
International Journal of Computer Trends and Technology Volume 73 Issue 6, 26-33, June 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I6P104 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Advanced Techniques for Microservices Debugging

Madhuri Kolla1, Krishna Vinnakota2

 1 AT&T Bothell, WA, USA
 2 Microsoft, Redmond, USA.

Corresponding Author : kolla.madhuri1989@gmail.com

Received: 25 April 2025 Revised: 29 May 2025 Accepted: 13 June 2025 Published: 28 June 2025

Abstract - Microservices architecture is critical in building applications that can grow and be easily maintained. Most

industries like e-commerce, finance, telecom, and insurance have chosen microservices architecture due to its scalability and

robustness. However, microservice brings significant operational challenges regarding debugging, even if it is scalable. These

debugging complexities often worsen as the number of services and their distribution increase. Unlike Monolithic,

microservices are minimal and easily deployable individual units as microservices have continuous delivery, faster

development cycles, and improved fault isolation. Several companies have used open-source technology, such as Spring Boot.

SpringBoot is easy to use and offers several useful features. However, several challenges are associated with debugging

microservices if we do not choose the right approaches. This article presents some important debugging techniques that are

followed and used by several industries to maintain the stability of microservices.

Keywords - Spring Boot, debugging, distributed systems, observability, logs, tracing, microservices, architecture, scalability,

Spring Boot, containerization, service discovery, Resilience, Reliability.

1. Introduction
The rapid adoption of microservices architecture has

fundamentally transformed the contemporary software

engineering landscape. The microservice architecture

promotes the decomposition of monolithic systems into

smaller, self-contained, and independently deployable

services, each implementing a specific business capability

and communicating through protocols such as HTTP or

messaging queues. Continuous delivery, faster development

cycles, and improved fault isolation towards more agile and

resilient software systems are achieved through the adoption

of microservices. Spring Boot framework is used to build

microservices as it is easy and has many significant features.

The asynchronous nature of microservices brings many

debugging challenges. Root cause analysis is complex to

know as the different errors can occur with multiple services,

and the significant use of event-driven models can obscure

call stacks, complicating the process of following the flow of

execution. Dynamic configurations, often environment-

specific, can lead to unpredictable behavior that is

challenging to diagnose, while hidden exceptions may be

improperly handled or swallowed, preventing precise error

detection. Microservices-based systems’ sustained success

and stability can be achieved effectively using advanced

debugging techniques. This article presents a cohesive and

practical framework of advanced debugging techniques

tailored explicitly for Spring Boot microservices

2. Literature Review

This article explains the challenges and debugging

techniques for commonly used frameworks like spring boot-

based microservices and also highlights its relevance to

contemporary software engineering practices.

2.1. The Paradigm Shift to Microservices and Inherent

Debugging Complexities

Modern IT ecosystems have evolved significantly using

microservices architecture instead of monolithic applications.

This article explains the significant benefits of microservices,

such as enhanced scalability, agility, fault isolation, and

technological diversity. Microservices facilitate continuous

delivery and faster development cycles compared to

monolithic-based applications.

However, Debugging complexities have been increased

with the adoption of microservices architecture due to its

distributed and often asynchronous nature. Due to the

distributed nature, the traditional debugging methods are

insufficient. This article identifies several common

challenges associated with microservices, such as distributed

architecture, asynchronous communication, dynamic

configuration, and operational overhead.

2.2. Debugging Techniques for Spring Boot Microservices

The article explains the five core debugging techniques

relevant to Spring Boot microservices.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Madhuri Kolla & Krishna Vinnakota / IJCTT, 73(6), 26-33, 2025

27

2.2.1. Local Debugging

Early issue identification is detected using local

debugging techniques like leveraging IDE features

(breakpoints, variable inspection), enabling remote

debugging, utilizing Spring Boot DevTools for rapid

iteration, and effectively configuring logging levels. The

inclusion of Spring Actuator endpoints and profile-specific

configurations demonstrates an understanding of Spring

Boot’s native capabilities for runtime introspection, which is

a standard recommendation in Spring development guides

(e.g., [10]).

