until users complain. 

• Missed opportunities to cache results, rewrite queries, or 

optimize model structure. 

Addressing these bottlenecks early helps prevent long-

term scalability issues. The following sections will explore 

how many challenges can be addressed through architectural 

refinements, adherence to modeling best practices, and 

enhanced resource allocation strategies. 

5. Strategies for Cost Optimization  
One key takeaway from working with cloud data 

platforms is that costs are not just about how much storage or 

compute you use—they heavily depend on your choices 

when designing your architecture. How you structure your 

data, how often you refresh models, and how efficiently you 

use computing resources can all greatly impact your overall 

spending. 

Here are several cost-saving strategies that proved 

effective when working with Amazon S3 and Snowflake at 

scale: 

5.1. Enforce Auto-Suspend and Right-Size Warehouses 

       It is tempting to default to medium or large Snowflake 

warehouses "just to be safe." However, that often leads to 

wasted credits. Instead: 

• Use auto-suspend aggressively (e.g., 60 seconds). 

• Assign different warehouse sizes for different 

workloads. Not everything needs a large warehouse—

ELT jobs, audits, and test runs can often run on an x-

small or small warehouse. 

• Run performance benchmarking periodically to validate 

sizing. (Lee, 2020) 
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5.2. Adopt Incremental Models in dbt 

        Running a complete refresh daily might work when the 

data is small but it is unnecessary and expensive at scale. 

• Leverage is_incremental() logic in dbt to process only 

new or updated records. 

• Use merge or insert overwrite patterns to avoid 

redundant computation. 

• Track refresh cost trends using dbt artifacts and query 

history. 

5.3. Manage S3 Lifecycle Policies 

       Storage costs in S3 may look low, but they balloon over 

time without governance. 

• Apply lifecycle rules to transition older data to lower-

cost storage classes like Glacier or S3 Infrequent Access. 

• Enable version expiration for buckets that do not need to 

retain all object versions. 

• Consolidate small files into larger batches where 

possible to reduce metadata overhead. 

5.4. Limit Materializations to what is Needed 

Not every dbt model needs to be a table. Consider: 

• Using ephemeral models for lightweight logic that can 

be compiled into downstream models. 

• Switching from tables to views for low-frequency 

lookups or dimension models. 

• Avoiding excessive layers of intermediate materialized 

tables—each adds storage and refresh cost. 

 

5.5. Apply Cost Tagging and Monitoring 

Snowflake and AWS both support resource tagging. 

• Use tags to track cost by project, team, or environment 

(e.g., dev, staging, prod). 

• Monitor usage in Snowflake’s ACCOUNT_USAGE 

views to find the top queries and users consuming 

resources. 

• Establish dashboards that show warehouse usage trends, 

credit burn rate, and unused models. 

5.6. Archive and Separate Cold Data 

Not all data needs to be in your main fact tables. 

• Move older, rarely accessed data to an archive table or 

keep it in S3 with external table access. 

• Split high-volume tables by period (e.g., current quarter 

vs. history) to reduce scan size. 

These strategies helped reduce cloud spend while 

keeping the platform flexible and responsive. The key is not 

just reducing costs blindly but doing so in a way that 

supports performance and usability for the data teams and 

analysts downstream. 

Next, we will explore tackling performance tuning 

without compromising cost efficiency. 

6. Strategies for Performance Optimization 
While cost optimization is important, performance 

tuning is equally critical, especially when working with large 

datasets and tight SLAs. Long-running queries, delayed 

dashboards, or sluggish data loads can frustrate teams and 

block decision-making. Fortunately, many performance 

issues are solvable with better modeling, smarter design 

choices, and a few tweaks in using Snowflake and S3. 

(Chang, 2015) 

Here are the strategies that helped improve performance 

across various workloads: 

6.1. Use Clustering Keys Wisely 

        Snowflake does not use partitions like traditional 

databases, but clustering keys can guide how data is 

organized on disk. 

• Apply clustering on high-cardinality columns frequently 

used in filters, like event_date, user_id, or account_id. 

• Monitor clustering depth and re-cluster only when the 

benefits outweigh the cost. 

• Do not over-cluster—too many keys or aggressive re-

clustering can hurt more than help. 

6.2. Optimize File Formats and Sizes in S3 

When ingesting data from S3, file characteristics matter: 

• Prefer columnar formats like Parquet or ORC over row-

based formats like CSV or JSON. 

• Avoid large numbers of small files, especially for batch 

loads—group them into larger chunks to reduce 

metadata operations. 

• Ensure files are compressed appropriately (e.g., Snappy 

for Parquet) to speed up reads. 

 

6.3. Minimize Unnecessary Columns and Joins 

       Wide tables and heavy joins are common performance 

killers: 

• Trim unused columns in staging and final models. Even 

a few extra columns can significantly increase query 

time. 

• Push filtering logic as early as possible in the 

transformation pipeline. 

• Where possible, denormalize data models used for 

reporting to avoid runtime joins. 

6.4. Leverage Result Caching and Task Chaining 

       Snowflake supports automatic result caching for repeat 

queries: 

• Schedule pre-aggregation models ahead of business 

hours so analysts hit cached results. 

