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Abstract - The rapid growth of Artificial Intelligence (Al) has led to unprecedented demand for computational resources and
energy consumption. Large-scale deep learning models, particularly Convolutional Neural Networks (CNNs) and transformer-
based architectures, require substantial computing power during both training and inference. As Al systems are increasingly
deployed at scale—from cloud data centers to edge devices—energy efficiency and sustainability have become critical concerns.
This paper presents a practical survey of the computational and energy demands of modern Al systems. We analyze energy
consumption across training and inference stages, compare cloud-based and edge-based deployments, and discuss the
environmental impact of data centers. Furthermore, we examine emerging directions in energy-efficient Al, including model
compression, quantization, knowledge distillation, and hardware-aware optimization. The goal is to provide engineers and

researchers with a concise, deployment-oriented reference for understanding Al energy challenges and selecting practical

approaches toward sustainable Al systems.
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1. Introduction

Artificial intelligence has become a foundational
technology across domains such as computer vision, natural
language processing, healthcare, finance, and autonomous
systems. In recent years, improved accuracy has often been
achieved by increasing model scale, data volume, and
compute. Although these trends enable stronger capability,
they also amplify energy consumption during both training
and deployment.

A recurring limitation of the current literature is that
energy efficiency is frequently studied in isolation—for
example, focusing only on training-time optimization,
inference acceleration, or hardware improvements. What
remains less well clarified is how architectural choices,
runtime behavior, data movement, and deployment
environment interact to determine the end-to-end energy
footprint in practical systems. This gap makes it difficult for
practitioners to select methods that are not only accurate but
also sustainable.

This survey addresses the gap by providing a unified,
deployment-oriented synthesis of computational demand and
energy usage in modern Al systems. The novelty of the work
lies not in proposing a new algorithm, but in organizing and
comparing recent findings across training, inference, cloud
infrastructure, edge deployment, and system-level
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optimization into a coherent engineering perspective. The
resulting framework supports decision-making for sustainable
Al design, including when to compress models, when to shift
computation to the edge, and how to interpret reported energy
metrics.

2. Glossary of Key Terms
FLOPs (Floating-Point Operations): A metric that
approximates computational workload.

Quantization: Reduced numerical precision (e.g., FP32 to
INT8/INT4) to lower memory bandwidth and energy use.
Knowledge Distillation: Training a compact model to imitate
a larger model.

Edge Al: Inference performed close to the data source
under tight power constraints.

Mixed-Precision Training: Combining FP16/BF16
computation with higher-precision accumulation.

KV Cache: Reusing key—value tensors during transformer
inference to reduce repeated attention computation.

3. Methodology of Literature Selection
This survey adopts a systematic literature review
approach. Publications were identified using Google Scholar,
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IEEE Xplore, and the ACM Digital Library, with emphasis on
work from 2021 to 2025. Search terms included energy-
efficient Al, green Al, Al energy consumption, edge inference
efficiency, sustainable machine learning, model compression,
and low-precision inference. Studies were included when they
(i) reported compute or energy measurements, (ii) described
reproducible optimization methods, or (iii) analyzed
deployment impacts in cloud, edge, or hybrid settings. Sources
without sufficient technical detail were excluded.

4. Main Survey Content (Retained from

Accepted Manuscript)
4.1. Introduction

Artificial intelligence has become a foundational
technology across numerous domains, including computer
vision, natural language processing, autonomous systems,
healthcare, finance, and smart infrastructure. Over the past
decade, model performance has improved rapidly, driven by
larger datasets, better training recipes, and—most notably—
scaling model size and computation. These gains come with a
cost: modern Al systems can require significant amounts of
electricity and cooling resources, raising concerns about
operational expenses, scalability, and environmental
sustainability.

Energy has emerged as a key limiting factor for both
research and deployment. Training large models can consume
a substantial amount of electricity over extended periods.
Meanwhile, inference workloads—often running
continuously in production—can dominate long-term energy
consumption when scaled to millions of users or thousands of
edge devices. The challenge is not only the compute used by
GPUs/accelerators but also the supporting infrastructure,
including memory, networking, storage, and cooling.

This paper surveys the computational and energy
demands of modern Al systems from a practical, engineering
perspective. Rather than proposing new algorithms, we
synthesize widely used concepts and deployment patterns,
focusing on (i) how model architecture drives compute and
energy usage, (ii) how training and inference differ in energy
profiles, (iii) how cloud and edge deployments shift energy
costs, and (iv) what techniques are commonly used to improve
energy efficiency in practice.

4.2. Computational Demand of Modern Al Models

The computational demand of an Al model is determined
by its architecture (e.g., CNN vs. transformer), parameter
count, input size, and runtime configuration (including batch
size, precision, and parallelism). In practice, compute is often
discussed using metrics such as Floating-Point Operations
(FLOPs), parameter count, and memory bandwidth
requirements. These metrics are helpful, but energy
consumption depends on both compute and data movement,
which can dominate on modern hardware. CNN-based models
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remain dominant for wvarious vision tasks, including
classification, detection, segmentation, and pose estimation.
Their compute typically scales with input resolution and the
number of convolutional channels and layers. Efficient CNN
families (e.g., MobileNet-style depthwise separable
convolutions) reduce FLOPs and memory access, enabling
deployment on mobile and edge hardware.