2.2.2. Centralized Logging

Recognizing the distributed nature of microservices, the

paper advocates for centralized logging as an indispensable

tool for visibility and rapid incident response. It recommends

deploying robust logging stacks (ELK, EFK, Grafana Loki)

and stresses the importance of standardized log formats,

contextual metadata (e.g., requestId/correlationId), and

asynchronous logging for production environments. The

emphasis on correlation IDs aligns with best practices for

tracing requests across service boundaries, a critical aspect of

observability in distributed systems (e.g., [6]).

2.2.3. Distributed Tracing

The identification of performance bottlenecks and

failures is achieved with this technique. Distributed tracing

tracks the end-to-end flow of requests across multiple

services. The paper highlights the role of Spring Cloud Sleuth

for automatic trace ID generation and its integration with

tracing backends like Zipkin, Jaeger, and OpenTelemetry.

The discussion on propagating trace context, creating custom

spans, and visualizing traces through dashboards reflects a

deep understanding of how to gain granular visibility into

service interactions, a key tenet of modern observability

platforms (e.g., [7], [8]).

2.2.4. Health and Metrics Monitoring

Continuous monitoring of application status and

performance indicators is identified as essential for ensuring

reliability and efficiency. The authors detail the use of Spring

Boot Actuator for exposing health endpoints and Micrometer

for exporting metrics to tools like Prometheus and Grafana.

The emphasis on collecting various metrics (JVM,

HTTP, DB, custom business metrics) and configuring alerts

underscores a proactive approach to operational health.

Kubernetes Readiness and Liveness Probes demonstrate an

awareness of deployment-specific monitoring needs in

containerized environments. This aligns with the principles

of robust system monitoring and alerting (e.g., [12], [13]).

2.2.5. Container-Level Debugging

Given the prevalence of containerization (Docker,

Kubernetes) in microservices deployments, the paper

dedicates a section to debugging within these isolated

environments. Techniques such as docker exec, kubectl exec,

inspecting container logs, enabling remote debugging within

containers, and analyzing environment variables and running

processes are discussed.

Advanced strategies for troubleshooting production-like

issues like the sidecar debugging containers and Alpine

debug images showcased without disrupting the running

application, reflecting practical insights into container

orchestration challenges (e.g., [14], [15]).

This article effectively articulates debugging practices as

critical for microservices-based applications’ stability,

maintainability, and success. The paper also provides a

valuable guide for developers and operations teams

navigating the complexities of distributed systems.

3. What is Microservices Architecture?
A microservices-based application is composed of the

following key components:

• Service Independence: Each service operates

independently and can be deployed, updated, scaled, or

restarted without affecting other services.

• Domain-Driven Design (DDD): Services are modeled

around business domains and bounded contexts.

• Decentralized Data Management: Each microservice has

its database, and they are loosely coupled in nature.

• API Gateway: A central entry point for external clients

to access internal microservices.

• Service Discovery: Automatically registers and locates

services within the system.

3.1. Advantages of Microservices

• Scalability: They can be scaled independently based on

usage and service performance.

• Agility: Teams can develop, deploy, and scale services

independently, promoting faster release cycles.

• Fault Isolation: Failures are contained within the affected

service, improving system resilience.

• Technology Diversity: Each microservice can be built

using the most suitable technology stack.

3.2. Disadvantages of Microservices

• Complex Deployment and DevOps: Requires container

orchestration and CI/CD pipelines.

• Service Coordination and Communication: Complex

inter-service communication patterns and potential for

latency.

• Data Consistency: Ensuring consistency in a distributed

environment is complex (e.g., eventual consistency).

• Monitoring and Debugging: Requires distributed

tracing, centralized logging, and real-time monitoring

tools.

Madhuri Kolla & Krishna Vinnakota / IJCTT, 73(6), 26-33, 2025

28

3.3. Common Debugging Challenges

As discussed, some of the disadvantages of

microservices below are common debugging challenges

faced with microservices.