• Use task chaining in Snowflake to sequence 

transformations efficiently and predictably. 
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6.5. Build Dashboard-Specific Tables 

Generic, one-size-fits-all models tend to underperform 

when used in multiple reporting tools. 

• Create purpose-built tables tailored to the needs of each 

dashboard or reporting layer. 

• Aggregate metrics ahead of time where real-time 

granularity is not required. 

6.6. Use Query History and EXPLAIN Plans 

       Snowflake’s query history is a goldmine for debugging 

slow queries: 

• Use EXPLAIN plans to identify full scans, excessive 

I/O, or unnecessary sorting. 

• Check if queries use filters as expected or scan entire 

tables due to missed optimizations. 

• Regularly review the slowest queries and batch jobs to 

identify recurring patterns. 

 

6.7. Isolate Workloads with Separate Warehouses 

      Performance suffers when competing jobs run on the 

same compute resources. 

• Allocate separate warehouses for ETL pipelines, ad-hoc 

analysis, and dashboard refreshes. 

• This avoids contention and ensures critical processes do 

not get throttled. 

These techniques do not require massive re-

engineering—they are often small changes that compound 

into meaningful gains. Shaving even a few seconds off 

queries or reducing warehouse load can make a big 

difference in user experience and team productivity in fast-

moving data environments. 

With cost and performance under control, the next 

section will explore broader takeaways from running this 

architecture at scale. 

7. Lessons from Operating at Scale 
        Building a cloud data lake is one thing—scaling it to 

serve a growing organization with increasing data demands is 

another. Over time, how we build, monitor, and think about 

data pipelines must evolve.  

 

Many lessons are only learned the hard way—through 

performance incidents, unexpected cost spikes, or 

inconsistent data quality surfacing in stakeholder meetings. 

 

Here are some of the most important lessons that 

emerged from managing S3 and Snowflake at scale: 

 

7.1. Simplicity Scales Better than Cleverness 

        It is easy to over-engineer early on, adding too many 

layers, abstractions, or custom logic. However, at scale, 

simplicity wins. 

• A well-documented incremental model is better than a 

“smart” one that’s hard to debug. 

• Easy-to-understand pipelines are easier to maintain, 

optimize, and onboard others into. 
 

7.2. The Most Expensive Queries often do not Look 

Dangerous at First 

Some of the worst credit-burning queries were ad-hoc 

dashboards running wide queries on massive datasets with no 

filters. 

• It is not always the big pipelines—sometimes a slow, 

repeated report runs every hour. 

• Educating business users on query design and working 

with analysts on data access patterns made a surprising 

difference. 
 

7.3. Monitoring Needs to Evolve with Growth 

      On a small scale, you can get away with checking job 

status manually. At scale, that is no longer feasible. 

• Invest early in automated alerts, lineage tracking, and 

usage dashboards. 

• Set up cost monitors—not just for billing, but to catch 

usage spikes before they become issues. 
 

7.4. Not All Data Needs to be Immediately Available 

       There is pressure to make everything fresh and real-time, 

but that is not always necessary. 

• Breaking out “cold” vs. “hot” data or summarizing older 

records kept query performance high and costs low. 

• Understanding what business users need—versus what 

they ask for—helped avoid over-engineering. 

 

7.5. Collaboration with Stakeholders is a Form of 

Optimization 

        Some performance issues were not technical—they 

came from unclear expectations. 

• Frequent check-ins with analytics teams and dashboard 

users helped prioritize optimizations that mattered. 

• Collaborating on SLAs and refresh timings helped align 

data freshness with actual business needs. 

 

7.6. Build for Flexibility, not just Speed 

       In fast-paced teams, requirements change quickly. The 

architecture needs to support agility. 

• Keeping raw data in S3 allowed us to reprocess 

historical data when upstream logic changed. 

• Avoiding tight coupling between stages (like dbt models 

chained too tightly) allowed us to independently rerun or 

tweak pipeline parts. 

 
7.7. Always Validate Assumptions at Higher Volumes 

       A query that works fine on 10 million rows may not 

behave the same on 1 billion. 

• Test with production-like volumes before rolling out 

optimizations. 



Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(6), 82-88, 2025 

 

87 

• Small design decisions—like sort order, filter pushdown, 

or column pruning—behave differently under load. 

 

Scaling is not just about handling more data—it is about 

building smarter systems that adapt to change, manage 

complexity, and support users without constant firefighting. 

These lessons shaped how we think about long-term 

sustainability in our data lake and continue influencing how 

new pipelines are designed. 

 

Next, we will look at emerging trends that may further 

reshape how data teams think about cloud data lake 

optimization. (Ravi & Musunuri, 2020) 

 

8.   Future Trends and Opportunities in Cloud 

Data Lake Optimization 
      The cloud data lake landscape is evolving quickly. What 

was considered advanced a few years ago, separating storage 

and compute, leveraging auto-scaling warehouses, or 

adopting columnar formats, is now table stakes. As teams 

aim to handle even more data with tighter budgets and faster 

turnaround, new tools and approaches are emerging to help 

data engineers stay ahead. 