Transformer-based models—especially Large Language
Models (LLMs)—introduce substantial compute and memory
demands. The self-attention mechanism can scale
quadratically with sequence length, creating heavy matrix
multiplications and large activation tensors. Even during
inference, transformers may require repeated attention
computations over long contexts, leading to high latency and
energy usage unless optimized by techniques such as KV-
cache reuse, quantization, and hardware-optimized kernels.

Importantly, energy is not perfectly proportional to
FLOPs. Data movement (reading/writing activations and
weights) is energy-expensive, and models with poor memory
locality may consume more energy than their FLOPs suggest.
Therefore, understanding compute demand requires
considering both arithmetic intensity and memory bandwidth
behavior.

4.3. Energy Consumption in Al Training

Training is typically the most energy-intensive phase of
the model lifecycle because it requires repeated forward and
backward passes, gradient computation, optimizer updates,
and (in distributed settings) communication overhead. Large
models are trained on GPU/accelerator clusters that may run
for days or weeks. In addition to the direct energy used by
computing devices, training consumes energy through data-
center cooling and supporting infrastructure.

Several factors drive training energy consumption: model
size, dataset size, number of training steps, and hardware
utilization efficiency. Inefficient input pipelines or suboptimal
distributed training strategies can increase time-to-train,
raising total energy. Precision also matters: mixed-precision
training (e.g., FP16/BF16) can significantly reduce compute
and memory overhead and improve throughput on modern
accelerators.

Practical approaches to reduce training energy include
mixed-precision training, better hyperparameter tuning (to
reduce wasted training runs), early stopping, -efficient
optimizers, and reusing pretrained checkpoints to avoid
training from scratch. While training energy is episodic, it can
be substantial and is increasingly scrutinized as model sizes
continue to grow.

4.4. Energy Consumption in Al Inference
Although training is energy-intensive, inference often
represents the largest cumulative energy cost in real-world
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deployments because it runs continuously. Al services such as
recommendation, search ranking, content moderation, speech
recognition, and conversational assistants perform inference at
a massive scale. Even small per-request savings can translate
into significant energy reductions when multiplied across
millions of daily requests.

Inference energy depends on model architecture, input
characteristics, batching strategy, and hardware. CNN
inference is often predictable, while transformer inference can
be sensitive to context length and decoding strategy (e.g.,
greedy vs beam search). Memory access patterns and kernel
efficiency strongly affect energy. For example, optimized
operator fusion and hardware-specific kernels can lower both
latency and energy. Because inference runs in production,
common energy-saving strategies include quantization
(INT8/INT4), pruning, distillation, operator fusion, and
dynamic inference (skipping layers or early exiting when
confidence is high). These techniques aim to reduce per-
inference energy without unacceptable accuracy degradation.

4.5. Cloud-Based Al vs Edge Al: An Energy Perspective

Cloud-based Al centralizes computation in data centers
equipped with high-performance GPUs/TPUs and robust
infrastructure. This provides high throughput and simplified
management but introduces energy costs from cooling,
networking, and data movement. Additionally, cloud
inference can require transmitting raw or partially processed
data from devices to data centers, increasing network energy
and potentially raising privacy concerns.

Edge Al performs inference closer to the data source (e.g.,
on a camera, gateway, or mobile device). By reducing the need
for continuous data transmission, edge Al can lower network-
related energy and latency, and it can improve privacy by
keeping sensitive data local. Many edge devices employ
energy-efficient processors (ARM CPUs, NPUs) designed for
low-power inference.

From an energy perspective, edge Al is especially
attractive for always-on vision systems (smart cameras) where
transmitting full video streams to the cloud is expensive.
However, edge devices have limited compute and thermal
budgets, requiring lightweight models and careful
optimization. In many real systems, a hybrid design is used:
simple tasks run on-device, while more complex analysis is
offloaded to the cloud when needed.

4.6. Data Centers and Environmental Impact

Data centers are a major component of the global digital
energy footprint. Al workloads can intensify electricity
demand because accelerators draw significant power under
high utilization. Beyond computing, data centers require
cooling systems, power conditioning, networking equipment,
and redundancy, all of which contribute to total energy usage.
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The environmental impact of Al depends on the
electricity mix (renewables vs fossil fuels), cooling efficiency,
and overall data-center design. Organizations are increasingly
investing in renewable energy procurement and energy-
efficient infrastructure; however, the rapid growth in Al usage
can still outpace efficiency gains.

To evaluate sustainability, it is useful to consider not only
the energy consumed during training but also the operational
energy for inference over the model’s lifetime. For widely
deployed models, inference energy can be the dominant factor.
Therefore, sustainable Al requires lifecycle thinking across
training, deployment, and system design.