3.3.1. Distributed Architecture

Root cause analysis is complex as the error can be across

multiple services.

3.3.2. Asynchronous Communication

The use of queues and event-driven models obscures call

stacks.

3.3.3. Dynamic Configuration

Environment-specific properties can cause unexpected

behavior.

3.3.4. Hidden Exceptions

Exceptions may be swallowed or improperly logged.

4. Debugging Techniques
Here are some debugging techniques that can be used for

spring boot-based microservices.

• Local Debugging

• Centralized Logging

• Distributed Tracing

• Health and Metrics Monitoring

• Container-level Debugging

4.1. Local Debugging

 Local debugging is convenient and necessary for

ensuring the stability, correctness, and performance of

Spring-based applications before they hit higher

environments.

4.1.1. Importance of Local Debugging

Local debugging is very convenient, and it ensures the

stability, correctness, and performance of Spring-based

applications before they are deployed to production.

4.1.2. Importance of Local Debugging

Local debugging allows developers to identify and fix

issues early in the development cycle. It provides complete

control to inspect code behavior, set breakpoints, and test

changes in real-time. This reduces deployment errors, speeds

up development, and ensures higher code quality before

integration into larger systems.

Below are some local debugging techniques that can be

used for microservice applications:

• Use an IDE with Debug Support: Use IntelliJ IDEA,

Eclipse, or VS Code for setting breakpoints and

inspecting variables. one can run the application in

debug mode using the IDE’s built-in debugger.

• Enable Debug Mode Manually: You can start the Spring

Boot application with remote debugging enabled:

java-

agentlib:jdwp=transport=dt_socket,server=y,suspend=n,add

ress=*:5005 -jar your-app.jar

This allows you to attach the debugger from an IDE.

• Spring Boot DevTools: Spring boot provides dev tools

for automatic restarts and live reloads during

development.

Below is the dependency:

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-devtools</artifactId>

</dependency>

• Use Logs Effectively: Enable appropriate logging levels

in application.properties of spring boot application:

logging.level.org.springframework=DEBUG

logging.level.com.yourpackage=TRACE

• Check Spring Actuator Endpoints: Use Spring Boot

Actuator for runtime insights Endpoints:

/actuator/health, /actuator/beans, /actuator/env, etc.

Helps debug environment variables, loaded beans,

configurations, etc.

• Profile-Specific Configuration: Run with specific

profiles to debug configuration issues using the below

command:

java -jar app.jar --spring.profiles.active=dev

• Inspect Request Mappings: Use the below command to

check all exposed REST endpoints and routes.

curl http://localhost:8080/actuator/mappings

• Test with Postman or Curl: Validate API behavior

independently using tools like Postman or CLI tools like

Curl.

• Mock External Services: Use @MockBean or tools like

WireMock to simulate external systems for isolated

debugging

• Analyze Stack Traces: Carefully read Java stack traces

to trace the root cause of runtime exceptions or

NullPointerException.

• Database Debugging: Use in-memory databases like H2

during development.

Enable H2 console:

spring.h2.console.enabled=true

Madhuri Kolla & Krishna Vinnakota / IJCTT, 73(6), 26-33, 2025

29

4.2. Centralized Logging

Centralized logging enables traceability for

microservices and rapid incident response and is key to

maintaining reliability and security in distributed

applications. Modern microservices and many cloud-based

applications use centralized logging.

4.2.1. Importance of Centralized Logging

Centralized logging is vital for monitoring and

troubleshooting in distributed systems. Logs can be viewed

in one place as they are collected from multiple applications.

Consolidating logs from multiple services helps in quicker

root cause analysis and easier debugging, and it also helps in

security auditing. It also supports real-time monitoring,

alerting, and compliance, improving system observability

and operational efficiency.

Here are key points and techniques for implementing and

using centralized logging in Spring Boot microservices or

any distributed system:

• Deploy a logging stack like: ELK Stack (Elasticsearch,

Logstash, Kibana), EFK Stack (Elasticsearch, Fluentd,

Kibana), Grafana Loki + Promtail, Splunk, Graylog, or

Datadog Logs.