 

Here are some trends and opportunities likely to shape 

the future of cost and performance optimization in data lakes: 

 

8.1. Open Table Formats (Iceberg, Delta Lake, Hudi) are 

Gaining Traction 

       The rise of open table formats brings powerful features 

like time travel, schema evolution, and ACID transactions to 

data lakes. 

• These formats allow for better partition management and 

faster queries directly on S3, reducing the need to ingest 

everything into Snowflake. 

• As Snowflake expands support for Iceberg tables, we 

will see tighter integration between raw data and 

compute layers, potentially reducing duplication and 

load times. 

 

8.2. Increased Focus on FinOps and Chargeback Models 

       Cost transparency is becoming a priority, especially in 

larger organizations where multiple teams share the same 

Snowflake or S3 environment. 

• FinOps practices push for granular cost attribution, 

resource tagging, and usage dashboards. 

• Data engineers may partner more closely with finance 

teams to build usage-aware architectures and align data 

freshness with business value. 

 

8.3. AI-Assisted Optimization and Observability 

      AI is making its way into query tuning and monitoring: 

• Some platforms now offer AI-driven warehouse 

autoscaling, anomaly detection, and query rewrite 

suggestions. 

• This opens up opportunities to catch inefficient patterns 

earlier and reduce the manual overhead of tuning and 

diagnostics. 

8.4. Unified Data Pipelines Across Batch and Streaming 

        Traditionally, teams separated batch and real-time 

workloads. However, the tools are starting to converge. 

• Frameworks that support both (e.g., Apache Iceberg + 

Snowpipe Streaming) allow for more flexible data 

ingestion and lower latency. 

• This can reduce pipeline complexity and duplication 

while keeping costs in check by choosing the right 

compute mode at the right time. 

 

8.5. Serverless and Pay-Per-Query Compute Models 

       For infrequent or unpredictable workloads, serverless 

query engines (like AWS Athena or Snowflake's automatic 

scaling options) are becoming more attractive. 

• These models eliminate the need to pre-provision 

warehouses and can be cost-effective for teams with 

irregular usage patterns. 

• As more teams adopt these options, architectural 

patterns may shift away from long-running, always-on 

compute setups. 

8.6. Better Metadata and Data Quality Tooling 

       As optimization grows more complex, metadata 

becomes critical. 

• Expect stronger adoption of data catalogues, column-

level lineage, and automated documentation tools. 

• Metadata can power more intelligent decisions, like 

skipping unneeded data, pruning historical segments, or 

flagging redundant models. 

8.7. Shift from Raw Performance to Sustainable 

Performance 

        Instead of just trying to make things fast, teams are 

starting to ask: “What is fast enough for our users, and how 

do we maintain it over time?” 

• This mindset pushes toward performance baselines, 

refreshes SLAs, and monitoring dashboards as part of 

the development lifecycle. 

• It is a shift from firefighting to engineering for resilience 

and predictability. 

These trends suggest a maturing of the data engineering 

space. It is no longer just about building pipelines—it is 

about building smart, transparent, and adaptable systems that 

can grow with the business.  

As new tools and paradigms emerge, the role of the data 

engineer will continue to evolve—from just writing SQL to 

making architecture and cost-impact decisions that directly 

affect organizational agility. 
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Next, we conclude with key insights and reflections 

from our experience scaling cloud data lakes. (Kriushanth, 

Arockiam, & Mirobi, 2013) 

9. Conclusion 
        Running data lakes at scale requires solid architecture, 

consistent discipline, and iterative refinement. The 

combination of Amazon S3 and Snowflake offers incredible 

flexibility, but that flexibility comes with responsibility, 

especially when controlling costs and maintaining 

performance. (Plale & Kouper, 2017) 

Throughout this article, we have explored practical 

challenges and real-world strategies that emerged from 

building and operating large-scale pipelines. A few key 

takeaways that stand out: 

• Cost and performance problems usually do not come 

from one bad query—they build up from many small, 

often overlooked design choices made over time. 

• Optimization is not just about tweaking code. It means 

understanding how people use the data, staying aligned 

with business goals, and helping teams see how their 

work affects the bigger picture. 

• Tools like dbt, Airflow, and Snowflake’s native features 

offer a strong foundation, but how you use them makes 

all the difference. Incremental models, warehouse 

tuning, and smart S3 policies often outperform fancy 

architectural overhauls. 

• Monitoring and feedback loops are essential. As 

scale increases, problems become harder to detect 

and more expensive to fix if left untracked. 

Ultimately, cost and performance optimization is not a 

one-time project—it is a mindset. It means designing 

pipelines for what works today and what will hold up under 

heavier load, stricter SLAs, or tighter budgets tomorrow. 

As the cloud ecosystem continues to evolve, data 

engineers have a growing opportunity to shape data systems 

and the efficiency and sustainability of entire analytics 

platforms. By sharing lessons, patterns, and missteps, we can 

help each other navigate the complexity and build smarter, 

more resilient data lakes for the future. (Hlupić, Oreščanin, 

Ružak, & Baranović, 2022). 
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