4.7. Energy-Efficient Al Techniques
A variety of techniques can
consumption of Al systems:
1. Model compression and pruning: Removing redundant
weights or channels can reduce compute and memory
access. Structured pruning is often preferred for
deployment because it maps well to hardware.
Quantization: Lowering numerical precision (e.g.,
FP32—INT8 or INT4) reduces memory bandwidth and
accelerates inference on many processors. Quantization-
aware training can preserve accuracy better than post-
training quantization.
Knowledge distillation: Training a smaller student model
to mimic a larger teacher can provide strong accuracy at
a fraction of the compute and energy.
Hardware-aware optimization: Choosing architectures
that align with target hardware (e.g., depthwise separable
convs on mobile, attention kernels optimized for GPUs)
can improve energy efficiency. Operator fusion, kernel
tuning, and efficient runtime frameworks (such as TFL.ite,
TensorRT, and NCNN) also matter.
Dynamic and adaptive inference: Techniques such as
early exiting, token pruning, and conditional computation
can reduce work for easy inputs, improving energy
efficiency in production.

reduce the energy

4.8. Comparative Overview

Table 1 provides a qualitative comparison of typical
energy characteristics across common Al deployment
scenarios. Exact values depend on device, workload, and

configuration; the table is intended for practical intuition.

Table 1. Energy Characteristics of Al Scenarios
- Large-scale training (GPU/TPU clusters): highest short-term
energy usage; episodic but expensive.
- Cloud inference (GPU/CPU fleets): high cumulative energy
due to continuous demand.
- Edge inference (ARM/NPU): low per-device energy;
requires lightweight models and efficient runtimes.
- Hybrid systems (edge + cloud): balanced approach; common
in commercial deployments.
Table 1. Energy Characteristics of Al Deployment Scenarios
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Table 1. Summary of reported energy characteristics across common Al deployment scenarios

Scenario Typical Hardware Energy Characteristics Notes
i - High  short-term  energy | Costly  runs, efficiency
Large-scale training GPU/TPU clusters usage depends on utilization

Cloud inference

GPU/CPU servers

High cumulative energy

Scales with request volume

and latency targets

Edge inference ARM CPU / NPU

Requires compact/quantized

Low per-device energy models

Hybrid deployment Edge + Cloud

Edge filtering reduces data

Balanced distribution transfer and cloud load

4.9. Challenges and Future Directions

Several challenges remain for sustainable Al. First,
measuring energy consistently across hardware and software
stacks is non-trivial; different devices and runtime
frameworks expose different telemetry. Second, efficiency
can trade off with accuracy, robustness, and fairness. Third,
optimizing a model in isolation may not optimize the entire
system, as data pipelines, networking, and storage can
consume a significant amount of energy in some deployments.

Future directions include energy-aware evaluation
metrics, standardized benchmarks, adaptive inference
policies, and algorithm-hardware co-design. For transformers
and LLMs, research into efficient attention mechanisms, KV
cache optimization, and low-bit inference is particularly
important. For edge vision, the co-development of efficient
models and efficient on-device pipelines (including pre/post-
processing) will continue to drive energy savings.

4.10. Conclusion

Al systems are increasingly constrained by energy and
sustainability considerations. This survey reviewed the
computational and energy demands of modern Al across
training and inference, highlighted the distinct energy trade-
offs of cloud versus edge deployments, and summarized
practical efficiency techniques such as quantization, pruning,
distillation, and hardware-aware optimization. Sustainable Al
requires a lifecycle and system-level view, where model
design, hardware selection, and deployment architecture are
optimized together. As Al adoption continues to expand,
energy-efficient Al will remain central to building powerful,
scalable, and responsible intelligent systems.

5. Comparative Summary Table

To address reviewer feedback regarding quantitative
clarity, Table 1 summarizes reported energy characteristics
across common Al deployment scenarios. Exact values
depend on hardware, workload, and measurement
methodology; therefore, the table is intended as a structured
comparison rather than a single definitive benchmark.
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6. Ethical and Environmental Implications

The increasing energy footprint of Al systems raises
ethical considerations for sustainability and responsible
engineering. Model scaling decisions affect not only cost but
also environmental impact. Energy-aware design—such as
reducing redundant training, selecting efficient architectures,
adopting low-precision inference, and favoring edge
processing when appropriate—can lower emissions and
support broader societal goals. Incorporating sustainability
metrics into model evaluation is, therefore, a practical and
ethical responsibility for Al practitioners.

7. Conclusion and Future Directions

This survey reviewed the computational and energy
demands of modern Al systems and discussed how
architecture, precision, and deployment environment shape
real-world energy consumption. The work contributes a
deployment-oriented synthesis that connects reported
measurements with engineering decisions. Future research
directions include the development of standardized energy
benchmarking  protocols, transparent  reporting  of
measurement methodologies, adaptive inference strategies
that balance accuracy with energy efficiency under
deployment constraints, and the improved integration of
sustainability metrics into Al evaluation and procurement.
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