• Standardize Log Format - Ensure all services use a

consistent log structure (e.g., JSON format). Helps with

parsing, filtering, and querying logs. Spring Boot: Use

logback with JSON encoders (e.g., logstash-logback-

encoder).

• Add Contextual Metadata- Include important fields in

logs like timestamp, service name, environment,

requestId or correlationId, userId (if applicable), and log

level.

• Use Correlation IDs - Pass a correlation ID through

HTTP headers or MDC (Mapped Diagnostic Context).

Enables tracing a request across multiple services.

Spring Boot Example:

MDC.put("correlationId",

UUID.randomUUID().toString());

• Configure Centralized Log Shipping by setting up log

forwarders to send logs from services to the aggregation

system, such as Logstash, Fluentd, or Promtail, to collect

logs—ship logs from stdout, files, or syslog.

• Enable asynchronous logging by avoiding I/O

bottlenecks by using async logging in production:

• (Elasticsearch, Logstash, Kibana), EFK Stack

(Elasticsearch, Fluentd, Kibana), Grafana Loki +

Promtail, Splunk, Graylog, or Datadog Logs.

• Standardize Log Format - Ensure all services use a

consistent log structure (e.g., JSON format). Helps with

parsing, filtering, and querying logs. Spring Boot: Use

logback with JSON encoders (e.g., logstash-logback-

encoder).

• Add Contextual Metadata- Include important fields in

logs like timestamp, service name, environment,

requestId or correlationId, userId (if applicable), and log

level.

• Use Correlation IDs - Pass a correlation ID through

HTTP headers or MDC (Mapped Diagnostic Context).

Enables tracing a request across multiple services.

Spring Boot Example:

MDC.put("correlationId",

UUID.randomUUID().toString());

• Configure Centralized Log Shipping by setting up log

forwarders to send logs from services to the aggregation

system, such as Logstash, Fluentd, or Promtail, to collect

logs—ship logs from stdout, files, or syslog.

• Enable asynchronous logging by avoiding I/O

bottlenecks by using async logging in production:

<appender class=”

ch.qos.logback.classic.AsyncAppender”>

• Separate Log Levels by Environment Use different log

levels (INFO, DEBUG, ERROR) for dev, test, and prod

environments. Avoid verbose logs in production unless

needed for diagnostics.

• Protect Sensitive Data: Never log passwords, tokens, or

personal data. Apply log sanitization to mask sensitive

information.

• Use Logging Libraries Consistently. Try to Use SLF4J +

Logback in Spring Boot. Example of a logging statement

in Java:

private static final Logger logger =

LoggerFactory.getLogger(MyClass.class);

logger.info("Processing user {}", userId);

• Implement dashboards and alerts by creating dashboards

(e.g., in Kibana or Grafana) for Error trends, Request

failures, and Service-specific logs. Set up alerts for high

error rates, service downtimes, or anomalies.

4.2.2. Helpful Log Message Practices

• Use clear and actionable messages.

• Include method names, parameters (when safe), and

exception causes.

• Use structured logging (key-value pairs) for better

parsing.

4.3. Distributed Tracing

The end-to-end flow of a request across multiple services

in a microservices architecture is easily understood by

distributed tracing. It helps identify performance bottlenecks,

failures, and latency issues by recording each transaction step

across system boundaries. Distributed tracing is a critical

Madhuri Kolla & Krishna Vinnakota / IJCTT, 73(6), 26-33, 2025

30

observability practice for microservices. Teams can

diagnose, debug, and optimize the performance of a

microservice, which can be achieved with distributed tracing.

It helps in getting to know the requests for end-to-end

visibility.

4.3.1. Importance of Distributed Tracing
Distributed tracing is essential for tracking requests

across microservices, enabling end-to-end visibility into

system behavior. Performance bottlenecks, trace failures, and

analyze latency issues. Connecting service interactions with

trace IDs improves debugging, enhances observability, and

ensures reliability in complex, distributed architectures.

Below are important points for implementing distributed

tracing in distributed systems or Spring Boot microservices.

Below are important points for implementing distributed

tracing in distributed systems or Spring Boot microservices.

 1. Use tracing libraries in Spring Boot:

• Use Spring Cloud Sleuth to trace/span ID generation

automatically.

• Integrates seamlessly with Zipkin, Jaeger,

OpenTelemetry, and Grafana Tempo.

Dependency (Maven):

<dependency>

<groupId>org.springframework.cloud</groupId>

<artifactId>spring-cloud-starter-sleuth</artifactId>

</dependency>

2. Export Traces to a Tracing Backend

• Standard options include Zipkin, Jaeger, Elastic APM,

AWS X-Ray, and OpenTelemetry Collector.

Spring Boot + Zipkin Example:

spring.zipkin.base-url=http://localhost:9411/

spring.sleuth.sampler.probability=1.0 # 100% tracing in

dev

3. Propagate Trace Context Across Services

• Ensure that Trace-ID and Span-ID headers are forwarded

in HTTP requests or messaging headers.

• Use filters/interceptors to propagate and log context.

4. Add Custom Spans for Critical Sections

• Use Tracer or @NewSpan to create spans in Spring Boot

manually.

Example:
@Autowired

private Tracer tracer;

public void customTraceLogic() {

Span newSpan = tracer.nextSpan().name("custom-

operation").start();

try (Tracer.SpanInScope ws =

tracer.withSpan(newSpan.start())) {

 // code to trace

 } finally {

 newSpan.end();

 }

}

5. Use Correlation IDs in Logs

• Combine distributed tracing with centralized logging to

correlate logs with trace IDs.

• MDC (Mapped Diagnostic Context) helps include trace

data in log messages.

6. Visualize and Analyze Traces

• Use tracing dashboards (e.g., Zipkin UI, Jaeger UI,

Grafana Tempo) to:

• View trace timelines

• Analyze latency

• Detect failed spans

7. Integrate with Metrics and Logging

• Combine traces with Prometheus metrics and ELK logs

for complete observability.

• Some tools (e.g., OpenTelemetry) unify metrics, logs,

and traces.

4.3.2. Best Practices for Distributed Tracing

• Trace all incoming and outgoing calls to ensure complete

trace coverage.

• Sample selectively in production reduces overhead by

not tracing every request.

• Use meaningful names so that it is easier to understand

trace diagrams.

• Enrich spans with custom tags as it improves filtering

and querying.

• Monitor trace latency thresholds to alert on slow services

automatically.

4.4. Health and Metrics Monitoring

Health and monitoring tools continuously check the

status and performance of spring boot-based microservices to

ensure the application runs correctly and efficiently. Health

and metrics monitoring is essential for ensuring application

reliability and performance. The collection of performance

metrics can be done using health and monitoring tools. These

tools can monitor system health and respond to issues in real

time.

4.4.1. Importance of Health and Metrics Monitoring

Health and Metrics Monitoring helps detect issues in the

early phase, supports proactive maintenance, and helps scale

Madhuri Kolla & Krishna Vinnakota / IJCTT, 73(6), 26-33, 2025

31

efficiently. Availability, performance, and reliability can be

achieved by health and monitoring tools like spring boot

actuators, Prometheus and Micrometers. Teams can prevent

downtime, optimize performance, and ensure a seamless user

experience by tracking system health and resource usage.

Here are some Important Points and Techniques for

Health and Metrics Monitoring:

1. Spring Boot Actuator can show the health endpoints of a

microservice.

<dependency><groupId>org.springframework.boot</groupI

d><artifactId>spring-boot-starter-

actuator</artifactId></dependency>

• Enable endpoints inapplication.properties :

management.endpoints.web.exposure.include=health,

info, metrics

2. Use Built-in and Custom Health Indicators

Spring Boot provides default health indicators (DB, disk

space, Redis, etc.). Create custom indicators like the below:

@Component

public class MyHealthIndicator implements HealthIndicator

@Override

public Health health() {

 // custom logic

 return Health.up().withDetail("status",

"OK").build();

 } }

3. Expose Metrics for Monitoring Tools

Metrics exposed at /actuator/metrics

Use Micrometer (included in Spring Boot) to export metrics

to:

• Prometheus

• InfluxDB

• Graphite

• Datadog

4. Collect Application and System Metrics and common

metrics to monitor:

• JVM: memory usage, GC time

• HTTP: request count, error rate, latency

• DB: connection pool usage, query time

• Custom business metrics (e.g., transactions processed)

5. Integrate with Visualization Tools, export metrics to

Prometheus, and visualize in Grafana.

 Dashboards and it should show below things

• CPU/memory usage

• Request response times

• Service Uptime

• Error rate trends

6. Set Up Alerts like below

Configure alert rules (e.g., high error rate, low memory,

unhealthy service)

Send alerts via:

• Email

• Slack

• PagerDuty

7. Use Readiness and Liveness Probes (Kubernetes) and

Define your deployment.yaml:

readinessProbe:

 httpGet:

 path: /actuator/health

 port: 8080

livenessProbe:

 httpGet:

 path: /actuator/health

 port: 8080

8. Tag and Filter Metrics

• Add tags like instance, region, service, and status for

easier filtering.

• Useful for multi-instance and multi-region deployments.

9. Use Distributed Tracing with Metrics

• Correlate traces and metrics for complete observability.

• Tools: OpenTelemetry, Spring Sleuth + Zipkin/Jaeger

10. Ensure Security on Monitoring Endpoints

• Do not expose health or metrics endpoints publicly

without security.

• Restrict access using roles or firewall rules.

4.5. Container-level Debugging

Container-level debugging involves inspecting and

troubleshooting application behavior inside a container (e.g.,

Docker) to diagnose runtime issues such as crashes,

misconfigurations, or resource bottlenecks. Container-level

debugging is critical when troubleshooting production-like

environments. Teams can identify broken dependencies and

runtime issues that don’t occur in local development.

4.5.1. Importance of Container-level Debugging:

Container-level debugging is crucial in identifying

configuration-related issues, network problems and runtime

failures in environments like kubernetes or Docker.

Container-level debugging is crucial for diagnosing issues in

environments like Docker or Kubernetes. Container-level

debugging can access logs, environment variables, and

Madhuri Kolla & Krishna Vinnakota / IJCTT, 73(6), 26-33, 2025

32

system states, and developers can resolve issues quickly and

ensure application stability in production environments.

Here are some Key Techniques for Container-Level

Debugging

1. Use docker exec to access the container. Run an interactive

shell inside a running container:

 docker exec -it <container_id> /bin/sh

Useful for inspecting logs, config files, environment

variables, or running diagnostic commands.

 2. Check Container Logs to view application logs from

stdout/stderr:

 For Docker :

 docker logs <container_i

 For Kubernetes:

 kubectl logs <pod_name>

 3. Use kubectl exec for kubernetes pods. Run commands

inside a Kubernetes container:

kubectl exec -it <pod_name> -- /bin/bash

Good for checking running processes, files, or container

environments.

4. Enable Remote Debugging in Spring Boot:

• Run Spring Boot with remote debugging enabled:

-

agentlib:jdwp=transport=dt_socket,server=y,suspend=

n,address=*:5005 -jar app.jar

• Expose port 5005 in Dockerfile or Kubernetes

deployment for IDE debugging.

5. Inspect Environment Variables

Inside the container: printenv Helps confirm

configuration passed via ENV, -e, or Kubernetes

ConfigMaps and Secrets.

6. Analyze Running Processes

List running processes inside the container: ps aux, top.

Detects if the main application process is running or if it is

stuck.

 7. Use Sidecar Debugging Containers

• In Kubernetes, attach a temporary debug container

(sidecar) to access a pod without modifying the running

app.

8. Check Network Connectivity

• Use Curl, ping, or telnet to check connectivity to

databases, APIs, or services from inside the container.

• It helps diagnose DNS or firewall issues.

9. Volume & File Inspection Inspect mounted volumes or

files:

 ls /path/to/mount

 cat /path/to/config.yaml

• Confirm that the configuration is correctly mounted and

accessible.

10. Use Alpine Debug Images:

If your container is minimal (Alpine, distroless), add

debugging tools or use a debugging base image:

kubectl debug <pod> --image=busybox --target=app

5. Conclusion
Debugging techniques are critical in microservices

architecture due to the distributed and decentralized nature of

the system. Unlike monolithic applications, microservices

consist of multiple independently deployed components

interacting with networks. This complexity makes

identifying the root cause of issues more challenging.

Effective debugging techniques—such as centralized

logging, distributed tracing, health checks, and container-

level debugging—are essential for gaining visibility into

system behavior and diagnosing problems efficiently. These

techniques enable developers and operations teams to isolate

failures, trace request flows across services, and monitor real-

time performance metrics. They help reduce Mean Time To

Resolution (MTTR), which is crucial for maintaining service

uptime and user satisfaction.

Debugging also plays a vital role in performance

optimization, helping to identify bottlenecks such as slow

API responses or resource exhaustion. Proactive debugging

strategies ensure reliability, scalability, and resilience in

production environments by detecting issues early and

allowing graceful degradation. Furthermore, debugging tools

support agile and DevOps workflows by enabling rapid

diagnosis during continuous integration and delivery cycles.

Overall, robust debugging practices are essential for ensuring

the stability, maintainability, and success of microservices-

based applications in modern cloud-native architectures.

References
[1] Pivotal Software, Spring Boot Documentation. [Online]. Available: https://docs.spring.io/spring-boot/docs/current/reference/html/

[2] Baeldung, Spring Boot Debugging Techniques. [Online]. Available: https://www.baeldung.com/spring-boot-debugging

[3] JetBrains, Remote Debugging with IntelliJ IDEA, 2024. [Online]. Available: https://www.jetbrains.com/help/idea/remote-debugging.html

[4] Elastic, What is the ELK Stack?. [Online]. Available: https://www.elastic.co/what-is/elk-stack

https://docs.spring.io/spring-boot/docs/current/reference/html/
https://www.jetbrains.com/help/idea/remote-debugging.html
https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/what-is/elk-stack

Madhuri Kolla & Krishna Vinnakota / IJCTT, 73(6), 26-33, 2025

33

[5] Grafana Labs, Loki: Like Prometheus, but for Logs. [Online]. Available: https://grafana.com/oss/loki/

[6] Ran Ramati, Best Practices for Centralized Logging in Microservices, Logz.io. [Online]. Available: https://logz.io/blog/logging-best-

practices/

[7] OpenZipkin, Distributed Tracing Made Easy. [Online]. Available: https://zipkin.io

[8] OpenTelemetry, Getting Started with Distributed Tracing. [Online]. Available: https://opentelemetry.io/docs/

[9] Spring, Spring Cloud Sleuth. [Online]. Available: https://spring.io/projects/spring-cloud-sleuth

[10] Spring, Spring Boot Actuator Endpoints. [Online]. Available: https://docs.spring.io/spring-boot/docs/current/actuator-api/html/

[11] Micrometer, Application Metrics for JVM-Based Systems. [Online]. Available: https://micrometer.io

[12] Prometheus, Prometheus Documentation. [Online]. Available: https://prometheus.io/docs/introduction/overview/

[13] Grafana Labs, Grafana Documentation. [Online]. Available: https://grafana.com/docs/grafana/latest/

[14] Docker, docker exec. [Online]. Available: https://docs.docker.com/engine/reference/commandline/exec

[15] Kubernetes, Debugging Pods and Containers. [Online]. Available: https://kubernetes.io/docs/tasks/debug/

https://zipkin.io/
https://spring.io/projects/spring-cloud-sleuth
https://spring.io/projects/spring-cloud-sleuth
https://docs.spring.io/spring-boot/docs/current/actuator-api/html/
https://micrometer.io/
https://prometheus.io/docs/introduction/overview/

